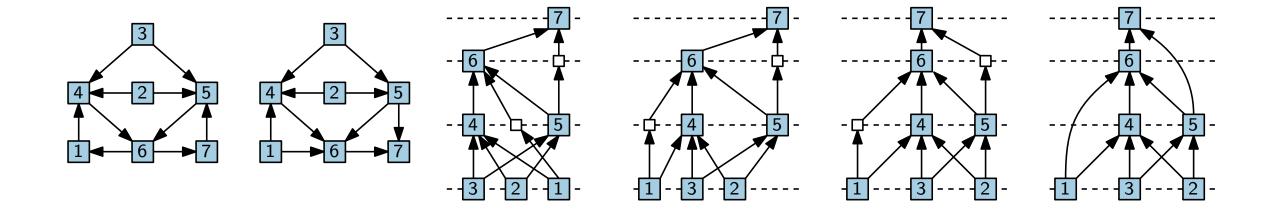


Visualisation of graphs

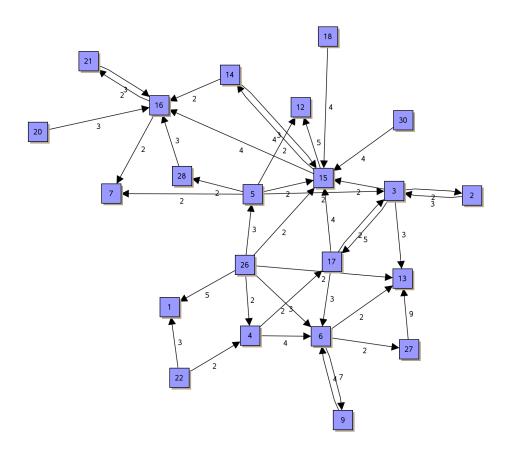
Hierarchical layouts

Sugiyama framework

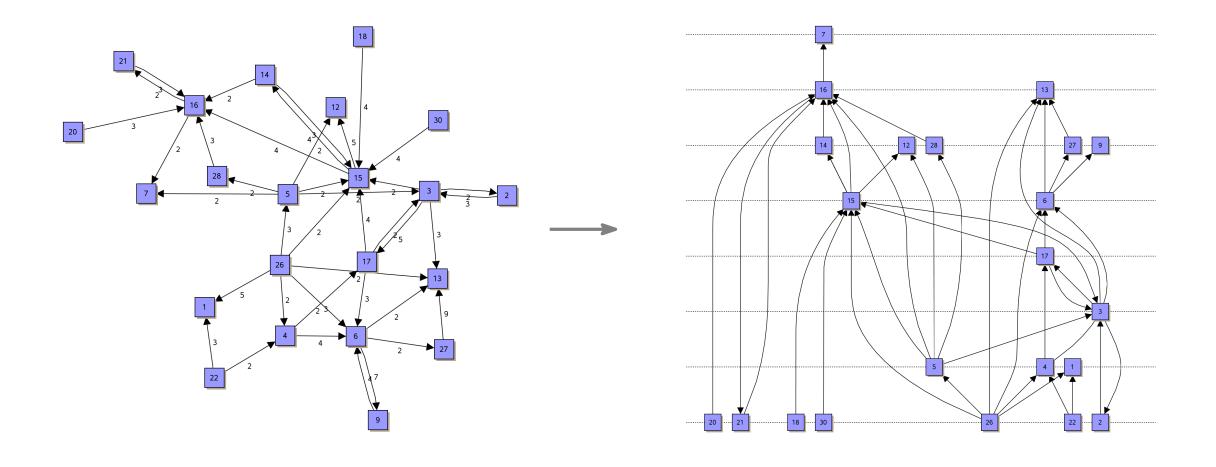
Jonathan Klawitter · Summer semester 2020



Hierarchical drawings – motivation



Hierarchical drawings – motivation

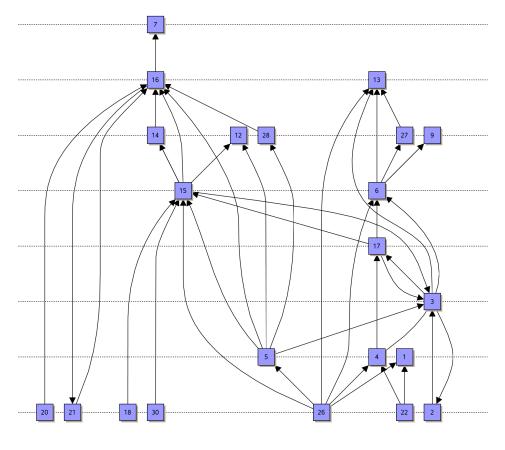


Problem statement.

Input: digraph G = (V, E)

 \blacksquare Output: drawing of G that "closely" reproduces the

hierarchical properties of G

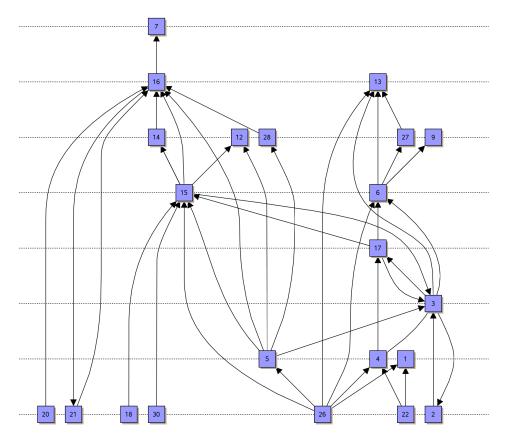


Problem statement.

■ Input: digraph G = (V, E)

 \blacksquare Output: drawing of G that "closely" reproduces the

hierarchical properties of G



Problem statement.

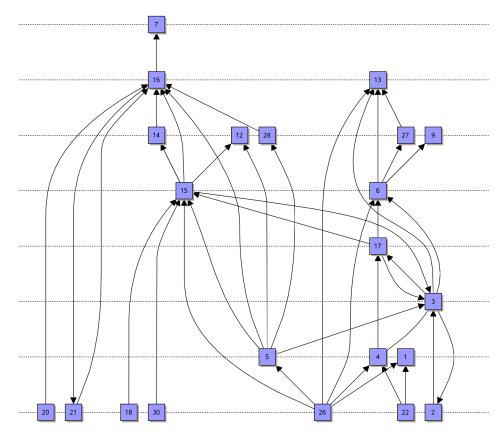
Input: digraph G = (V, E)

lacksquare Output: drawing of G that "closely" reproduces the

hierarchical properties of G

Desireable properties.

vertices occur on (few) horizontal lines



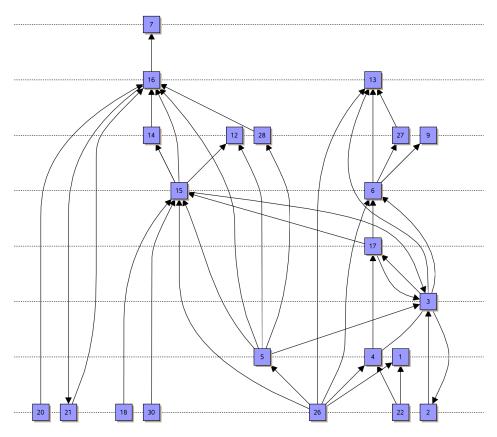
Problem statement.

■ Input: digraph G = (V, E)

lacksquare Output: drawing of G that "closely" reproduces the

hierarchical properties of G

- vertices occur on (few) horizontal lines
- edges directed upwards



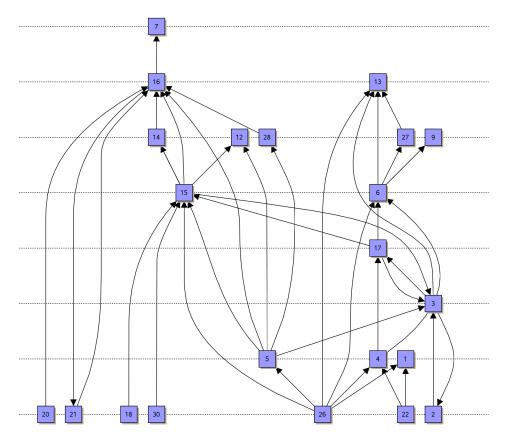
Problem statement.

Input: digraph G = (V, E)

 \blacksquare Output: drawing of G that "closely" reproduces the

hierarchical properties of G

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized



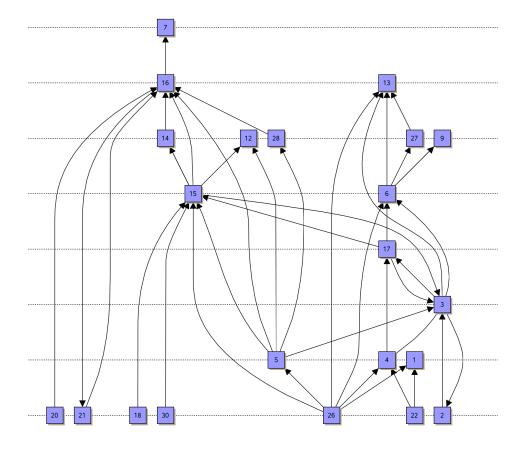
Problem statement.

Input: digraph G = (V, E)

 \blacksquare Output: drawing of G that "closely" reproduces the

hierarchical properties of G

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible



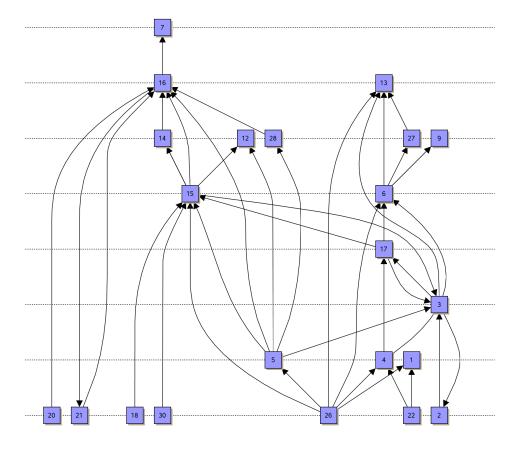
Problem statement.

Input: digraph G = (V, E)

 \blacksquare Output: drawing of G that "closely" reproduces the

hierarchical properties of G

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible
- vertices evenly spaced



Problem statement.

Input: digraph G = (V, E)

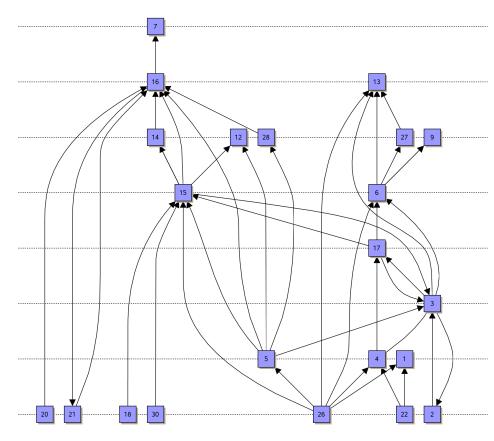
 \blacksquare Output: drawing of G that "closely" reproduces the

hierarchical properties of G

Desireable properties.

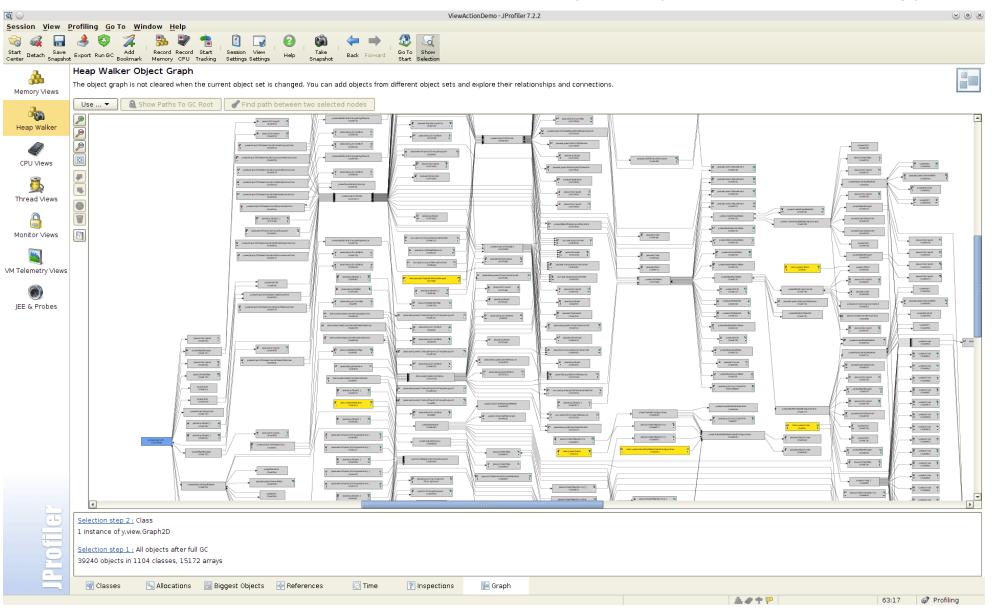
- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible
- vertices evenly spaced

Criteria can be contradictory!



