
Problem Q: A Stingy Park Visit
Seminar Algorithms for Programming Contests

Tim Hegemann Michael Kreuzer

2020-07-22



Tim Michael



8

1 3

1 2

2 3

∑
= 0

∑
= 0

∑
= 1

∑
= 3

∑
= 2

∑
= 3

∑
= 4

∑
= 6

∑
= 4

∑
= 6

∑
= 6

∑
= 9

∑
= 7

∑
= 9

∑
= 8

∑
= 12

∑
= 8

∑
= 12



8

1

1

1

1 3

1 2

2 3

∑
= 0

∑
= 0

∑
= 1

∑
= 3

∑
= 2

∑
= 3

∑
= 4

∑
= 6

∑
= 4

∑
= 6

∑
= 6

∑
= 9

∑
= 7

∑
= 9

∑
= 8

∑
= 12

∑
= 8

∑
= 12



8

1

1

1

1 3

1 2

2 3

∑
= 0

∑
= 0

∑
= 1

∑
= 3

∑
= 2

∑
= 3

∑
= 4

∑
= 6

∑
= 4

∑
= 6

∑
= 6

∑
= 9

∑
= 7

∑
= 9

∑
= 8

∑
= 12

∑
= 8

∑
= 12



8 1

1

1

1 3

1 2

2 3

∑
= 0

∑
= 0

∑
= 1

∑
= 3

∑
= 2

∑
= 3

∑
= 4

∑
= 6

∑
= 4

∑
= 6

∑
= 6

∑
= 9

∑
= 7

∑
= 9

∑
= 8

∑
= 12

∑
= 8

∑
= 12



8 1

1

1

1 3

1 2

2 3

∑
= 0

∑
= 0

∑
= 1

∑
= 3

∑
= 2

∑
= 3

∑
= 4

∑
= 6

∑
= 4

∑
= 6

∑
= 6

∑
= 9

∑
= 7

∑
= 9

∑
= 8

∑
= 12

∑
= 8

∑
= 12



8 1

1

1

1 3

1 2

2 3

∑
= 0

∑
= 0

∑
= 1

∑
= 3

∑
= 2

∑
= 3

∑
= 4

∑
= 6

∑
= 4

∑
= 6

∑
= 6

∑
= 9

∑
= 7

∑
= 9

∑
= 8

∑
= 12

∑
= 8

∑
= 12



8 1

1

1

1 3

1 2

2 3

∑
= 0

∑
= 0

∑
= 1

∑
= 3

∑
= 2

∑
= 3

∑
= 4

∑
= 6

∑
= 4

∑
= 6

∑
= 6

∑
= 9

∑
= 7

∑
= 9

∑
= 8

∑
= 12

∑
= 8

∑
= 12



8 1

1

1

1 3

1 2

2 3

∑
= 0

∑
= 0

∑
= 1

∑
= 3

∑
= 2

∑
= 3

∑
= 4

∑
= 6

∑
= 4

∑
= 6

∑
= 6

∑
= 9

∑
= 7

∑
= 9

∑
= 8

∑
= 12

∑
= 8

∑
= 12



8 1

1

1

1 3

1 2

2 3

∑
= 0

∑
= 0

∑
= 1

∑
= 3

∑
= 2

∑
= 3

∑
= 4

∑
= 6

∑
= 4

∑
= 6

∑
= 6

∑
= 9

∑
= 7

∑
= 9

∑
= 8

∑
= 12

∑
= 8

∑
= 12



8 1

1

1

1 3

1 2

2 3

∑
= 0

∑
= 0

∑
= 1

∑
= 3

∑
= 2

∑
= 3

∑
= 4

∑
= 6

∑
= 4

∑
= 6

∑
= 6

∑
= 9

∑
= 7

∑
= 9

∑
= 8

∑
= 12

∑
= 8

∑
= 12



8 1

1

1

1 3

1 2

2 3

∑
= 0

∑
= 0

∑
= 1

∑
= 3

∑
= 2

∑
= 3

∑
= 4

∑
= 6

∑
= 4

∑
= 6

∑
= 6

∑
= 9

∑
= 7

∑
= 9

∑
= 8

∑
= 12

∑
= 8

∑
= 12



8 1

1

1

1 3

1 2

2 3

∑
= 0

∑
= 0

∑
= 1

∑
= 3

∑
= 2

∑
= 3

∑
= 4

∑
= 6

∑
= 4

∑
= 6

∑
= 6

∑
= 9

∑
= 7

∑
= 9

∑
= 8

∑
= 12

∑
= 8

∑
= 12



8 1

1

1

1 3

1 2

2 3

∑
= 0

∑
= 0

∑
= 1

∑
= 3

∑
= 2

∑
= 3

∑
= 4

∑
= 6

∑
= 4

∑
= 6

∑
= 6

∑
= 9

∑
= 7

∑
= 9

∑
= 8

∑
= 12

∑
= 8

∑
= 12



8 1

1

1

1 3

1 2

2 3

∑
= 0∑
= 0

∑
= 1∑
= 3

∑
= 2∑
= 3

∑
= 4∑
= 6

∑
= 4∑
= 6

∑
= 6∑
= 9

∑
= 7∑
= 9

∑
= 8∑
= 12

∑
= 8∑
= 12

all emoji: Google Noto Fonts · SIL OFL



A Stingy Park Visit

It is another wonderful sunny day in July – and you decided to spend your day
together with your little daughter Joy. Since she really likes the fairy-park in the
next town, you decided to go there for the day. Your wife (unfortunately she has
to work) agreed to drive you to the park and pick you up again. Alas, she is very
picky about being on time, so she told you exactly when she will be at the park’s
front entrance to pick you up and you have to be there at exactly that time. You
clearly also don’t want to wait outside, since this would make your little daughter
