Content & schedule (planned, changes still possible)
Abschnittsübersicht
-
15.4. L1: Introduction to Deep Learning & Course Organization (Dozent: Goran Glavaš)
22.4. L2: Building Blocks & Feed-forward Nets (Dozentin: Katharina Breininger)
29.4. L3: Optimization & Training (Dozent: Goran Glavaš)
13.5. L4: Convolutional networks (Dozentin: Katharina Breininger)
27.5. L5: Autoencoders & Generative Adversarial Networks (Dozent/in: Radu Timofte / Nancy Mehta )
3.6. L6: Recurrent Networks (Dozent: Andreas Hotho)
10.6. L7: Attention & Transformers (Dozent: Andreas Hotho)
17.6. L8: Intro to Reinforcement Learning (Dozent: Carlo D'Eramo)
24.6. L9: Deep Reinforcement Learning (Dozent: Carlo D'Eramo)
1.7. L10: Graph Representation Learning (Dozent: Ingo Scholtes)
8.7. L11: Neural Networks for/on Graphs (Dozent: Ingo Scholtes)