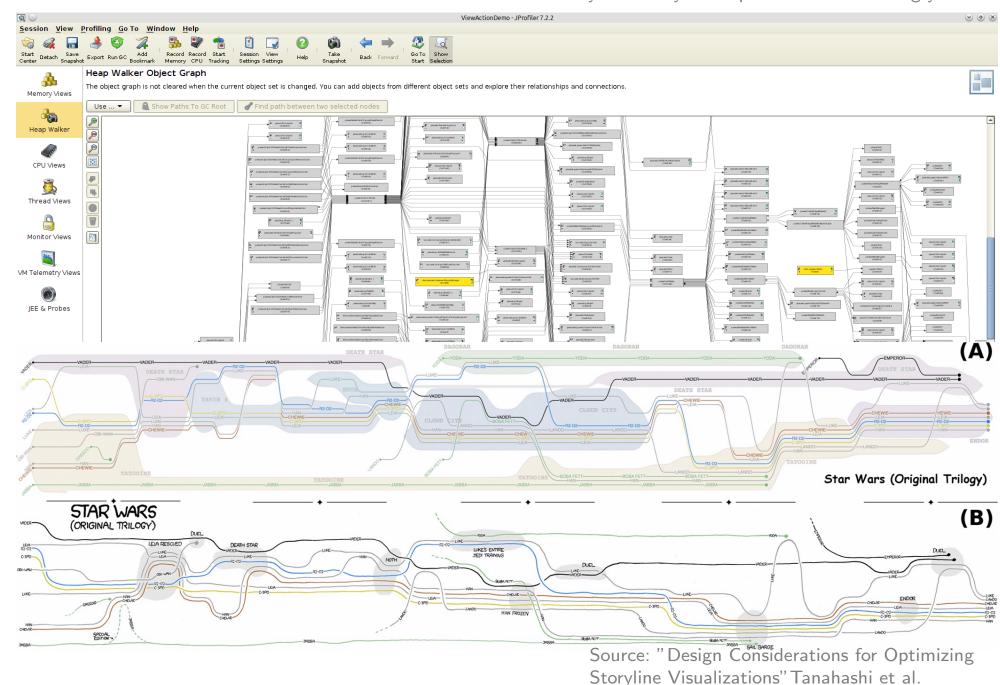
Hierarchical drawing – applications

yEd Gallery: Java profiler JProfiler using yFiles



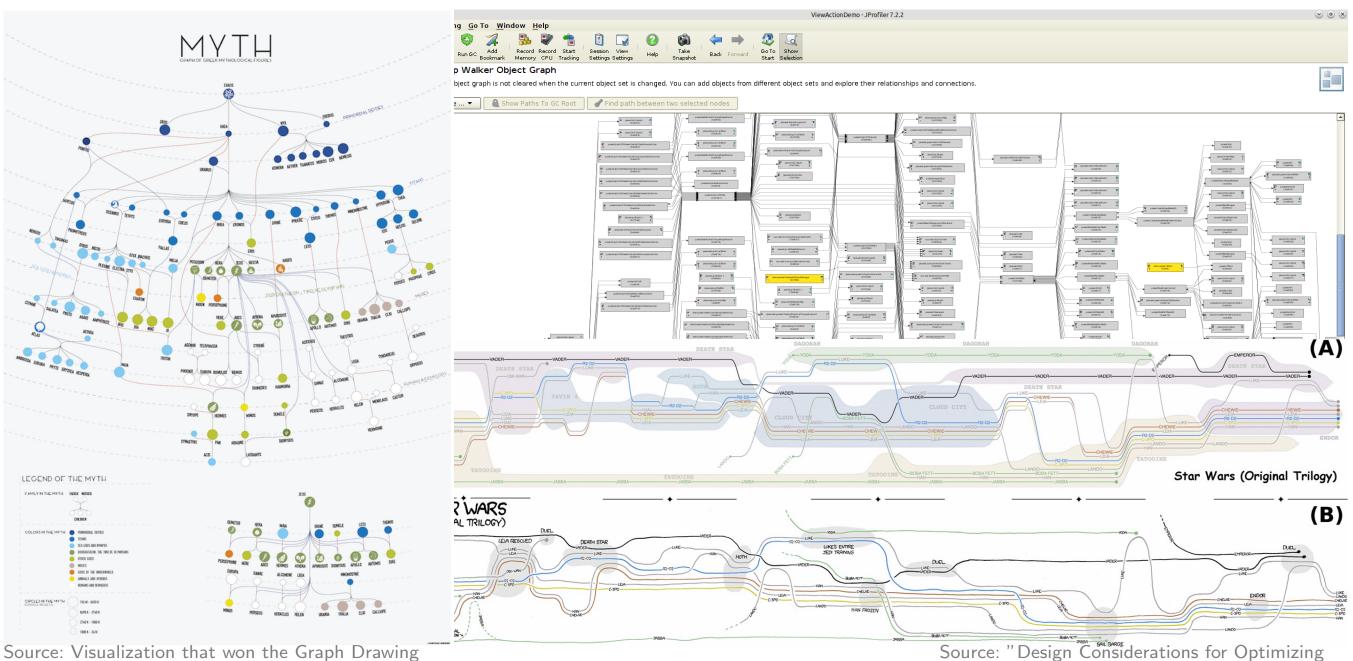
Hierarchical drawing – applications

yEd Gallery: Java profiler JProfiler using yFiles



Hierarchical drawing – applications

yEd Gallery: Java profiler JProfiler using yFiles

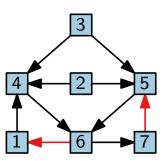


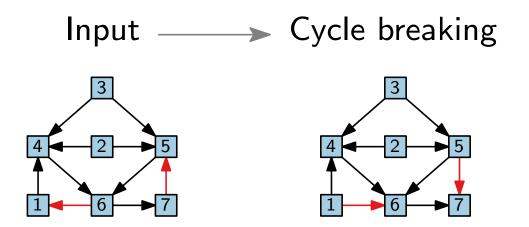
Source: Visualization that won the Graph Drawing contest 2016. Klawitter & Mchedlidze

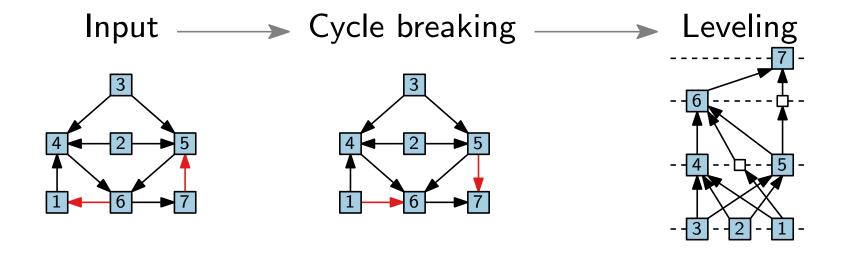
Source: "Design Considerations for Optimizing Storyline Visualizations" Tanahashi et al.

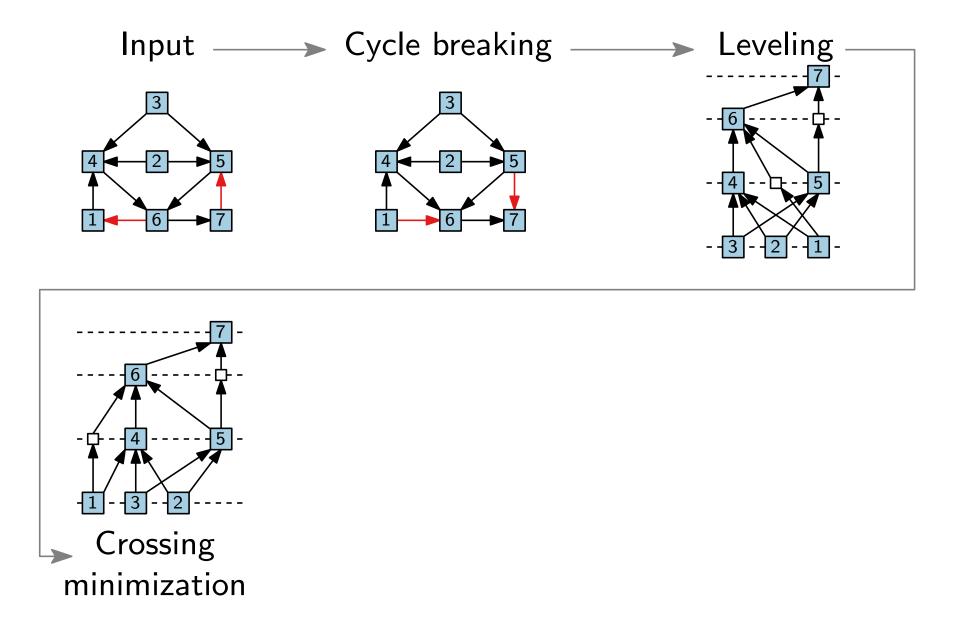
[Sugiyama, Tagawa, Toda '81]

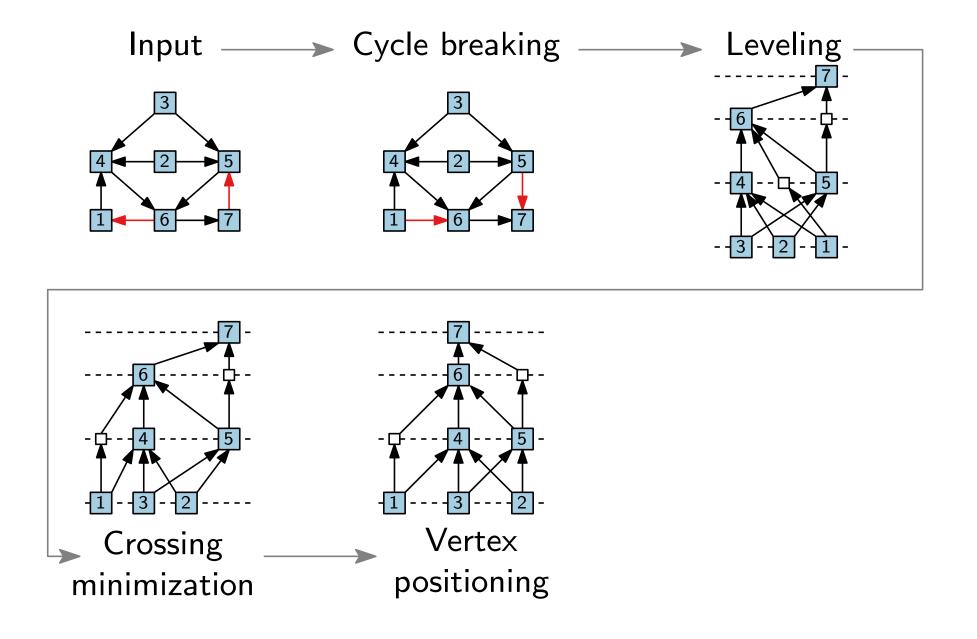
Input

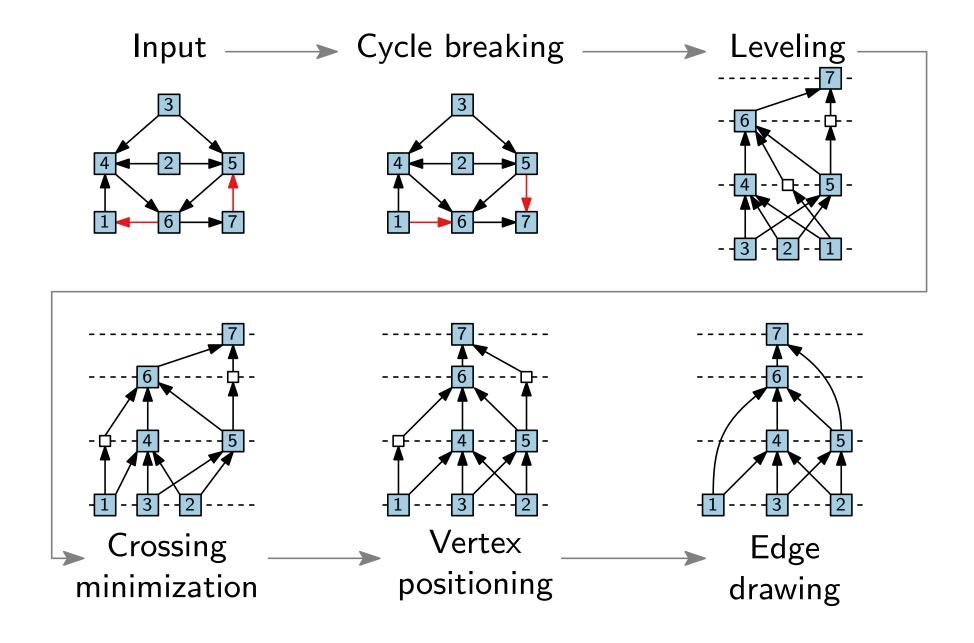


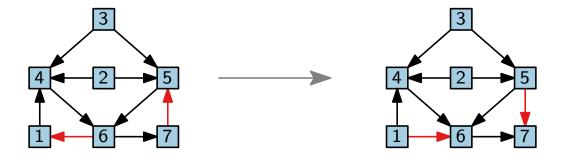






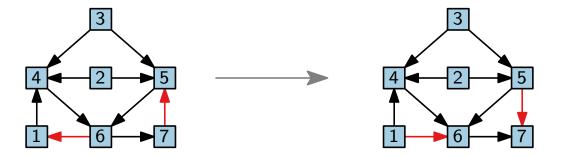






Approach.

- \blacksquare Find minimum set E^* of edges which are not upwards.
- \blacksquare Remove E^* and insert reversed edges.

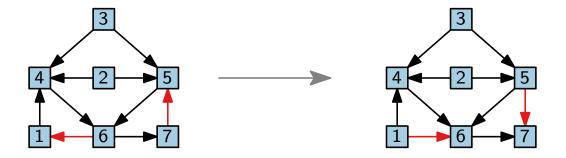


Approach.

- \blacksquare Find minimum set E^* of edges which are not upwards.
- \blacksquare Remove E^* and insert reversed edges.

Problem MINIMUM FEEDBACK ARC SET(FAS).

- Input: directed graph G = (V, E)
- Output: min. set $E^* \subseteq E$, so that $G E^*$ acyclic

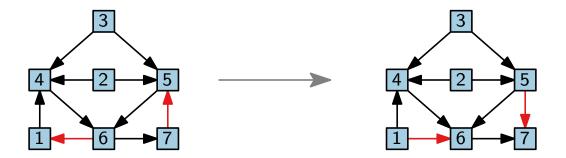


Approach.

- \blacksquare Find minimum set E^* of edges which are not upwards.
- \blacksquare Remove E^* and insert reversed edges.

Problem MINIMUM FEEDBACK ARC SET(FAS).

- Input: directed graph G = (V, E)
- Output: min. set $E^* \subseteq E$, so that $G = E^*$ acyclic $G = E^* + E_r^*$



Approach.

- \blacksquare Find minimum set E^* of edges which are not upwards.
- \blacksquare Remove E^* and insert reversed edges.

Problem MINIMUM FEEDBACK ARC SET(FAS).

