Skip to main content
Side panel
Nützliche Links
Veranstaltungssuche
Rechenzentrum
Website-Support
Häufige Fragen
Lehre Digital
Forschung Digital
Lecture - Videoupload
CaseTrain
More
English (en)
Català (ca)
Deutsch (de)
Deutsch (du) (de_du)
English (en)
Español - Internacional (es)
Français (fr)
Italiano (it)
Português - Portugal (pt)
Svenska (sv)
Türkçe (tr)
Русский (ru)
العربية (ar)
You are currently using guest access
Log in
Nützliche Links
Collapse
Expand
Veranstaltungssuche
Rechenzentrum
Website-Support
Häufige Fragen
Lehre Digital
Forschung Digital
Lecture - Videoupload
CaseTrain
Expand all
Collapse all
Expand
Collapse
General
Highlighted
Expand
Collapse
Seminar: Visualisierung von Graphen
Highlighted
Thema in diesem Semester: Graphenzeichnen In diese...
Expand
Collapse
Ablauf
Highlighted
Expand
Collapse
Themen
Highlighted
Expand
Collapse
Vorträge
Highlighted
Einführungsfolien (17.10.2023)
Folien-Template
Expand
Collapse
Ausarbeitungen
Highlighted
Latex-Template für Ausarbeitung (mit Schreibtipps!)
Open course index
Open block drawer
Home
Sommersemester 2023
Master- und Aufbaustudiengänge
SS23_Seminar_NLP4CH
Kick-off
Kursinformationen
×
Kursbeschreibung
Beschreiben Sie kurz und prägnant, worum es in diesem Kurs geht.
Lehrende
Goran Glavaš
JK
Jan Keller
|
Kick-off
Section outline
◄
General Information
Select activity Topics being offered in SS23:NLP (adaptation) fo...
Topics being offered in SS23:
NLP (adaptation) for historical texts
L
anguage models for NLP on historical texts
Starting Paper:
MacBERTh: Development and Evaluation of a Historically Pre-trained Language Model for English (1450-1950)
(Manjavacas Arevalo & Fonteyn, NLP4DH 2021)
Transfer learning for NER on historical texts
Starting Papers:
Transferring Modern Named Entity Recognition to the Historical Domain: How to Take the Step?
(Blouin et al., NLP4DH 2021)
Batavia asked for advice. Pretrained language models for Named Entity Recognition in historical texts.
(Arnoult et al., LaTeCHCLfL 2021)
NLP in literary analysis
Identification of key paragraphs
Starting Paper:
Lotte and Annette: A Framework for Finding and Exploring Key Passages in Literary Works
(Arnold & Jäschke, NLP4DH 2021)
Data bias in literary classification
Starting Paper:
Measuring the Effects of Bias in Training Data for Literary Classification
(Bagga & Piper, LaTeCHCLfL 2020)
Analysis of translated literature
Starting Papers:
TL-Explorer: A Digital Humanities Tool for Mapping and Analyzing Translated Literature
(Zhai et al., LaTeCHCLfL 2020)
Translationese in Russian Literary Texts
(Kunilovskaya et al., LaTeCHCLfL 2021)
◄
General Information
Jump to...
Main course page
Impressum
|
Datenschutzerklärung - WueCampus
|
Erklärung zur Barrierefreiheit
|
Bildnachweise
Navigationsleiste - WueStudy:
University icons created by justicon - Flaticon
Navigationsleiste - Rechenzentrum:
Data center icons created by Eucalyp - Flaticon
Navigationsleiste - Website Support:
Consultant icons created by Vitaly Gorbachev - Flaticon
Navigationsleiste - Häufige Fragen:
Files and folders icons created by Freepik - Flaticon
Navigationsleiste - Lehre Digital:
Training icons created by vectorspoint - Flaticon
Navigationsleiste - Forschung Digital:
Research icons created by Eucalyp - Flaticon
Navigationsleiste - Lecture:
Video icons created by Freepik - Flaticon
Werbefeld 2 - WueLogin:
Login icons created by Freepik - Flaticon
Werbefeld 3 - Upgrade WueCampus 4.4:
Update icons created by Freepik - Flaticon