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A Stingy Park Visit

It is another wonderful sunny day in July – and you decided to spend your day
together with your little daughter Joy. Since she really likes the fairy-park in the
next town, you decided to go there for the day. Your wife (unfortunately she has
to work) agreed to drive you to the park and pick you up again. Alas, she is very
picky about being on time, so she told you exactly when she will be at the park’s
front entrance to pick you up and you have to be there at exactly that time. You
clearly also don’t want to wait outside, since this would make your little daughter
sad – she could have spent more time in the park!



A Stingy Park Visit (cont.)

Now you have to plan your stay at the park. You know when you will arrive and
when you will have to depart. The park consists of several rides, interconnected
by small pavements. The entry into the park is free, but you have to pay for every
use of every ride in the park. Since it is Joy’s favorite park, you already know how
long using each ride takes and how much each ride costs. When walking through
the park, you obviously must not skip a ride when walking along it (even if Joy has
already used it), or else Joy would be very sad. Since Joy likes the park very much,
she will gladly use rides more than once. Walking between two rides takes a
given amount of time.
Since you are a provident parent you want to spend as little as possible when
being at the park. Can you compute how much is absolutely necessary?
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Recap:
There are a number of rides

items

that we may or may not take.
Each one has a time

weight

constraint on them and we only have given time.

can only carry given weight

Each has a price

value

that we seek to minimize.

maximize
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f(ξ, ν) = the minimum cost of any tour from start to ride ν

that takes exactly ξ time.

f(ξ, ν) =





pstart if ξ = tstart ∧ ν = start
∞ if ξ ≤ tstart
min {pν + f(ξ − tν , ν)} ∪ {pν + f(ξ − t− tν , ι) | ι ∈ Adj(ν)}

ride again take a path and ride once
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var price = array[x][n]
price.fill(∞)
price[tstart][1] = pstart

for ξ ∈ [1..x] do
for every ride ν do

price[ξ][ν] = price[ξ − tν][ν]+ pν ride again
for every neighbour ι of ν do

price[ξ][ν] = min(
price[ξ][ν],
price[ξ − tν − t][ι]+ pν

take a path
and ride once

)

return price[x][1]
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var price = array[x][n]
price.fill(∞)
price[t][1] = pstart
for ξ ∈ [1..x] do

for every ride ν do
price[ξ][ν] = price[ξ − tν][ν]+ pν
for every neighbour ι of ν do

price[ξ][ν] = min(
price[ξ][ν],
price[ξ − tν − t][ι]+ pν

)

return price[x][1]

O(deg(ν))
O(n+m)

O(x ∗ (n+m))

O(x ∗ n)

O(m)

O(x ∗ (n+m))
O(m+ (x ∗ n))
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Benchmarks

For our algorithm we proved
▶ runtime in O((n+m) ∗ x)
▶ memory demand in O(m+ n ∗ x)

m and n are not independent.

mn ∗ (n− 1)
2

Runtime depends on deg(ν). Worst case: complete graphs.
For our implementations we expect
▶ runtime and memory demand in O(n2) for fixed x
▶ runtime and memory demand in O(x) for fixed n
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For our algorithm we proved
▶ runtime in O((n+m) ∗ x)
▶ memory demand in O(m+ n ∗ x)

m and n are not independent.

m =
n ∗ (n− 1)
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How We Measure Performance

Variation
▶ At least 100 repetitions per parameter
▶ Coefficient of variation < 2.79% for 95% of our measurements

Tools
▶ Runtime: hyperfine
▶ Memory: GNU Time (the name is a bit misleading)

Platform
▶ Fedora 32 (Kernel 5.7.8)
▶ AMD Ryzen 9 3900X
▶ 64 GiB RAM



Memory Estimation

▶ Nodes: (5+ deg(ν)) ∗ 8byte per node⇒ (5n+ 2m) ∗ 8byte total
▶ Table: (x ∗ n) ∗ 8byte

Our implementation needs at least ((x+ 5) ∗ n+ 2m) ∗ 8byte of memory.

Complete graph with n nodes, x = 1000: (8n2 + 8040n) ∗ 1024−2 MiB
K100: (800x+ 10500) ∗ 1024−2 MiB



Regression Analysis
Complete graphs with n nodes, x = 1000 (runtime in ms)
▶ Implementation A: 1.65762 ∗ 10−3 ∗ n2 − 2.19840
▶ Implementation B: 8.12437 ∗ 10−4 ∗ n2 + 3.04082

K100, x (runtime in ms)
▶ Implementation A: 0.0158775 ∗ x+ 6.35848
▶ Implementation B: 0.00841535 ∗ x+ 5.05326

Complete graphs with n nodes, x = 1000 (memory in MiB)
▶ Implementation A: 7.63536 ∗ 10−6 ∗ n2 + 0.00762691 ∗ n+ 1.72713
▶ Implementation B: 1.13240 ∗ 10−5 ∗ n2 + 0.00817827 ∗ n+ 1.58061

K100, x (memory in MiB)
▶ Implementation A: 7.62959 ∗ 10−4 ∗ x+ 1.80158
▶ Implementation B: very similar to A
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