- Input: directed graph G = (V, E)
- Output: min. set $E^* \subseteq E$, so that $G = E^*$ acyclic $G = E^* + E_r^*$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))

$$E' \leftarrow \emptyset$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $E' \leftarrow E' \cup N^{\rightarrow}(v)$

else

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$

remove v and N(v) from G.

return (V, E')

$$N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$$

 $N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$
 $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))

$$E' \leftarrow \emptyset$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|E' \leftarrow E' \cup N^{\rightarrow}(v)|$

else

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$

remove v and N(v) from G.

return (V, E')

$$N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$$

 $N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$
 $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))

$$E' \leftarrow \emptyset$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|E' \leftarrow E' \cup N^{\rightarrow}(v)|$

else

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$

remove v and N(v) from G.

return (V, E')

$$N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$$

 $N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$
 $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))

$$E' \leftarrow \emptyset$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|E' \leftarrow E' \cup N^{\rightarrow}(v)|$

else

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$

remove v and N(v) from G.

return (V, E')

$$N^{\to}(v) := \{(v, u) | (v, u) \in E\}$$

 $N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$

$$N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))

$$E' \leftarrow \emptyset$$

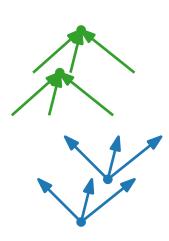
foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|E' \leftarrow E' \cup N^{\rightarrow}(v)|$ else

 $| E' \leftarrow E' \cup N^{\leftarrow}(v)$

remove v and N(v) from G.

return (V, E')



$$N^{\rightarrow}(v) := \{(v,u)|(v,u) \in E\}$$

 $N^{\leftarrow}(v) := \{(u,v)|(u,v) \in E\}$
 $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))

$$E' \leftarrow \emptyset$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $E' \leftarrow E' \cup N^{\rightarrow}(v)$

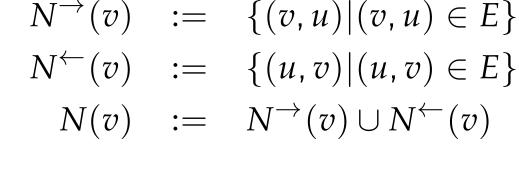
else

$$\mid E' \leftarrow E' \cup N^{\leftarrow}(v)$$

remove v and N(v) from G.

return (V, E')

- G' = (V, E') is a DAG
 - lacktriangle we create an order on V



[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))

$$E' \leftarrow \emptyset$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|E' \leftarrow E' \cup N^{\rightarrow}(v)|$

else

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$

remove v and N(v) from G.

return (V, E')

- G' = (V, E') is a DAG
 - lacktriangle we create an order on V
- \blacksquare $E \setminus E'$ is a feedback arc set

$$N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$$

 $N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$
 $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))

$$E' \leftarrow \emptyset$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|E' \leftarrow E' \cup N^{\rightarrow}(v)|$ else

$$\mid E' \leftarrow E' \cup N^{\leftarrow}(v)$$

remove v and N(v) from G.

return (V, E')

- G' = (V, E') is a DAG
 - lacktriangle we create an order on V
- \blacksquare $E \setminus E'$ is a feedback arc set

$$N^{\rightarrow}(v) := \{(v,u)|(v,u) \in E\}$$

 $N^{\leftarrow}(v) := \{(u,v)|(u,v) \in E\}$
 $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

■ Time:

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))

$$E' \leftarrow \emptyset$$

foreach $v \in V$ do

if
$$|N^{\to}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|E' \leftarrow E' \cup N^{\to}(v)|$

else

$$\mid E' \leftarrow E' \cup N^{\leftarrow}(v)$$

remove v and N(v) from G.

return (V, E')

- G' = (V, E') is a DAG
 - lacktriangle we create an order on V
- \blacksquare $E \setminus E'$ is a feedback arc set

$$N^{\rightarrow}(v) := \{(v,u)|(v,u) \in E\}$$

 $N^{\leftarrow}(v) := \{(u,v)|(u,v) \in E\}$
 $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

■ Time: $\mathcal{O}(|V| + |E|)$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))

$$E' \leftarrow \emptyset$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|E' \leftarrow E' \cup N^{\rightarrow}(v)|$

else

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$

remove v and N(v) from G.

return (V, E')

- G' = (V, E') is a DAG
 - lacktriangle we create an order on V
- \blacksquare $E \setminus E'$ is a feedback arc set

$$N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$$

$$N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$$

$$N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$$

- Time: $\mathcal{O}(|V| + |E|)$
- \blacksquare Quality guarantee: |E'| >

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))

$$E' \leftarrow \emptyset$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|E' \leftarrow E' \cup N^{\rightarrow}(v)|$

else

$$| E' \leftarrow E' \cup N^{\leftarrow}(v)|$$

remove v and N(v) from G.

return (V, E')

- G' = (V, E') is a DAG
 - lacktriangle we create an order on V
- \blacksquare $E \setminus E'$ is a feedback arc set

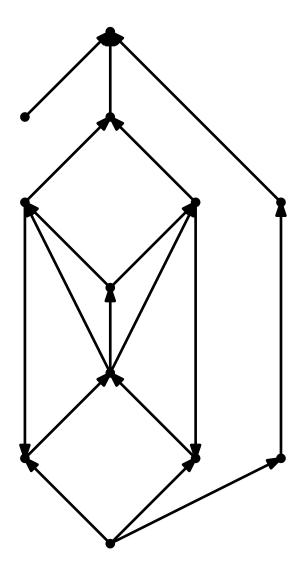
$$N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$$

$$N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$$

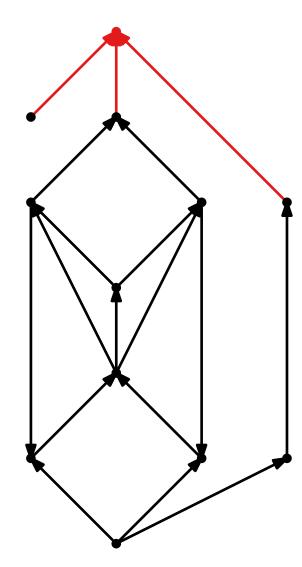
$$N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$$

- Time: $\mathcal{O}(|V| + |E|)$
- Quality guarantee: $|E'| \ge |E|/2$

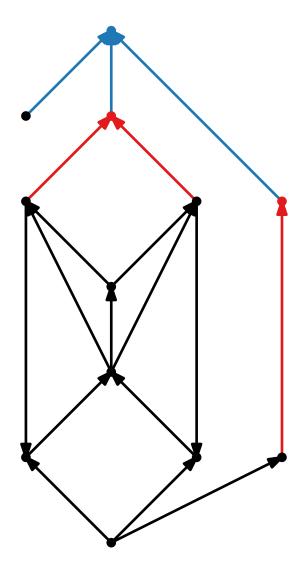
[Eades, Lin, Smyth '93]



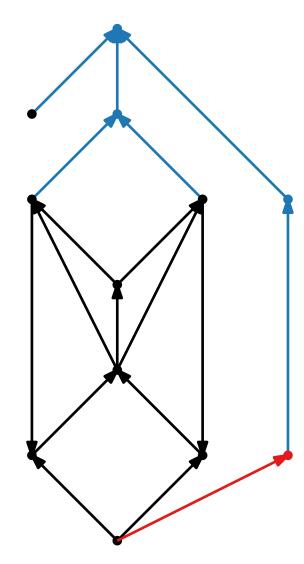
[Eades, Lin, Smyth '93]



[Eades, Lin, Smyth '93]



[Eades, Lin, Smyth '93]



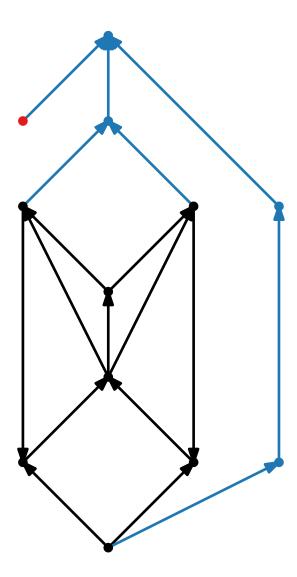
[Eades, Lin, Smyth '93]

$$E' \leftarrow \emptyset$$
 while $V \neq \emptyset$ do

while in V exists a sink v do

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$
 remove v and $N^{\leftarrow}(v)$

Remove all isolated vertices from V



[Eades, Lin, Smyth '93]

$$E' \leftarrow \emptyset$$
 while $V \neq \emptyset$ do

while in V exists a sink v do

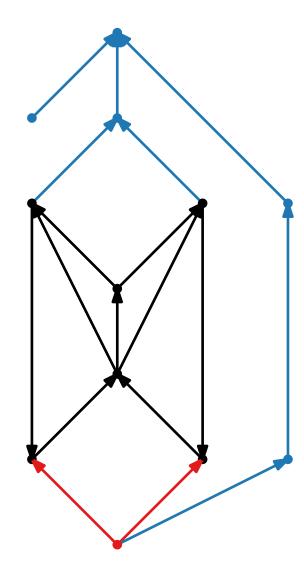
$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$

remove v and $N^{\leftarrow}(v)$

Remove all isolated vertices from V

while in V exists a source v do

$$E' \leftarrow E' \cup N^{\rightarrow}(v)$$
 remove v and $N^{\rightarrow}(v)$



[Eades, Lin, Smyth '93]

$$E' \leftarrow \emptyset$$

while $V \neq \emptyset$ do

while in V exists a sink v do

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$
 remove v and $N^{\leftarrow}(v)$

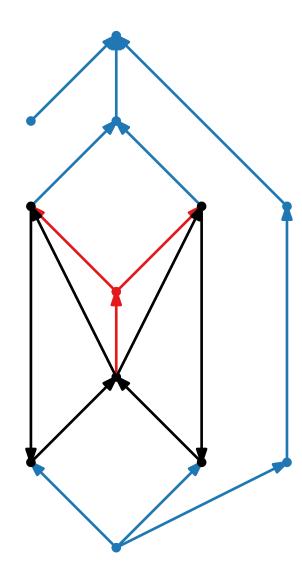
Remove all isolated vertices from V

while in V exists a source v do

$$E' \leftarrow E' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$

let
$$v \in V$$
 such that $|N^{\to}(v)| - |N^{\leftarrow}(v)|$ maximal; $E' \leftarrow E' \cup N^{\to}(v)$ remove v and $N(v)$



[Eades, Lin, Smyth '93]

$$E' \leftarrow \emptyset$$

while $V \neq \emptyset$ do

while in V exists a sink v do

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$
 remove v and $N^{\leftarrow}(v)$

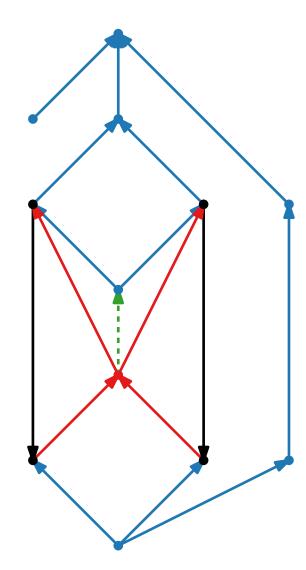
Remove all isolated vertices from V

while in V exists a source v do

$$E' \leftarrow E' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$

let
$$v \in V$$
 such that $|N^{\to}(v)| - |N^{\leftarrow}(v)|$ maximal; $E' \leftarrow E' \cup N^{\to}(v)$ remove v and $N(v)$



[Eades, Lin, Smyth '93]

$$E' \leftarrow \emptyset$$

while $V \neq \emptyset$ do

while in V exists a sink v do

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$
 remove v and $N^{\leftarrow}(v)$

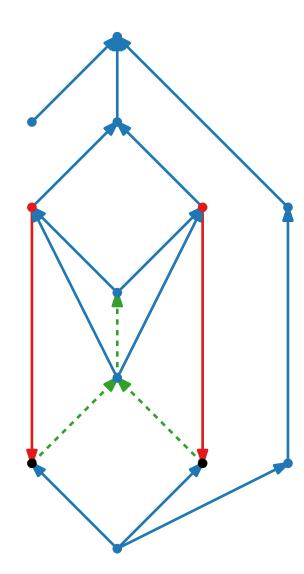
Remove all isolated vertices from V

while in V exists a source v do

$$E' \leftarrow E' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$

let
$$v \in V$$
 such that $|N^{\to}(v)| - |N^{\leftarrow}(v)|$ maximal; $E' \leftarrow E' \cup N^{\to}(v)$ remove v and $N(v)$



[Eades, Lin, Smyth '93]

$$E' \leftarrow \emptyset$$

while $V \neq \emptyset$ do

while in V exists a sink v do

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$
 remove v and $N^{\leftarrow}(v)$

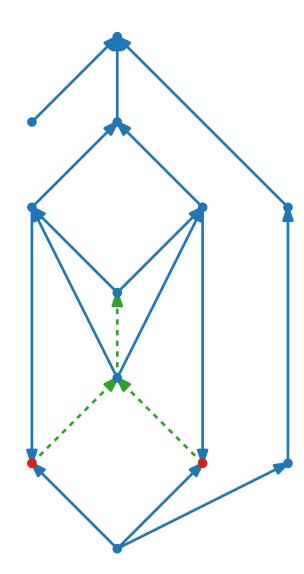
Remove all isolated vertices from V

while in V exists a source v do

$$E' \leftarrow E' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$

let
$$v \in V$$
 such that $|N^{\to}(v)| - |N^{\leftarrow}(v)|$ maximal; $E' \leftarrow E' \cup N^{\to}(v)$ remove v and $N(v)$



[Eades, Lin, Smyth '93]

$$E' \leftarrow \emptyset$$

while $V \neq \emptyset$ do

while in V exists a sink v do

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$
 remove v and $N^{\leftarrow}(v)$

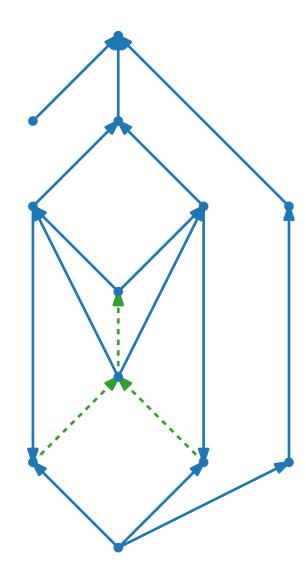
Remove all isolated vertices from V

while in V exists a source v do

$$E' \leftarrow E' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$

let
$$v \in V$$
 such that $|N^{\to}(v)| - |N^{\leftarrow}(v)|$ maximal; $E' \leftarrow E' \cup N^{\to}(v)$ remove v and $N(v)$



[Eades, Lin, Smyth '93]

$$E' \leftarrow \emptyset$$

while $V \neq \emptyset$ do

while in V exists a sink v do

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$

remove v and $N^{\leftarrow}(v)$

Remove all isolated vertices from V

while in V exists a source v do

$$E' \leftarrow E' \cup N^{\rightarrow}(v)$$

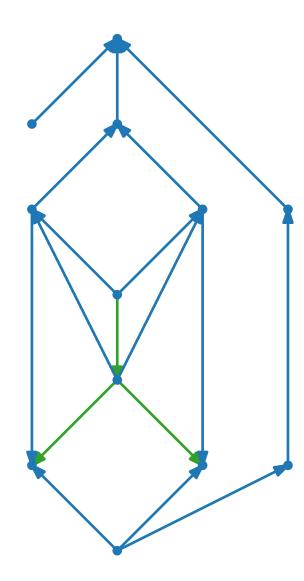
remove v and $N^{\rightarrow}(v)$

if $V \neq \emptyset$ then

let
$$v \in V$$
 such that $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$ maximal;

$$E' \leftarrow E' \cup N^{\rightarrow}(v)$$

remove v and N(v)