sad – she could have spent more time in the park!



A Stingy Park Visit (cont.)

Now you have to plan your stay at the park. You know when you will arrive and
when you will have to depart. The park consists of several rides, interconnected
by small pavements. The entry into the park is free, but you have to pay for every
use of every ride in the park. Since it is Joy’s favorite park, you already know how
long using each ride takes and how much each ride costs. When walking through
the park, you obviously must not skip a ride when walking along it (even if Joy has
already used it), or else Joy would be very sad. Since Joy likes the park very much,
she will gladly use rides more than once. Walking between two rides takes a
given amount of time.
Since you are a provident parent you want to spend as little as possible when
being at the park. Can you compute how much is absolutely necessary?



6
3 3 1
1 2
2 3
3 1
1 3
1 2
2 3

x time to spend in the park

n number of rides

m number of pavements

t time needed to pass each
pavement

m lines each defining a pavement be-
tween two rides.

n lines each defining time and cost of a
ride.

1

2 3



6
3 3 1
1 2
2 3
3 1
1 3
1 2
2 3

x time to spend in the park

n number of rides

m number of pavements

t time needed to pass each
pavement

m lines each defining a pavement be-
tween two rides.

n lines each defining time and cost of a
ride.

1

2 3



6
3 3 1
1 2
2 3
3 1
1 3
1 2
2 3

x time to spend in the park

n number of rides

m number of pavements

t time needed to pass each
pavement

m lines each defining a pavement be-
tween two rides.

n lines each defining time and cost of a
ride.

1

2 3



6
3 3 1
1 2
2 3
3 1
1 3
1 2
2 3

9

Output: minimum cost for a resulting
path if possible or »It is a trap.«
else.

1 ≤ x,n,m, t ≤ 1 000

1 ≤ tν ,pν ≤ 106 ∀ν : 1 ≤ ν ≤ n

1

2 3



6
3 3 1
1 2
2 3
3 1
1 3
1 2
2 3

9

Output: minimum cost for a resulting
path if possible or »It is a trap.«
else.

1 ≤ x,n,m, t ≤ 1 000

1 ≤ tν ,pν ≤ 106 ∀ν : 1 ≤ ν ≤ n

1

2 3



6
3 3 1
1 2
2 3
3 1
1 3
1 2
2 3

9

Output: minimum cost for a resulting
path if possible or »It is a trap.«
else.

1 ≤ x,n,m, t ≤ 1 000

1 ≤ tν ,pν ≤ 106 ∀ν : 1 ≤ ν ≤ n

1

2 3



Recap:
There are a number of rides

items

that we may or may not take.
Each one has a time

weight

constraint on them and we only have given time.

can only carry given weight

Each has a price

value

that we seek to minimize.

maximize

Does that remind you of anything?

Da
vi
d
Ri
ng

fo
rE
ur
op
ea
na

Fa
sh
io
n
·

CC
0
1.0

·v
ia
W
ik
im
ed
ia
Co
m
m
on
s
(d
et
ai
l)



Recap:
There are a number of ridesitems that we may or may not take.
Each one has a timeweight constraint on them and we only have given time.can only carry given weight
Each has a pricevalue that we seek to minimize.maximize

Does that remind you of anything?

