Exercise Sheet \#3

Graph Visualization (SS 2024)

Exercise 1 - Canonical order and shift method for the icosahedron

Let G be the 1-skeleton of the icosahedron, i.e., the graph shown below.

a) Find a canonical order of G.
b) Draw G using the shift algorithm from the lecture. Show the intermediate drawings step by step.

5 Points

Exercise 2 - Canonical orders for outerplanar graphs

A graph is outerplanar if it has a planar embedding such that all vertices are on the same face, usually the outer face. It is a maximal outerplanar graph if it is biconnected and internally triangulated.

Describe a special canonical order built precisely for maximal outerplanar graphs.
a) Reformulate the conditions (C1)-(C3) for maximal outerplanar graphs. Can we enforce a bound on the degree of v_{k+1} in G_{k+1} ?

2 Points
b) How can we adjust the algorithm CanonicalOrder for maximal planar graphs to obtain a canonical order for maximal outerplanar graphs?

4 Points

Exercise 3 - An alternative shift algorithm

We want to examine an alternative algorithm for drawing a plane triangulation G :

- Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a canonical order of the vertices of G.
- Draw v_{1} at $(0,0), v_{2}$ at $(2,0)$, and v_{3} at $(1,1)$.
- Incrementally draw the graph $\mathrm{G}_{\mathrm{k}}=\mathrm{G}\left[\left\{v_{1}, \ldots, v_{k}\right\}\right]$ for $k \in\{4,5, \ldots, n\}$:

Let $w_{1}, \ldots, w_{p}, \ldots, w_{q}, \ldots, w_{\mathrm{t}}$ be the vertices on the boundary of the outer face of $\mathrm{G}_{\mathrm{k}-1}$ (in this order), where $w_{1}=v_{1}, w_{\mathrm{t}}=v_{2}$, and w_{p}, \ldots, w_{q} are the neighbors of v_{k} in $\mathrm{G}_{\mathrm{k}-1}$. As the x-coordinate of v_{k}, choose an integer value $x\left(v_{\mathrm{k}}\right)$ with $x\left(w_{\mathrm{p}}\right)<$ $x\left(v_{k}\right)<x\left(w_{q}\right)$. If no such value exists, first shift the right part of the drawing to the right by 1 ; i.e., for $\mathrm{q} \leq i \leq t$ move each $\mathrm{L}\left(w_{i}\right)$ to the right by 1 . Now choose the smallest positive integer y-coordinate for which the drawing stays planar and v_{k} lies on the outer face.
a) Argue why this algorithm always yields a planar drawing. In particular, in step 3, why does a suitable y-coordinate exist?

3 Points
b) Find a good lower bound for the maximum area requirement of the resulting drawing: find an infinite family of graphs where making bad choices for the $x-$ coordinate in step 3 gives exponentially large y-coordinates.

3 Points

This assignment is due at the beginning of the next lecture, that is, on May 10 at 10:15 am. Please submit your solutions via WueCampus. The questions can be asked in the tutorial session on May 8 at 16:00 and the solutions will be discussed one week after that on May 15.