[Eades, Lin, Smyth '93]

$$E' \leftarrow \emptyset$$

while $V \neq \emptyset$ do

while in V exists a sink v do

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$
 remove v and $N^{\leftarrow}(v)$

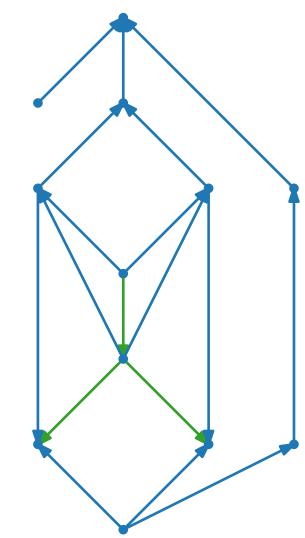
Remove all isolated vertices from V

while in V exists a source v do

$$E' \leftarrow E' \cup N^{\rightarrow}(v)$$

remove v and $N^{\rightarrow}(v)$

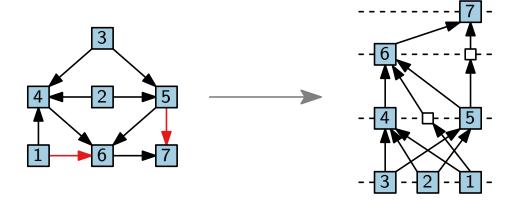
let
$$v \in V$$
 such that $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$ maximal; $E' \leftarrow E' \cup N^{\rightarrow}(v)$ remove v and $N(v)$



- Time: $\mathcal{O}(|V| + |E|)$
- Quality guarantee:

$$|E'| \ge |E|/2 + |V|/6$$

Step 2: Leveling



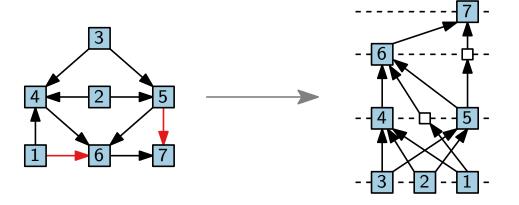
Problem.

Input: acyclic, digraph G = (V, E)

Output: Mapping $y \colon V \to \{1, \dots, |V|\}$,

so that for every $uv \in A$, y(u) < y(v).

Step 2: Leveling



Problem.

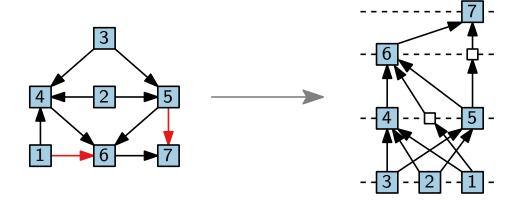
■ Input: acyclic, digraph G = (V, E)

Output: Mapping $y: V \to \{1, \ldots, |V|\}$,

so that for every $uv \in A$, y(u) < y(v).

Objective is to minimize . . .

Step 2: Leveling



Problem.

Input: acyclic, digraph G = (V, E)

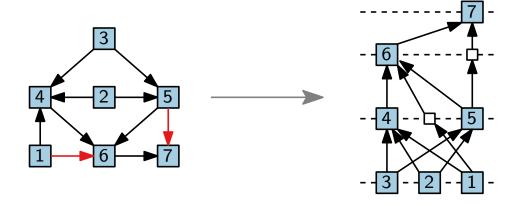
Output: Mapping $y: V \to \{1, \ldots, |V|\}$,

so that for every $uv \in A$, y(u) < y(v).

Objective is to *minimize* . . .

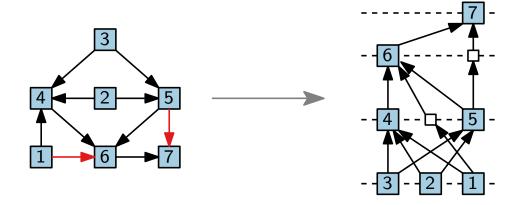
- lacksquare number of layers, i.e. |y(V)|
- length of the longest edge, i.e. $\max_{uv \in A} y(v) y(u)$
- width, i.e. $\max\{|L_i| \mid 1 \leq i \leq h\}$
- total edge length, i.e. number of dummy vertices

Algorithm.



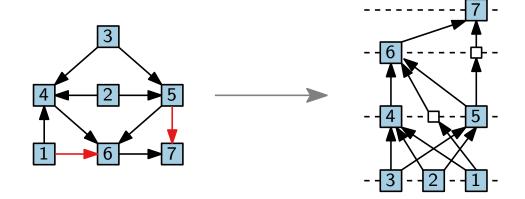
Algorithm.

for each source qset y(q) := 1



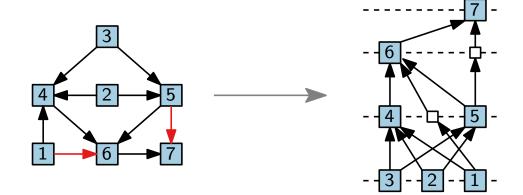
Algorithm.

- for each source qset y(q) := 1
- for each non-source v set $y(v) := \max \{y(u) \mid uv \in E\} + 1$



Algorithm.

- for each source qset y(q) := 1
- for each non-source vset $y(v) := \max \{y(u) \mid uv \in E\} + 1$

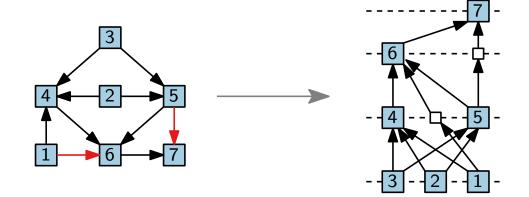


Observation.

 $\mathbf{y}(v)$

Algorithm.

- for each source qset y(q) := 1
- for each non-source vset $y(v) := \max \{y(u) \mid uv \in E\} + 1$

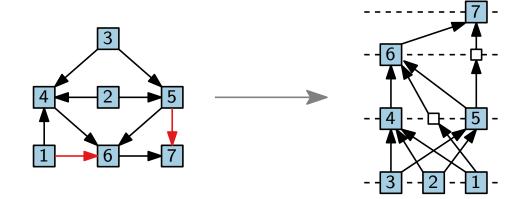


Observation.

 $\mathbf{y}(v)$ is length of the longest path from a source to v plus 1.

Algorithm.

- for each source qset y(q) := 1
- for each non-source v set $y(v) := \max \{y(u) \mid uv \in E\} + 1$

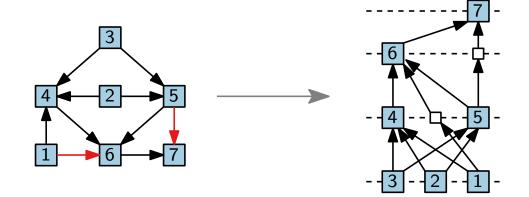


Observation.

- y(v) is length of the longest path from a source to v plus 1. ... which is optimal!
- Can be implemented in linear time with recursive algorithm.

Algorithm.

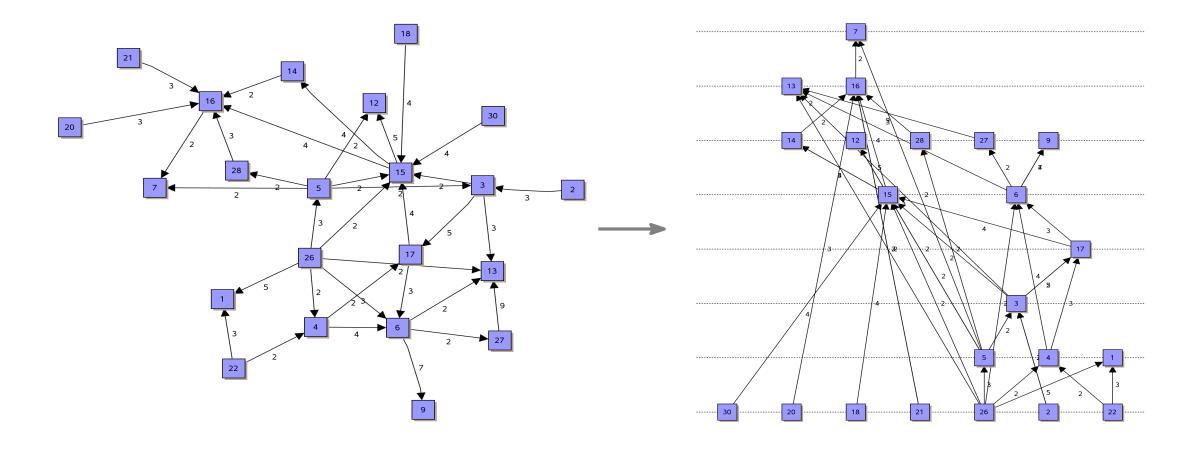
- for each source qset y(q) := 1
- for each non-source v set $y(v) := \max \{y(u) \mid uv \in E\} + 1$



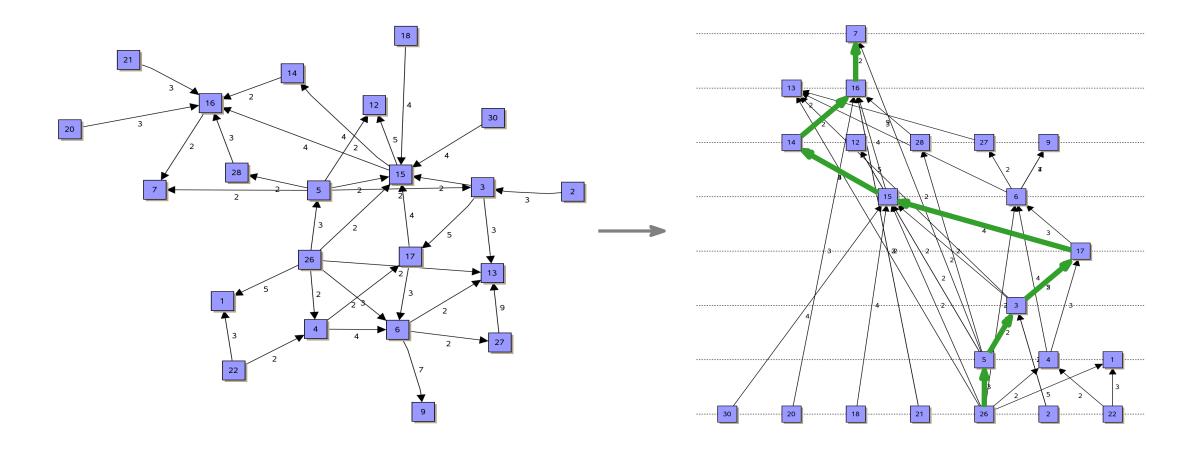
Observation.

- y(v) is length of the longest path from a source to v plus 1. ... which is optimal!
- Can be implemented in linear time with recursive algorithm.

Example



Example



Total edge length – ILP

Can be formulated as an integer linear program:

$$\begin{array}{ll} \min & \sum_{(u,v) \in E} (y(v) - y(u)) \\ \text{subject to} & y(v) - y(u) \geq 1 & \forall (u,v) \in E \\ & y(v) \geq 1 & \forall v \in V \\ & y(v) \in \mathbb{Z} & \forall v \in V \end{array}$$

Total edge length – ILP

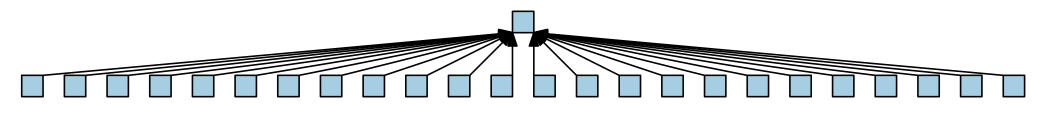
Can be formulated as an integer linear program:

$$\begin{array}{ll} \min & \sum_{(u,v) \in E} (y(v) - y(u)) \\ \text{subject to} & y(v) - y(u) \geq 1 & \forall (u,v) \in E \\ & y(v) \geq 1 & \forall v \in V \\ & y(v) \in \mathbb{Z} & \forall v \in V \end{array}$$

One can show that:

- Constraint-matrix is totally unimodular
 - ⇒ Solution of the relaxed linear program is integer
- The total edge length can be minimized in polynomial time

Width



Drawings can be very wide.

Narrower layer assignment

Problem: Leveling with a given width.

Input: acyclic, digraph G = (V, E), width W > 0

Output: Partition the vertex set into a minimum number

of layers such that each layer contains at most

W elements.

Narrower layer assignment

Problem: Leveling with a given width.

Input: acyclic, digraph G = (V, E), width W > 0

Output: Partition the vertex set into a minimum number

of layers such that each layer contains at most

W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

Input: n jobs with unit (1) processing time, W identical

machines, and a partial ordering < on the jobs.

Output: Schedule respecting < and having minimum</p>

processing time.

Narrower layer assignment

Problem: Leveling with a given width.

- Input: acyclic, digraph G = (V, E), width W > 0
- Output: Partition the vertex set into a minimum number

of layers such that each layer contains at most

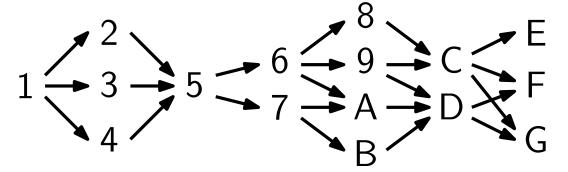
W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

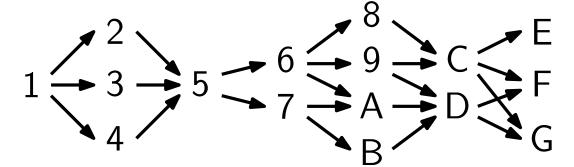
- Input: n jobs with unit (1) processing time, W identical
 - machines, and a partial ordering < on the jobs.
- Output: Schedule respecting < and having minimum</p>
 - processing time.
- NP-hard, $(2-\frac{2}{W})$ -Approx., no $(\frac{4}{3}-\varepsilon)$ -Approx. $(W \ge 3)$.