Da
vi
d
Ri
ng

fo
rE
ur
op
ea
na

Fa
sh
io
n
·

CC
0
1.0

·v
ia
W
ik
im
ed
ia
Co
m
m
on
s
(d
et
ai
l)



f(ξ, ν) = the minimum cost of any tour from start to ride ν

that takes exactly ξ time.

f(ξ, ν) =





pstart if ξ = tstart ∧ ν = start
∞ if ξ ≤ tstart
min {pν + f(ξ − tν , ν)} ∪ {pν + f(ξ − t− tν , ι) | ι ∈ Adj(ν)}

ride again take a path and ride once



f(ξ, ν) = the minimum cost of any tour from start to ride ν

that takes exactly ξ time.

f(ξ, ν) =





pstart if ξ = tstart ∧ ν = start
∞ if ξ ≤ tstart
min {pν + f(ξ − tν , ν)} ∪ {pν + f(ξ − t− tν , ι) | ι ∈ Adj(ν)}

ride again take a path and ride once



f(ξ, ν) = the minimum cost of any tour from start to ride ν

that takes exactly ξ time.

f(ξ, ν) =





pstart if ξ = tstart ∧ ν = start

∞ if ξ ≤ tstart
min {pν + f(ξ − tν , ν)} ∪ {pν + f(ξ − t− tν , ι) | ι ∈ Adj(ν)}

ride again take a path and ride once



f(ξ, ν) = the minimum cost of any tour from start to ride ν

that takes exactly ξ time.

f(ξ, ν) =





pstart if ξ = tstart ∧ ν = start
∞ if ξ ≤ tstart

min {pν + f(ξ − tν , ν)} ∪ {pν + f(ξ − t− tν , ι) | ι ∈ Adj(ν)}

ride again take a path and ride once



f(ξ, ν) = the minimum cost of any tour from start to ride ν

that takes exactly ξ time.

f(ξ, ν) =





pstart if ξ = tstart ∧ ν = start
∞ if ξ ≤ tstart
min {pν + f(ξ − tν , ν)} ∪ {pν + f(ξ − t− tν , ι) | ι ∈ Adj(ν)}

ride again take a path and ride once



f(ξ, ν) = the minimum cost of any tour from start to ride ν

that takes exactly ξ time.

f(ξ, ν) =





pstart if ξ = tstart ∧ ν = start
∞ if ξ ≤ tstart
min {pν + f(ξ − tν , ν)} ∪ {pν + f(ξ − t− tν , ι) | ι ∈ Adj(ν)}

ride again

take a path and ride once



f(ξ, ν) = the minimum cost of any tour from start to ride ν

that takes exactly ξ time.

f(ξ, ν) =





pstart if ξ = tstart ∧ ν = start
∞ if ξ ≤ tstart
min {pν + f(ξ − tν , ν)} ∪ {pν + f(ξ − t− tν , ι) | ι ∈ Adj(ν)}

ride again take a path and ride once



var price = array[x][n]
price.fill(∞)
price[tstart][1] = pstart

for ξ ∈ [1..x] do
for every ride ν do

price[ξ][ν] = price[ξ − tν][ν]+ pν ride again
for every neighbour ι of ν do

price[ξ][ν] = min(
price[ξ][ν],
price[ξ − tν − t][ι]+ pν

take a path
and ride once

)

return price[x][1]



var price = array[x][n]
price.fill(∞)
price[tstart][1] = pstart
for ξ ∈ [1..x] do

for every ride ν do
price[ξ][ν] = price[ξ − tν][ν]+ pν ride again
for every neighbour ι of ν do

price[ξ][ν] = min(
price[ξ][ν],
price[ξ − tν − t][ι]+ pν

take a path
and ride once

)

return price[x][1]



var price = array[x][n]
price.fill(∞)
price[tstart][1] = pstart
for ξ ∈ [1..x] do

for every ride ν do
price[ξ][ν] = price[ξ − tν][ν]+ pν ride again

for every neighbour ι of ν do
price[ξ][ν] = min(

price[ξ][ν],
price[ξ − tν − t][ι]+ pν

take a path
and ride once

)

return price[x][1]



var price = array[x][n]
price.fill(∞)
price[tstart][1] = pstart
for ξ ∈ [1..x] do

