Résumé de section
-
15.4. L1: Introduction to Deep Learning & Course Organization (Dozent: Goran Glavaš)
22.4. L2: Building Blocks & Feed-forward Nets (Dozentin: Katharina Breininger)
29.4. L3: Optimization & Training (Dozent: Goran Glavaš)
13.5. L4: Convolutional networks (Dozentin: Katharina Breininger)
27.5. L5: Autoencoders & Generative Adversarial Networks (Dozent/in: Radu Timofte / Nancy Mehta )
3.6. L6: Recurrent Networks (Dozent: Andreas Hotho)
10.6. L7: Attention & Transformers (Dozent: Andreas Hotho)
17.6. L8: Intro to Reinforcement Learning (Dozent: Carlo D'Eramo)
24.6. L9: Deep Reinforcement Learning (Dozent: Carlo D'Eramo)
1.7. L10: Graph Representation Learning (Dozent: Ingo Scholtes)
8.7. L11: Neural Networks for/on Graphs (Dozent: Ingo Scholtes)
Impressum | Datenschutzerklärung - WueCampus | Erklärung zur Barrierefreiheit | Bildnachweise
Navigationsleiste - Rechenzentrum: Data center icons created by Eucalyp - Flaticon
Navigationsleiste - Website Support: Consultant icons created by Vitaly Gorbachev - Flaticon
Navigationsleiste - Häufige Fragen: Files and folders icons created by Freepik - Flaticon
Navigationsleiste - Lehre Digital: Training icons created by vectorspoint - Flaticon
Navigationsleiste - Forschung Digital: Research icons created by Eucalyp - Flaticon
Navigationsleiste - Lecture: Video icons created by Freepik - Flaticon
Werbefeld 2 - WueLogin: Login icons created by Freepik - Flaticon
Werbefeld 3 - Upgrade WueCampus 4.4: Update icons created by Freepik - Flaticon