- lacktriangleright jobs stored in a list L (in any order, e.g., topologically sorted)
- for each time $t = 1, 2, \ldots$ schedule $\leq W$ available jobs
- lacksquare a job in L is *available* when all its predecessors have been scheduled
- as long as there are free machines and available jobs, take the first available job and assign it to a free machine

Input: Precedence graph (divided into layers of arbitrary width)

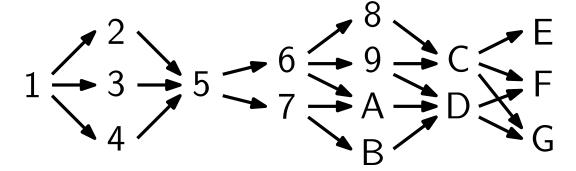


Input: Precedence graph (divided into layers of arbitrary width)



Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)



Number of Machines is W = 2.

Output: Schedule

Input: Precedence graph (divided into layers of arbitrary width)

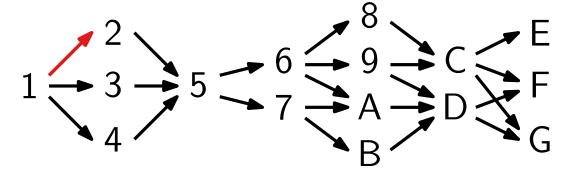
$$1 \xrightarrow{2} 5 \xrightarrow{6} \xrightarrow{9} C \xrightarrow{E} F$$

$$7 \xrightarrow{A} D \xrightarrow{G} G$$

Number of Machines is W = 2.

Output: Schedule

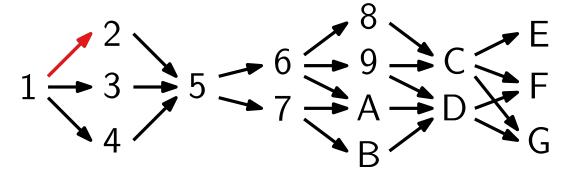
Input: Precedence graph (divided into layers of arbitrary width)



Number of Machines is W = 2.

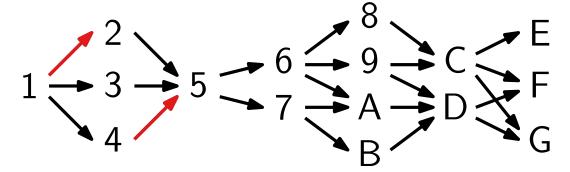
Output: Schedule

Input: Precedence graph (divided into layers of arbitrary width)



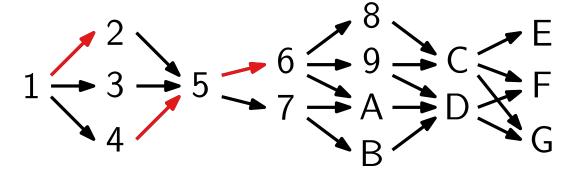
Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)



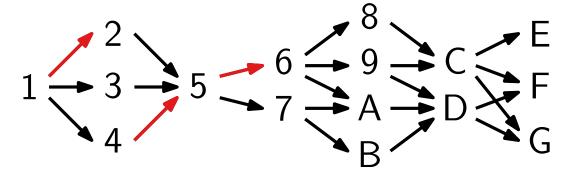
Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)



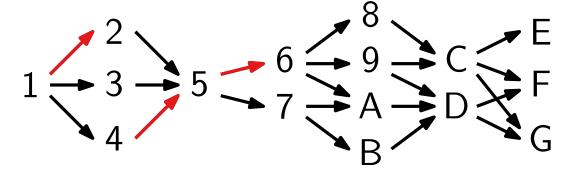
Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)



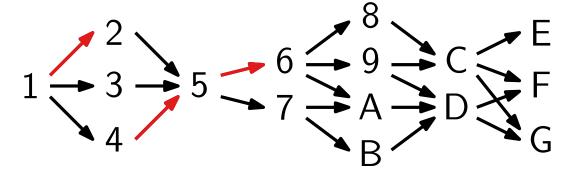
Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)



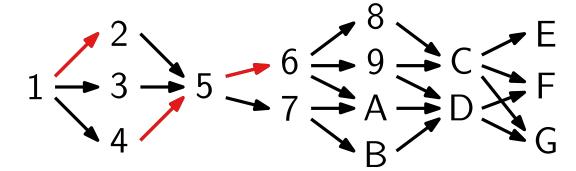
Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)



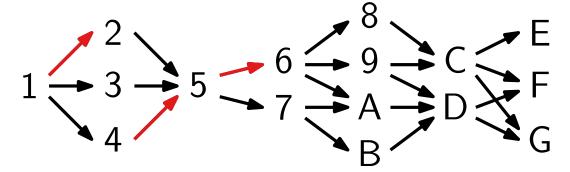
Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)



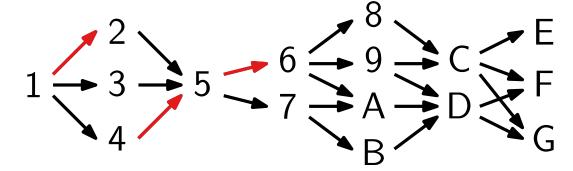
Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)



Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)



Number of Machines is W = 2.

$$M_1$$
 1 2 4 5 6 8 A C E G M_2 - 3 - - 7 9 B D F - t 1 2 3 4 5 6 7 8 9 10

Input: Precedence graph (divided into layers of arbitrary width)

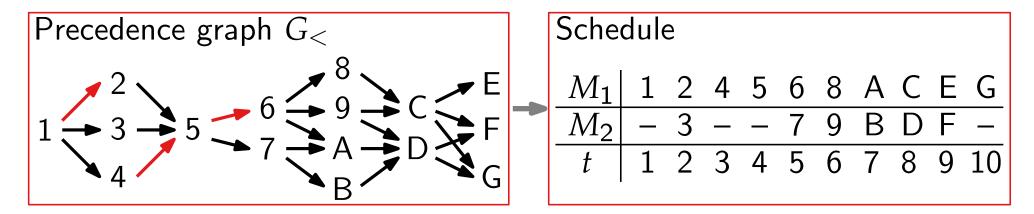
$$1 \xrightarrow{2} 5 \xrightarrow{6} \xrightarrow{9} C \xrightarrow{E} F$$

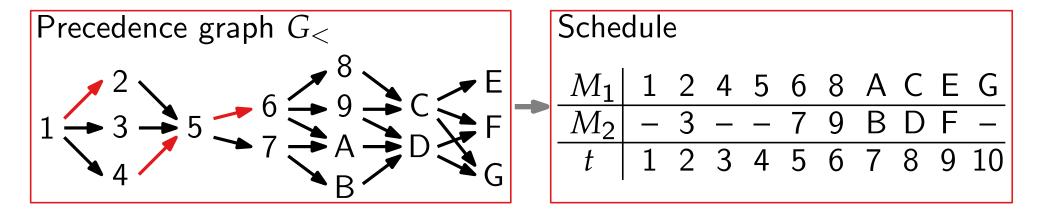
$$7 \xrightarrow{A} D \xrightarrow{G} G$$

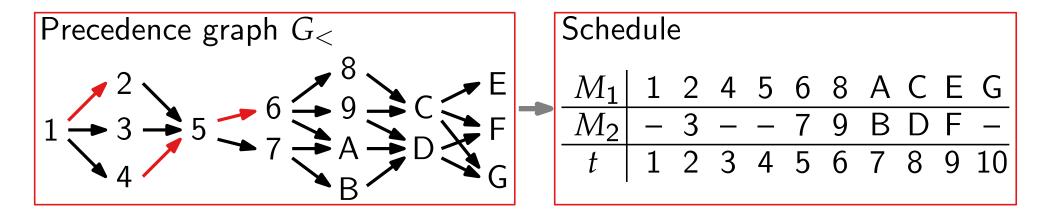
Number of Machines is W=2.

Output: Schedule

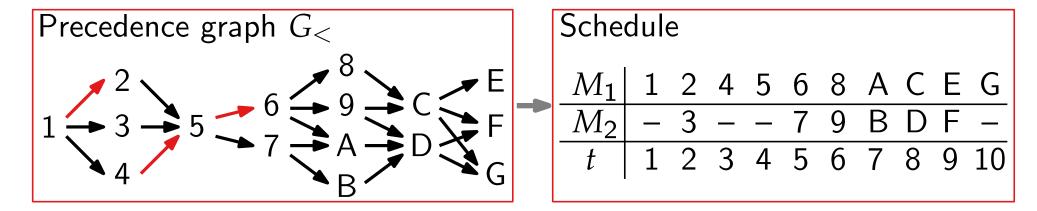
Question: Good approximation factor?



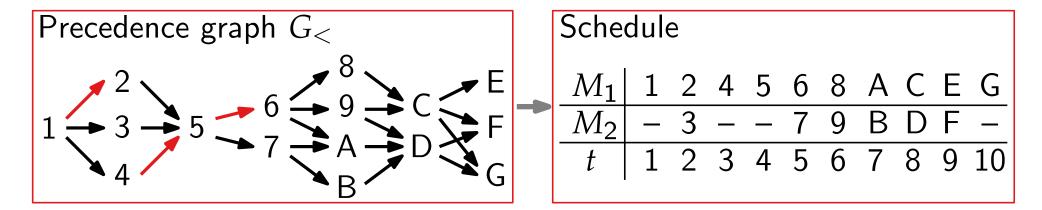




$$OPT \ge \lceil n/2 \rceil$$

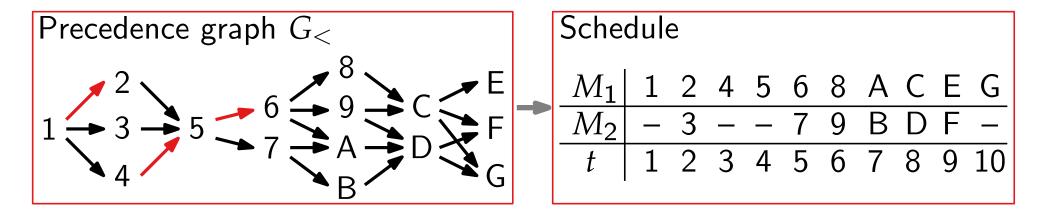


$$OPT \ge \lceil n/2 \rceil$$
 and $OPT \ge$



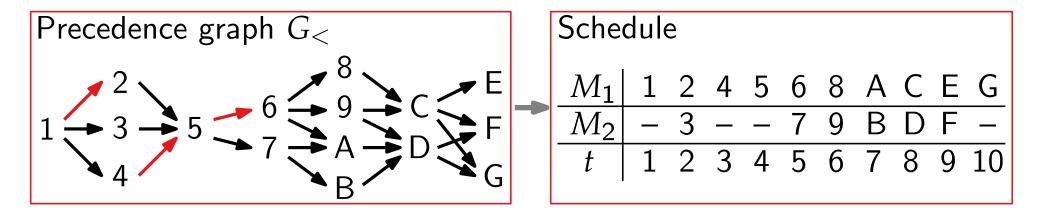
"The art of the lower bound"

 $\mathsf{OPT} \geq \lceil n/2 \rceil$ and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$



"The art of the lower bound"

$$\mathsf{OPT} \geq \lceil n/2 \rceil$$
 and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$

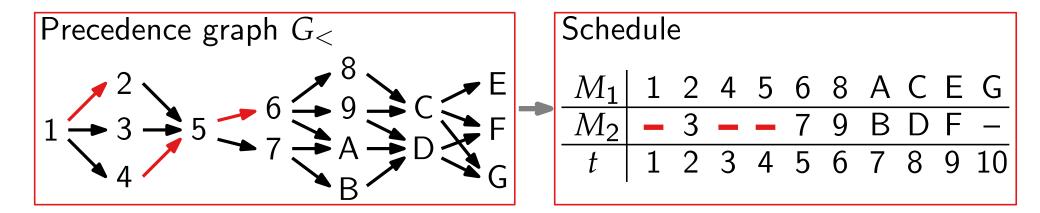


"The art of the lower bound"

 $\mathsf{OPT} \geq \lceil n/2 \rceil$ and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG \leq



"The art of the lower bound"

 $\mathsf{OPT} \geq \lceil n/2 \rceil$ and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG \leq

"The art of the lower bound"

$$\mathsf{OPT} \geq \lceil n/2 \rceil$$
 and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$

Bound. ALG
$$\leq$$
 insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

"The art of the lower bound"

$$\mathsf{OPT} \geq \lceil n/2 \rceil$$
 and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$

Bound. ALG
$$\leq \left\lceil \frac{n+\ell}{2} \right\rceil$$
 insertion of pauses (—) in the schedule (except the last) maps to layers of $G_{<}$

"The art of the lower bound"

$$\mathsf{OPT} \geq \lceil n/2 \rceil$$
 and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$

Bound. ALG
$$\leq \left\lceil \frac{n+\ell}{2} \right\rceil \approx$$
 insertion of pauses (—) in the schedule (except the last) maps to layers of $G_{<}$

"The art of the lower bound"

$$\mathsf{OPT} \geq \lceil n/2 \rceil$$
 and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$

Bound. ALG
$$\leq \left\lceil \frac{n+\ell}{2} \right\rceil \approx \left\lceil n/2 \right\rceil + \ell/2$$
 insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

"The art of the lower bound"

$$\mathsf{OPT} \geq \lceil n/2 \rceil$$
 and $\mathsf{OPT} \geq \ell := \mathsf{Number} \ \mathsf{of} \ \mathsf{layers} \ \mathsf{of} \ G_<$

Bound. ALG
$$\leq \left\lceil \frac{n+\ell}{2} \right\rceil \approx \left\lceil n/2 \right\rceil + \ell/2 \leq$$
 insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

"The art of the lower bound"

$$\mathsf{OPT} \geq \lceil n/2 \rceil$$
 and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$

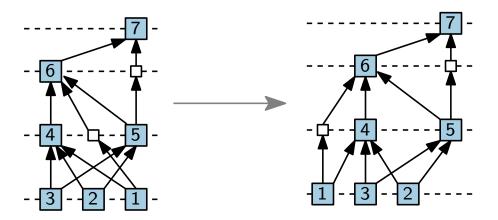
Bound. ALG
$$\leq \left\lceil \frac{n+\ell}{2} \right\rceil \approx \left\lceil n/2 \right\rceil + \ell/2 \leq 3/2 \cdot \mathsf{OPT}$$
 insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

"The art of the lower bound"

$$\mathsf{OPT} \geq \lceil n/2 \rceil$$
 and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$

Bound. ALG
$$\leq \left\lceil \frac{n+\ell}{2} \right\rceil \approx \left\lceil n/2 \right\rceil + \ell/2 \leq 3/2 \cdot \text{OPT}$$
 insertion of pauses (—) in the schedule (except the last) maps to layers of $G_{<}$

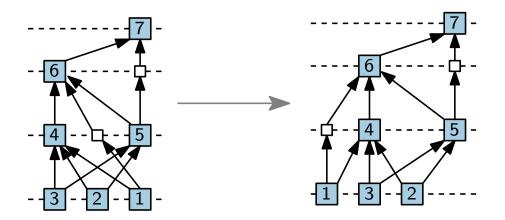
Step 3: Crossing minimization



Problem.