for every ride ν do
price[ξ][ν] = price[ξ − tν][ν]+ pν ride again
for every neighbour ι of ν do

price[ξ][ν] = min(
price[ξ][ν],
price[ξ − tν − t][ι]+ pν

take a path
and ride once

)

return price[x][1]



var price = array[x][n]
price.fill(∞)
price[tstart][1] = pstart
for ξ ∈ [1..x] do

for every ride ν do
price[ξ][ν] = price[ξ − tν][ν]+ pν ride again
for every neighbour ι of ν do

price[ξ][ν] = min(
price[ξ][ν],
price[ξ − tν − t][ι]+ pν

take a path
and ride once

)

return price[x][1]



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

E out of bounds

E out of bounds

done!

ν/ξ 1 2 3
1

2

3

4

5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

E out of bounds

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2

3

4

5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p1 + f(ξ − t1, 1)

E out of bounds

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6,

3

4

5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p1 + f(ξ − t1, 1)

p1 + f(ξ − t− t1, 2)

E out of bounds

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6,∞,

3

4

5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p1 + f(ξ − t1, 1)

p1 + f(ξ − t− t1, 2)

E out of bounds

p1 + f(ξ − t− t1, 3)

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6,∞,∞
3

4

5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p2 + f(ξ − t2, 2)

E out of bounds

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞,

3

4

5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p2 + f(ξ − t2, 2)

p2 + f(ξ − t− t2, 1)

E out of bounds

p2 + f(ξ − t− t2, 3)

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞,∞,∞
3

4

5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p3 + f(ξ − t3, 3)

E out of bounds

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3

4

5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p1 + f(ξ − t1, 1)

E out of bounds

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3 9,

4

5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p1 + f(ξ − t1, 1)

p1 + f(ξ − t− t1, 2)

E out of bounds

p1 + f(ξ − t− t1, 3)

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3 9,∞,∞
4

5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p2 + f(ξ − t2, 2)

E out of bounds

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3 9 ∞,

4

5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p2 + f(ξ − t2, 2)

p2 + f(ξ − t− t2, 1)

E out of bounds

p2 + f(ξ − t− t2, 3)

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3 9 ∞, 5,∞
4

5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p3 + f(ξ − t3, 3)

p3 + f(ξ − t− t3, 1)

E out of bounds

p3 + f(ξ − t− t3, 2)

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3 9 5 ∞,∞,∞
4

5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p1 + f(ξ − t1, 1)

p1 + f(ξ − t− t1, 2)

E out of bounds

p1 + f(ξ − t− t1, 3)

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3 9 5 ∞
4 12,∞,∞
5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p2 + f(ξ − t2, 2)

p2 + f(ξ − t− t2, 1)

E out of bounds

p2 + f(ξ − t− t2, 3)

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3 9 5 ∞
4 12 7, 8,∞
5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p3 + f(ξ − t3, 3)

p3 + f(ξ − t− t3, 1)

E out of bounds

p3 + f(ξ − t− t3, 2)

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3 9 5 ∞
4 12 7 ∞, 6,∞
5

6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p1 + f(ξ − t1, 1)

p1 + f(ξ − t− t1, 2)

E out of bounds

p1 + f(ξ − t− t1, 3)

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3 9 5 ∞
4 12 7 6

5 15, 8,∞
6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p2 + f(ξ − t2, 2)

p2 + f(ξ − t− t2, 1)

E out of bounds

p2 + f(ξ − t− t2, 3)

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3 9 5 ∞
4 12 7 6

5 8 9, 11,∞
6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p3 + f(ξ − t3, 3)

p3 + f(ξ − t− t3, 1)

E out of bounds

p3 + f(ξ − t− t3, 2)

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3 9 5 ∞
4 12 7 6

5 8 9 ∞, 9,∞
6



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

p1 + f(ξ − t1, 1)

p1 + f(ξ − t− t1, 2)

E out of bounds

p1 + f(ξ − t− t1, 3)

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3 9 5 ∞
4 12 7 6

5 8 9 9

6 11, 10, 9



1

2 3

t = 1, x = 6

ν 1 2 3
tν 1 1 2
pν 3 2 3

init

E out of bounds

E out of bounds

done!