- Input: Graph G, layering $y \colon V \to \{1, \ldots, |V|\}$
- Output: (Re-)ordering of vertices in each layer so that the number of crossings in minimized.

Step 3: Crossing minimization



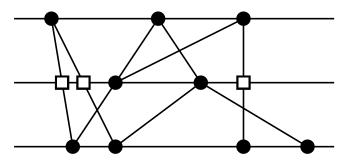
Problem.

- Input: Graph G, layering $y \colon V \to \{1, \ldots, |V|\}$
- Output: (Re-)ordering of vertices in each layer so that the number of crossings in minimized.
- NP-hard, even for 2 layers [Garey & Johnson '83]
- hardly any approaches optimize over multiple layers :(

Iterative crossing reduction — idea

Observation.

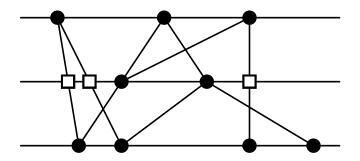
The number of crossings only depends on permutations of adjacent layers.



Iterative crossing reduction — idea

Observation.

The number of crossings only depends on permutations of adjacent layers.



- Add dummy-vertices for edges connecting "far" layers.
- Consider adjacent layers $(L_1, L_2), (L_2, L_3), \ldots$ bottom-to-top.
- Minimize crossings by permuting L_{i+1} while keeping L_i fixed.

(1) choose a random permutation of L_1

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed
- (4) repeat steps (2)–(3) in the reverse order (starting from L_h)

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed
- (4) repeat steps (2)–(3) in the reverse order (starting from L_h)
- (5) repeat steps (2)–(4) until no further improvement is achieved

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed
- (4) repeat steps (2)–(3) in the reverse order (starting from L_h)
- (5) repeat steps (2)–(4) until no further improvement is achieved
- (6) repeat steps (1)–(5) with different starting permutations

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed
- (4) repeat steps (2)–(3) in the reverse order (starting from L_h)
- (5) repeat steps (2)–(4) until no further improvement is achieved
- (6) repeat steps (1)–(5) with different starting permutations

Iterative crossing reduction – algorithm

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed one-sided crossing minimization
- (4) repeat steps (2)–(3) in the reverse order (starting from L_h)
- (5) repeat steps (2)–(4) until no further improvement is achieved
- (6) repeat steps (1)–(5) with different starting permutations

One-sided crossing minimization

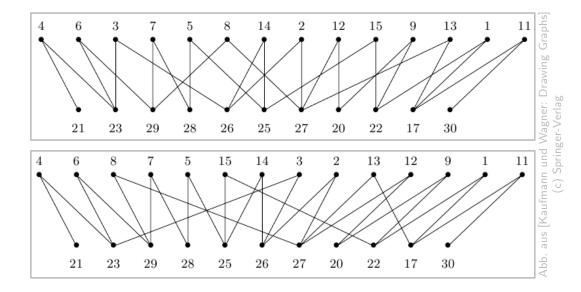
Problem.

Input: bipartite graph $G = (L_1 \cup L_2, E)$,

permutation π_1 on L_1

Output: permutation π_2 of L_2 minimizing the number of

edge crossings.



One-sided crossing minimization

Problem.

Input: bipartite graph $G = (L_1 \cup L_2, E)$,

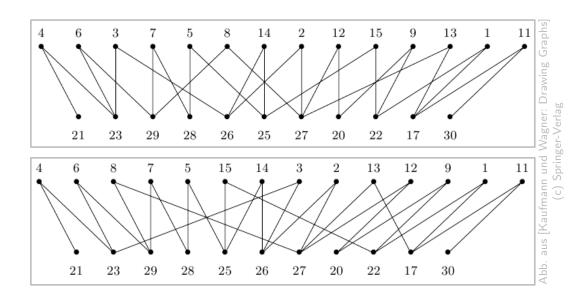
permutation π_1 on L_1

Output: permutation π_2 of L_2 minimizing the number of

edge crossings.

One-sided crossing minimization is NP-hard.

[Eades & Whitesides '94]



One-sided crossing minimization

Problem.

Input: bipartite graph $G = (L_1 \cup L_2, E)$,

permutation π_1 on L_1

Output: permutation π_2 of L_2 minimizing the number of

edge crossings.

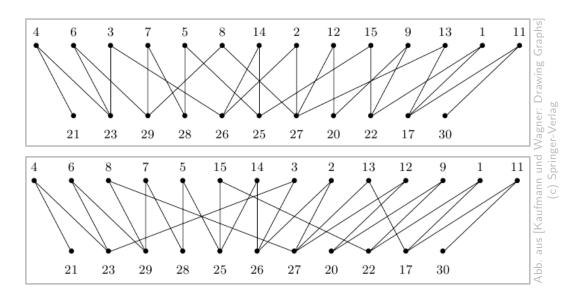
One-sided crossing minimization is NP-hard.

[Eades & Whitesides '94]

Algorithms.

- barycenter heuristic
- median heuristic
- Greedy-Switch
- ILP

. . .



[Sugiyama et al. '81]

Intuition: few intersections occur when vertices are close to their neighbours

[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 $x_1 \equiv \pi_1$

$$x_2(u) := bary(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 $x_1 \equiv \pi_1$

$$x_2(u) := bary(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

lacksquare Vertices with the same barycentre of are offset by a small δ .

[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 $x_1 \equiv \pi_1$

$$x_2(u) := bary(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

- Vertices with the same barycentre of are offset by a small δ .
- linear runtime
- relatively good results
- optimal if no crossings are required
- $O(\sqrt{n})$ -approximation factor

[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 $x_1 \equiv \pi_1$

$$x_2(u) := bary(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

- Vertices with the same barycentre of are offset by a small δ .
- linear runtime
- relatively good results
- optimal if no crossings are required \(\rightarrow \) exercise!
- $O(\sqrt{n})$ -approximation factor

[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 $x_1 \equiv \pi_1$

$$x_2(u) := bary(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

- Vertices with the same barycentre of are offset by a small δ .
- linear runtime
- relatively good results
- optimal if no crossings are required \(\rightarrow \) exercise!
- $O(\sqrt{n})$ -approximation factor

[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 $x_1 \equiv \pi_1$

$$x_2(u) := bary(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

- Vertices with the same barycentre of are offset by a small δ .
- linear runtime
- relatively good results
- optimal if no crossings are required \(\rightharpoonup \) exercise!
- $O(\sqrt{n})$ -approximation factor

Worst case?

 $u_{\circ} \circ v$

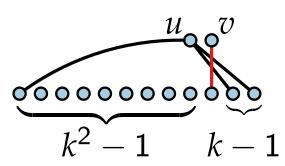
$$\underbrace{k^2-1} k-1$$

[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 $x_1 \equiv \pi_1$

$$x_2(u) := bary(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

- Vertices with the same barycentre of are offset by a small δ .
- linear runtime
- relatively good results
- optimal if no crossings are required \(\rightarrow \) exercise!
- $O(\sqrt{n})$ -approximation factor



[Eades & Wormald '94]

- $v_1, \ldots, v_k\} := N(u) \text{ with } \pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$
 - $x_2(u) := \operatorname{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$
- lacksquare move vertices u und v by small δ , when $x_2(u)=x_2(v)$

[Eades & Wormald '94]

- $v_1, \ldots, v_k\} := N(u) \text{ with } \pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$
 - $x_2(u) := \operatorname{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$
- move vertices u und v by small δ , when $x_2(u) = x_2(v)$
- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-approximation factor

[Eades & Wormald '94]

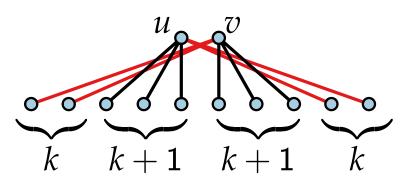
- - $x_2(u) := \mathrm{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$
- move vertices u und v by small δ , when $x_2(u) = x_2(v)$
- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-approximation factor proof in [GD Ch 11]

[Eades & Wormald '94]

- $v_1, \ldots, v_k\} := N(u) \text{ with } \pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$
 - $x_2(u) := \mathrm{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$
- move vertices u und v by small δ , when $x_2(u) = x_2(v)$
- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-approximation factor proof in [GD Ch 11]

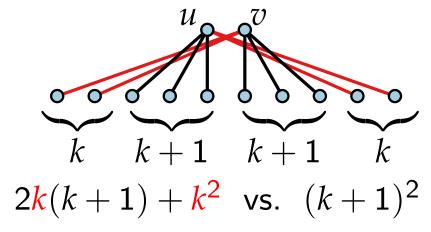
[Eades & Wormald '94]

- $v_1, \ldots, v_k\} := N(u) \text{ with } \pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$
 - $x_2(u) := \mathrm{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$
- lacksquare move vertices u und v by small δ , when $x_2(u)=x_2(v)$
- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-approximation factor proof in [GD Ch 11]



[Eades & Wormald '94]

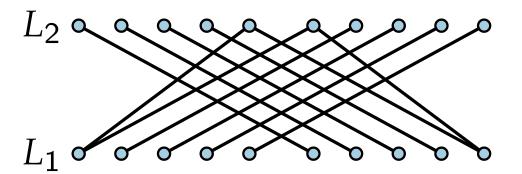
- $v_1, \ldots, v_k\} := N(u) \text{ with } \pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$
 - $x_2(u) := \mathrm{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$
- move vertices u und v by small δ , when $x_2(u) = x_2(v)$
- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-approximation factor proof in [GD Ch 11]



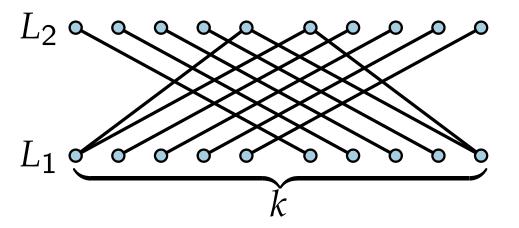
- iteratively swap each adjacent node as long as crossings decrease
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

- iteratively swap each adjacent node as long as crossings decrease
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

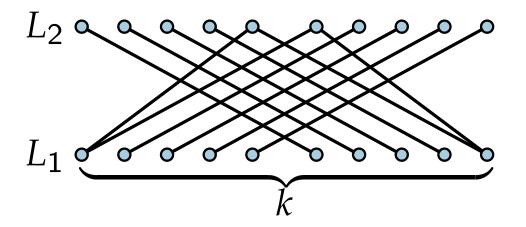
- iteratively swap each adjacent node as long as crossings decrease
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

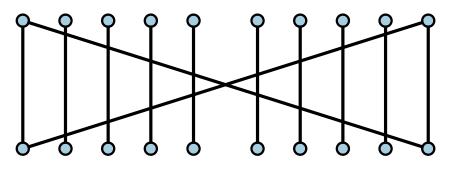


- iteratively swap each adjacent node as long as crossings decrease
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

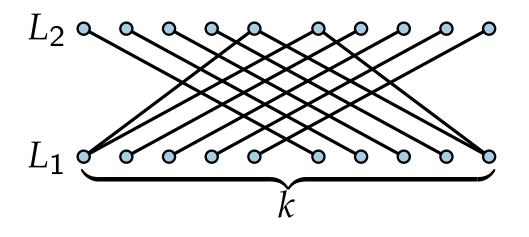


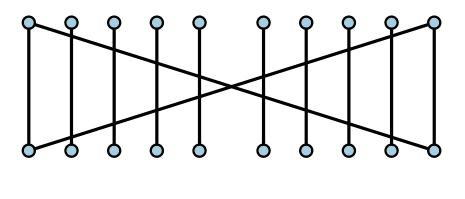
- iteratively swap each adjacent node as long as crossings decrease
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics





- iteratively swap each adjacent node as long as crossings decrease
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics



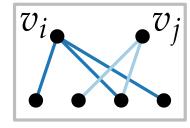


$$\approx k^2/4$$

$$\approx 2k$$

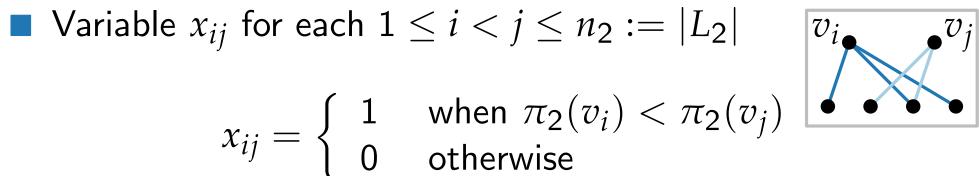
[Jünger & Mutzel, '97]

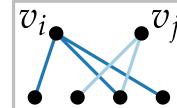
Constant $c_{ij}:=\#$ crossings between edges incident to v_i or v_j when $\pi_2(v_i)<\pi_2(v_j)$



[Jünger & Mutzel, '97]

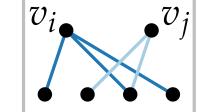
- Constant $c_{ij} := \#$ crossings between edges incident to v_i or v_i when $\pi_2(v_i) < \pi_2(v_i)$





[Jünger & Mutzel, '97]

- Constant $c_{ij} := \#$ crossings between edges incident to v_i or v_i when $\pi_2(v_i) < \pi_2(v_i)$



Variable
$$x_{ij}$$
 for each $1 \le i < j \le n_2 := |L_2|$
$$x_{ij} = \left\{ \begin{array}{ll} 1 & \text{when } \pi_2(v_i) < \pi_2(v_j) \\ 0 & \text{otherwise} \end{array} \right.$$

The number of crossings of a permutations π_2

$$\operatorname{cross}(\pi_2) = \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij} + \underbrace{\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} c_{ji}}_{\text{constant}}$$

■ Minimize the number of crossings:

minimize
$$\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

Minimize the number of crossings:

minimize
$$\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

Transitivity constraints:

$$0 \le x_{ij} + x_{jk} - x_{ik} \le 1$$
 for $1 \le i < j < k \le n_2$

Minimize the number of crossings:

minimize
$$\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

Transitivity constraints:

$$0 \le x_{ij} + x_{jk} - x_{ik} \le 1$$
 for $1 \le i < j < k \le n_2$ i.e., if $x_{ij} = 1$ and $x_{jk} = 1$, then $x_{ik} = 1$

Minimize the number of crossings:

minimize
$$\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

Transitivity constraints:

$$0 \le x_{ij} + x_{jk} - x_{ik} \le 1$$
 for $1 \le i < j < k \le n_2$ i.e., if $x_{ij} = 1$ and $x_{jk} = 1$, then $x_{ik} = 1$

Minimize the number of crossings:

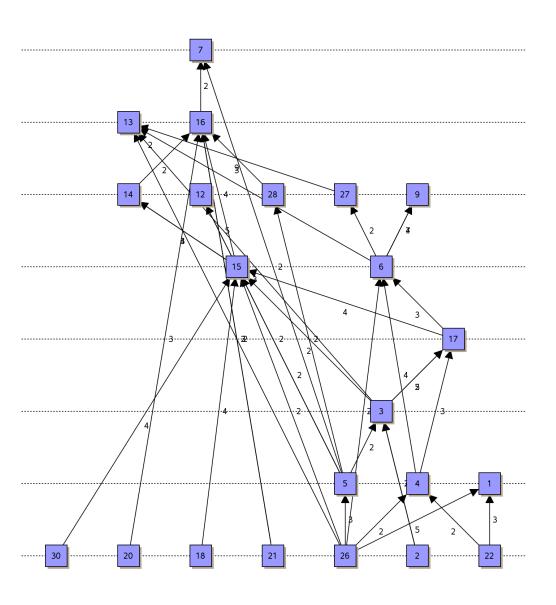
minimize
$$\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

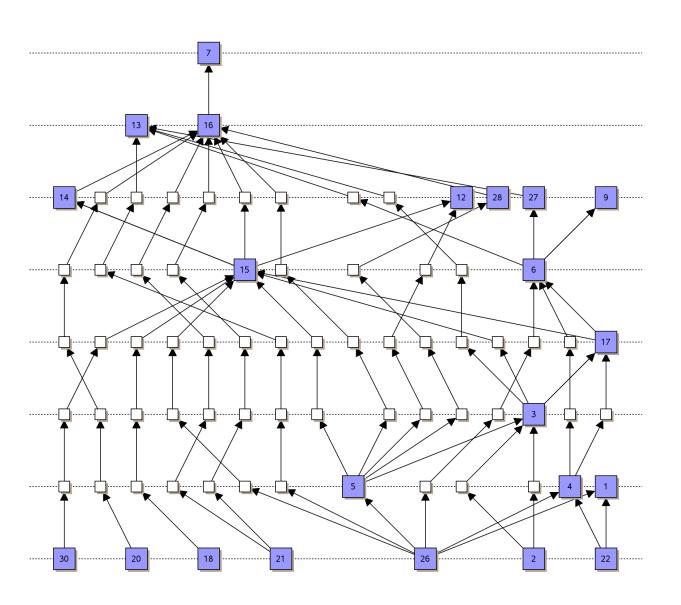
Transitivity constraints:

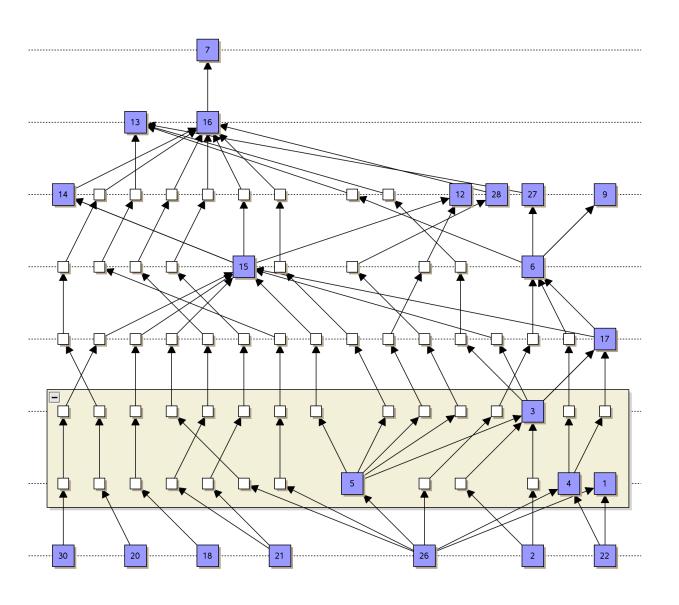
$$0 \le x_{ij} + x_{jk} - x_{ik} \le 1$$
 for $1 \le i < j < k \le n_2$ i.e., if $x_{ij} = 1$ and $x_{jk} = 1$, then $x_{ik} = 1$

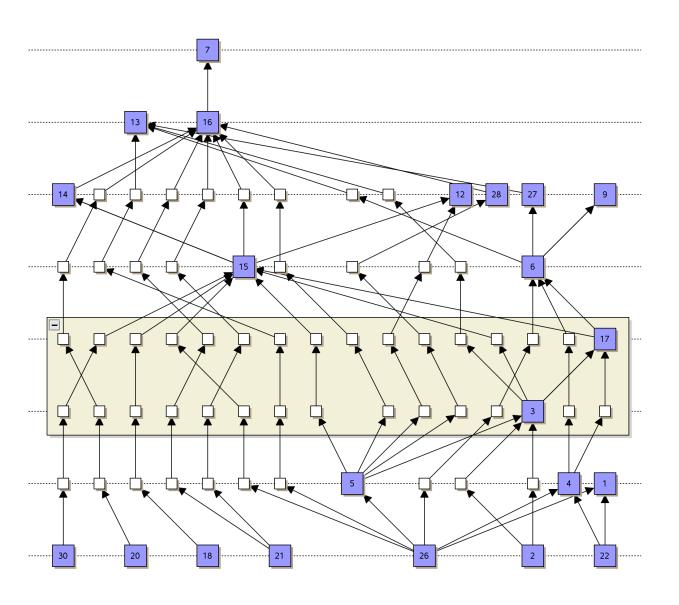
Properties.

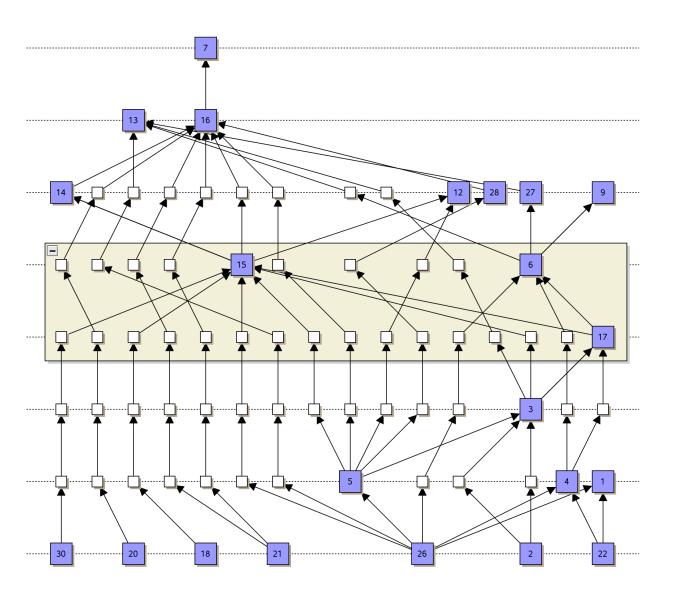
- branch-and-cut technique for DAGs of limited size
- useful for graphs of small to medium size
- finds optimal solution
- solution in polynomial time is not guaranteed

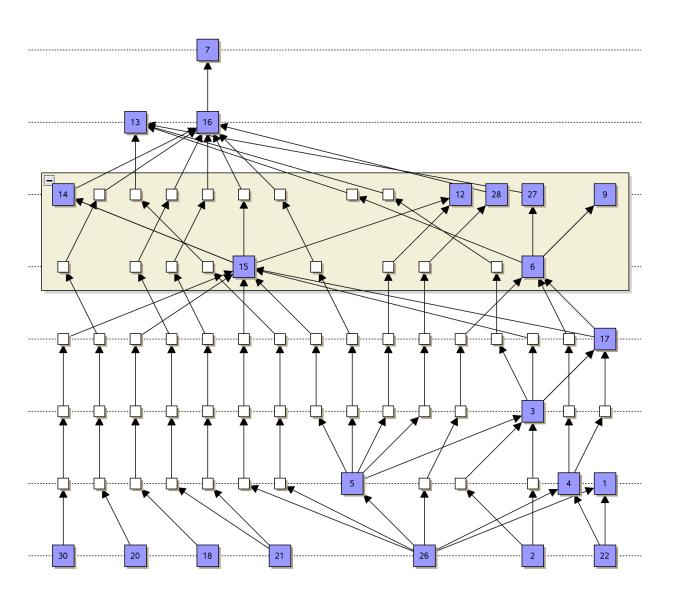


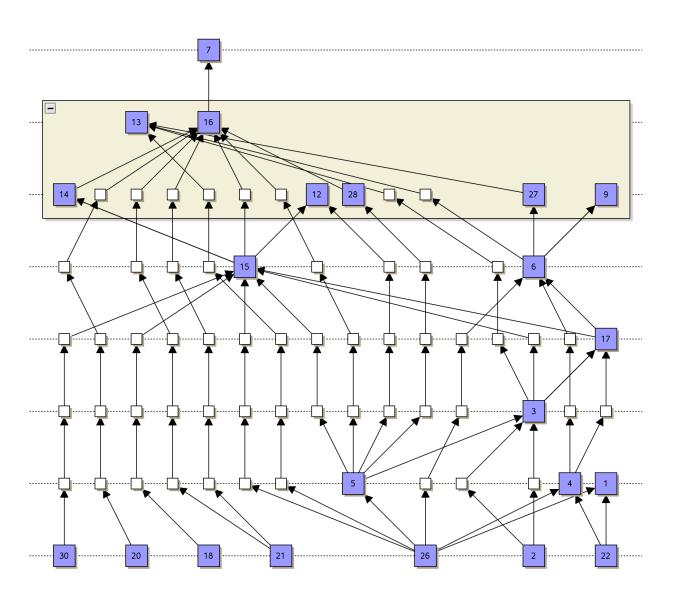


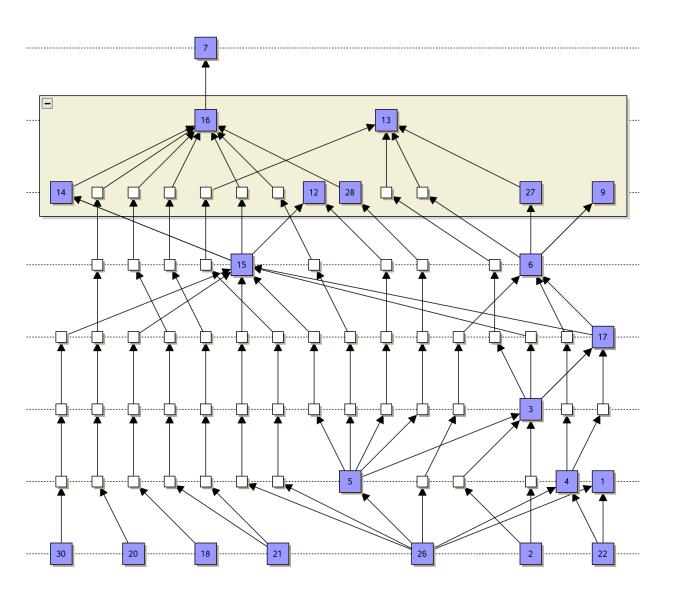


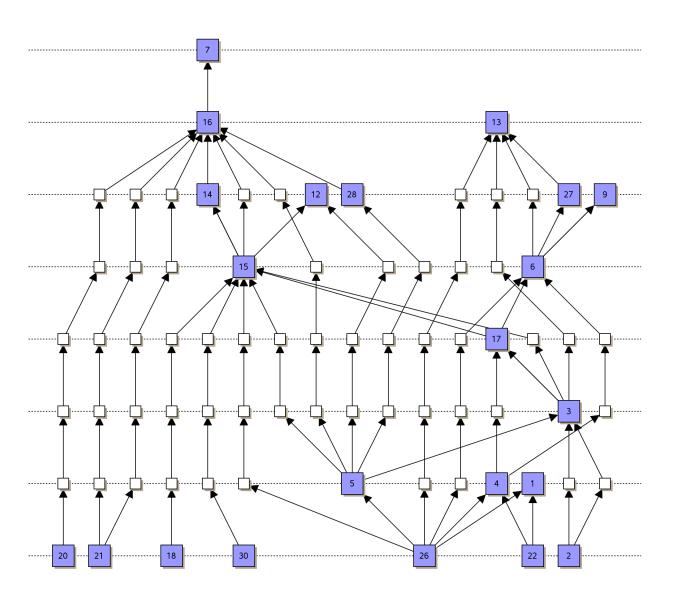




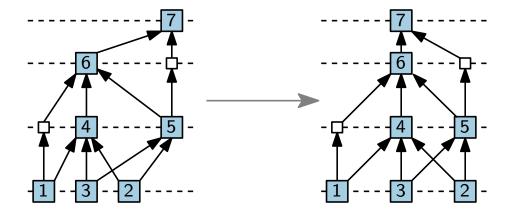








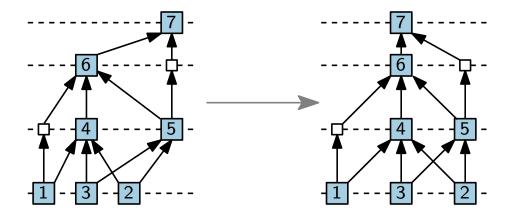
Step 4: Vertex positioning



Goal.

paths should be close to straight, vertices evenly spaced

Step 4: Vertex positioning

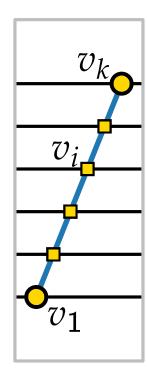


Goal.

paths should be close to straight, vertices evenly spaced

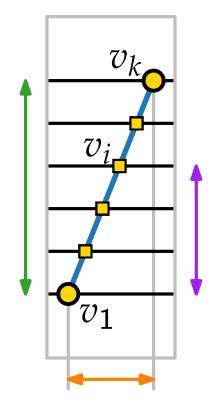
- **Exact:** Quadratic Program (QP)
- **Heuristic**: iterative approach

Consider the path $p_e = (v_1, \dots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \dots, v_{k-1}



- Consider the path $p_e = (v_1, \dots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \dots, v_{k-1}
- lack x-coordinate of v_i according to the line $\overline{v_1v_k}$ (with equal spacing):