ν/ξ 1 2 3
1 3 ∞ ∞
2 6 ∞ ∞
3 9 5 ∞
4 12 7 6

5 8 9 9

6 9



var price = array[x][n]
price.fill(∞)
price[t][1] = pstart
for ξ ∈ [1..x] do

for every ride ν do
price[ξ][ν] = price[ξ − tν][ν]+ pν
for every neighbour ι of ν do

price[ξ][ν] = min(
price[ξ][ν],
price[ξ − tν − t][ι]+ pν

)

return price[x][1]

O(deg(ν))
O(n+m)

O(x ∗ (n+m))

O(x ∗ n)

O(m)

O(x ∗ (n+m))
O(m+ (x ∗ n))



var price = array[x][n]
price.fill(∞)
price[t][1] = pstart
for ξ ∈ [1..x] do

for every ride ν do
price[ξ][ν] = price[ξ − tν][ν]+ pν
for every neighbour ι of ν do

price[ξ][ν] = min(
price[ξ][ν],
price[ξ − tν − t][ι]+ pν

)

return price[x][1]

O(deg(ν))

O(n+m)
O(x ∗ (n+m))

O(x ∗ n)

O(m)

O(x ∗ (n+m))
O(m+ (x ∗ n))



var price = array[x][n]
price.fill(∞)
price[t][1] = pstart
for ξ ∈ [1..x] do

for every ride ν do
price[ξ][ν] = price[ξ − tν][ν]+ pν
for every neighbour ι of ν do

price[ξ][ν] = min(
price[ξ][ν],
price[ξ − tν − t][ι]+ pν

)

return price[x][1]

O(deg(ν))
O(n+m)

O(x ∗ (n+m))

O(x ∗ n)

O(m)

O(x ∗ (n+m))
O(m+ (x ∗ n))



var price = array[x][n]
price.fill(∞)
price[t][1] = pstart
for ξ ∈ [1..x] do

for every ride ν do
price[ξ][ν] = price[ξ − tν][ν]+ pν
for every neighbour ι of ν do

price[ξ][ν] = min(
price[ξ][ν],
price[ξ − tν − t][ι]+ pν

)

return price[x][1]

O(deg(ν))
O(n+m)

O(x ∗ (n+m))

O(x ∗ n)

O(m)

O(x ∗ (n+m))
O(m+ (x ∗ n))



var price = array[x][n]
price.fill(∞)
price[t][1] = pstart
for ξ ∈ [1..x] do

for every ride ν do
price[ξ][ν] = price[ξ − tν][ν]+ pν
for every neighbour ι of ν do

price[ξ][ν] = min(
price[ξ][ν],
price[ξ − tν − t][ι]+ pν

)

return price[x][1]

O(deg(ν))
O(n+m)

O(x ∗ (n+m))

O(x ∗ n)

O(m)

O(x ∗ (n+m))
O(m+ (x ∗ n))



var price = array[x][n]
price.fill(∞)
price[t][1] = pstart
for ξ ∈ [1..x] do

for every ride ν do
price[ξ][ν] = price[ξ − tν][ν]+ pν
for every neighbour ι of ν do

price[ξ][ν] = min(
price[ξ][ν],
price[ξ − tν − t][ι]+ pν

)

return price[x][1]

O(deg(ν))
O(n+m)

O(x ∗ (n+m))

O(x ∗ n)

O(m)

O(x ∗ (n+m))
O(m+ (x ∗ n))



var price = array[x][n]
price.fill(∞)
price[t][1] = pstart
for ξ ∈ [1..x] do

for every ride ν do
price[ξ][ν] = price[ξ − tν][ν]+ pν
for every neighbour ι of ν do

price[ξ][ν] = min(
price[ξ][ν],
price[ξ − tν − t][ι]+ pν

)

return price[x][1]

O(deg(ν))
O(n+m)

O(x ∗ (n+m))

O(x ∗ n)

O(m)

O(x ∗ (n+m))
O(m+ (x ∗ n))



Benchmarks

For our algorithm we proved
▶ runtime in O((n+m) ∗ x)
▶ memory demand in O(m+ n ∗ x)

m and n are not independent.

mn ∗ (n− 1)
2

Runtime depends on deg(ν). Worst case: complete graphs.
For our implementations we expect
▶ runtime and memory demand in O(n2) for fixed x
▶ runtime and memory demand in O(x) for fixed n



Benchmarks

For our algorithm we proved
▶ runtime in O((n+m) ∗ x)
▶ memory demand in O(m+ n ∗ x)

m and n are not independent.

m ≤ n ∗ (n− 1)
2

Runtime depends on deg(ν). Worst case: complete graphs.
For our implementations we expect
▶ runtime and memory demand in O(n2) for fixed x
▶ runtime and memory demand in O(x) for fixed n



Benchmarks

For our algorithm we proved
▶ runtime in O((n+m) ∗ x)
▶ memory demand in O(m+ n ∗ x)

m and n are not independent.

m =
n ∗ (n− 1)

2

Runtime depends on deg(ν). Worst case: complete graphs.
For our implementations we expect
▶ runtime and memory demand in O(n2) for fixed x
▶ runtime and memory demand in O(x) for fixed n



100 200 300 400 500 600 700 800 900 1 000
0

150

300

450

600

750

900

1 050

1 200

1 350

1 500

1 650

#nodes in a complete graph

ru
nt
im
e
(m
s)

Implementation A
Implementation B
x = 1000



100 200 300 400 500 600 700 800 900 1 000
0

150

300

450

600

750

900

1 050

1 200

1 350

1 500

1 650

#nodes in a complete graph

ru
nt
im
e
(m
s)

Implementation A
Implementation B
x = 1000



10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
0

150

300

450

600

750

900

1 050

1 200

1 350

1 500

1 650

x (time to spend in the park)

ru
nt
im
e
(m
s)

Implementation A
Implementation B
n = 100



10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
0

150

300

450

600

750

900

1 050

1 200

1 350

1 500

1 650

x (time to spend in the park)

ru
nt
im
e
(m
s)

Implementation A
Implementation B
n = 100



50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1 000
0

2

4

6

8

10

12

14

16

18

20

22

#nodes in a complete graph

m
ax
im
um

re
si
de
nt
m
em

or
y
(M
iB
)

Implementation A
Implementation B
x = 1000



50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1 000
0

2

4

6

8

10

12

14

16

18

20

22

#nodes in a complete graph

m
ax
im
um

re
si
de
nt
m
em

or
y
(M
iB
)

Implementation A
Implementation B
Estimated
x = 1000



10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
0

10

20

30

40

50

60

70

80

x (time to spend in the park)

m
ax
im
um

re
si
de
nt
m
em

or
y
(M
iB
)

Implementation A
Implementation B
n = 100



10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
0

10

20

30

40

50

60

70

80

Java “Hello, World!”

x (time to spend in the park)

m
ax
im
um

re
si
de
nt
m
em

or
y
(M
iB
)

Implementation A
Implementation B
Estimated
n = 100



How We Measure Performance

Variation
▶ At least 100 repetitions per parameter
▶ Coefficient of variation < 2.79% for 95% of our measurements

Tools
▶ Runtime: hyperfine
▶ Memory: GNU Time (the name is a bit misleading)

Platform
▶ Fedora 32 (Kernel 5.7.8)
▶ AMD Ryzen 9 3900X
▶ 64 GiB RAM



Memory Estimation

▶ Nodes: (5+ deg(ν)) ∗ 8byte per node⇒ (5n+ 2m) ∗ 8byte total
▶ Table: (x ∗ n) ∗ 8byte

Our implementation needs at least ((x+ 5) ∗ n+ 2m) ∗ 8byte of memory.

Complete graph with n nodes, x = 1000: (8n2 + 8040n) ∗ 1024−2 MiB
K100: (800x+ 10500) ∗ 1024−2 MiB



Regression Analysis
Complete graphs with n nodes, x = 1000 (runtime in ms)
▶ Implementation A: 1.65762 ∗ 10−3 ∗ n2 − 2.19840
▶ Implementation B: 8.12437 ∗ 10−4 ∗ n2 + 3.04082

K100, x (runtime in ms)
▶ Implementation A: 0.0158775 ∗ x+ 6.35848
▶ Implementation B: 0.00841535 ∗ x+ 5.05326

Complete graphs with n nodes, x = 1000 (memory in MiB)
▶ Implementation A: 7.63536 ∗ 10−6 ∗ n2 + 0.00762691 ∗ n+ 1.72713
▶ Implementation B: 1.13240 ∗ 10−5 ∗ n2 + 0.00817827 ∗ n+ 1.58061

K100, x (memory in MiB)
▶ Implementation A: 7.62959 ∗ 10−4 ∗ x+ 1.80158
▶ Implementation B: very similar to A



Vi
el
Sp
aß
!

Jo
hn

Hr
itz

·C
C
BY

2.0
·v
ia
W
ik
im
ed
ia
Co
m
m
on
s