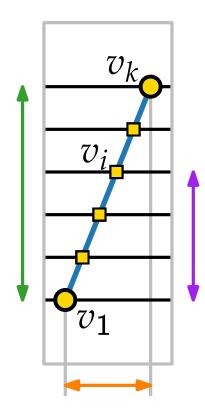
$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1} (x(v_k) - x(v_1))$$



- Consider the path $p_e = (v_1, \dots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \dots, v_{k-1}
- x-coordinate of v_i according to the line $\overline{v_1v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1} (x(v_k) - x(v_1))$$

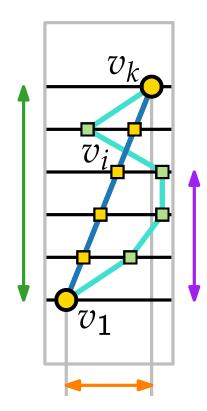
$$\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$



- Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \ldots, v_{k-1}
- x-coordinate of v_i according to the line $\overline{v_1v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1} (x(v_k) - x(v_1))$$

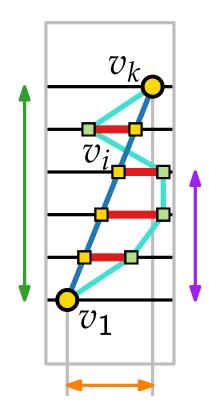
$$\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$



- Consider the path $p_e = (v_1, \dots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \dots, v_{k-1}
- x-coordinate of v_i according to the line $\overline{v_1v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1} (x(v_k) - x(v_1))$$

$$\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$



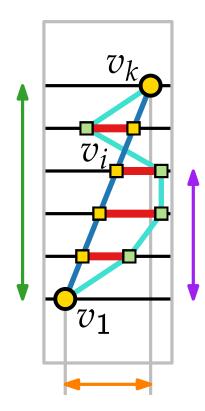
- Consider the path $p_e = (v_1, \dots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \dots, v_{k-1}
- x-coordinate of v_i according to the line $\overline{v_1v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1} (x(v_k) - x(v_1))$$

define the deviation from the line

$$\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$

Objective function: min $\sum_{e \in E} \text{dev}(p_e)$

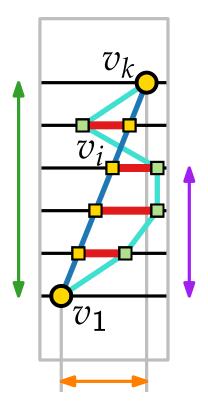


- Consider the path $p_e = (v_1, \dots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \dots, v_{k-1}
- x-coordinate of v_i according to the line $\overline{v_1v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1} (x(v_k) - x(v_1))$$

$$\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$

- Objective function: $\min \sum_{e \in E} \text{dev}(p_e)$
- Constraints for all vertices v,w in the same layer with w right of v: $x(w)-x(v) \geq \rho(w,v)$ min. horizontal distance

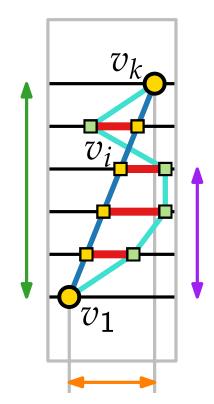


- Consider the path $p_e = (v_1, \dots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \dots, v_{k-1}
- x-coordinate of v_i according to the line $\overline{v_1v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1} (x(v_k) - x(v_1))$$

$$\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$

- Objective function: $\min \sum_{e \in E} \text{dev}(p_e)$
- Constraints for all vertices v, w in the same layer with w width right of v: $x(w) x(v) \ge \rho(w, v)$ min. horizontal distance



- QP is time-expensive
- width can be exponential

Iterative heuristic

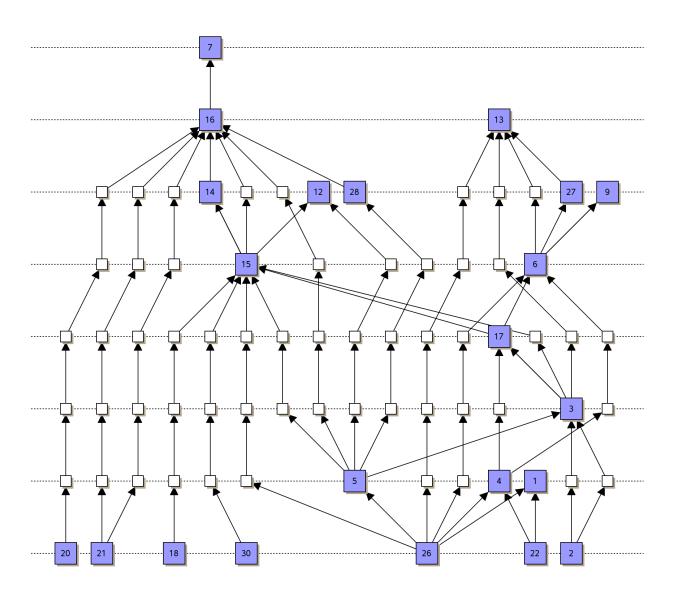
compute an initial layout

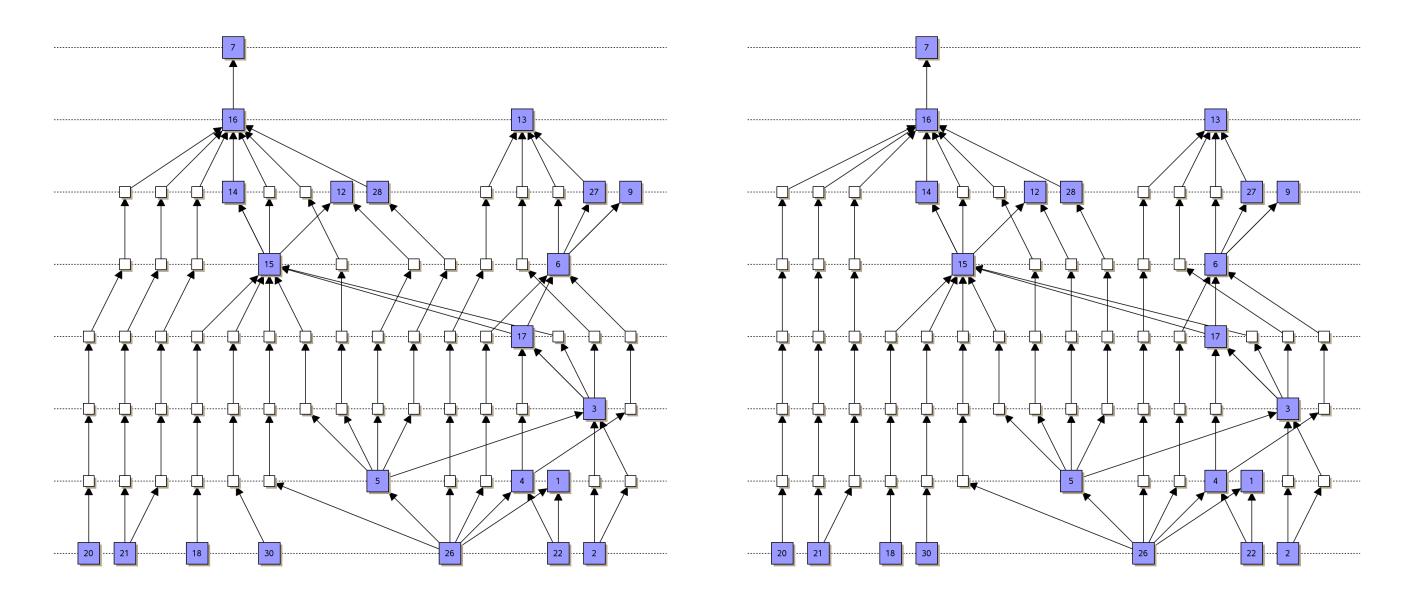
Iterative heuristic

- compute an initial layout
- apply the following steps as long as improvements can be made:

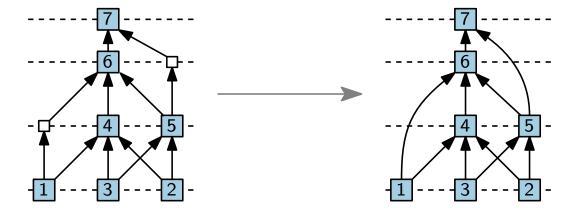
Iterative heuristic

- compute an initial layout
- apply the following steps as long as improvements can be made:
 - 1. vertex positioning,
 - 2. edge straightening,
 - 3. compactifying the layout width.



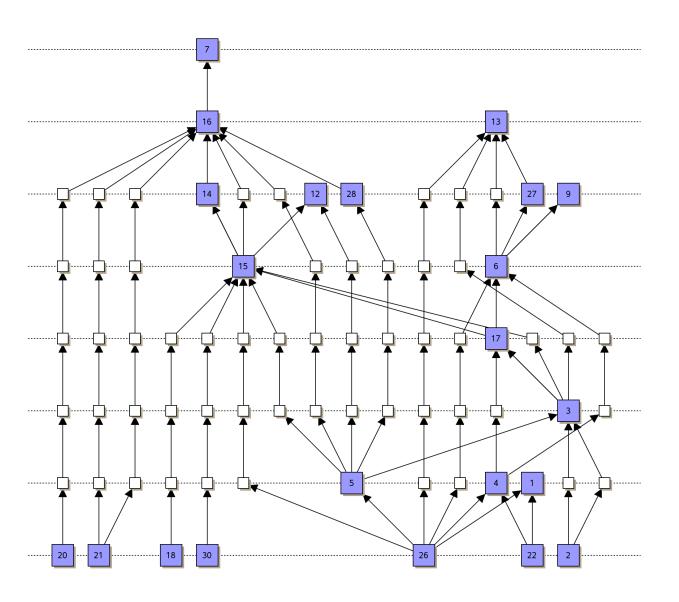


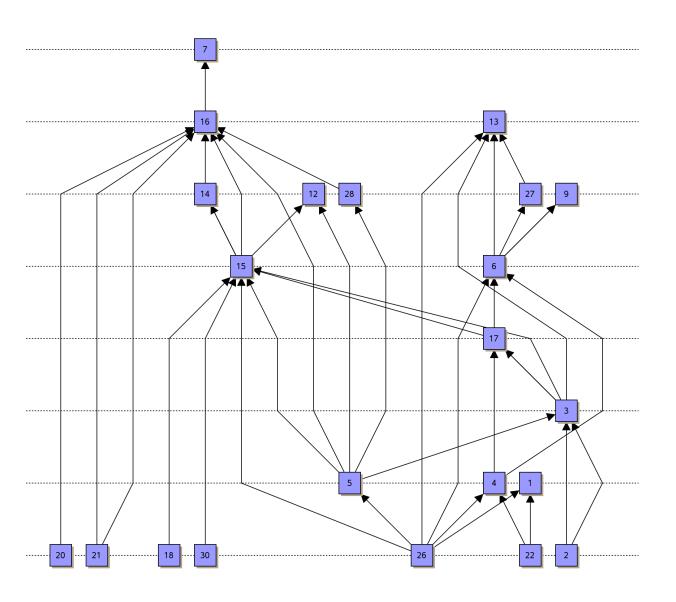
Step 5: Drawing edges

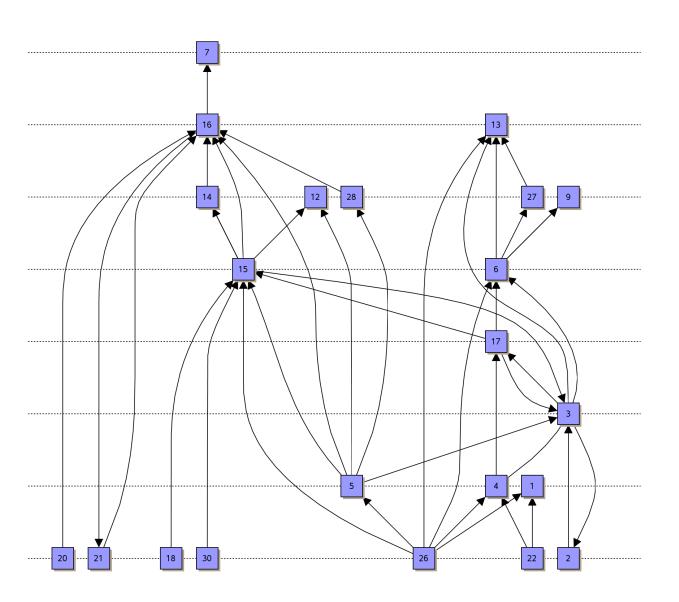


Possibility.

Substitute polylines by Bézier curves

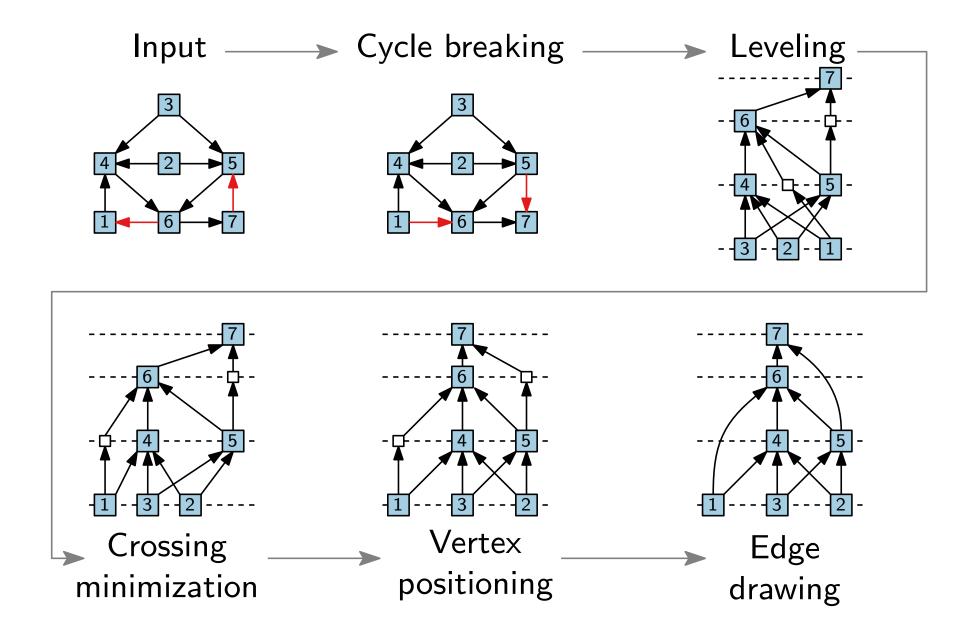






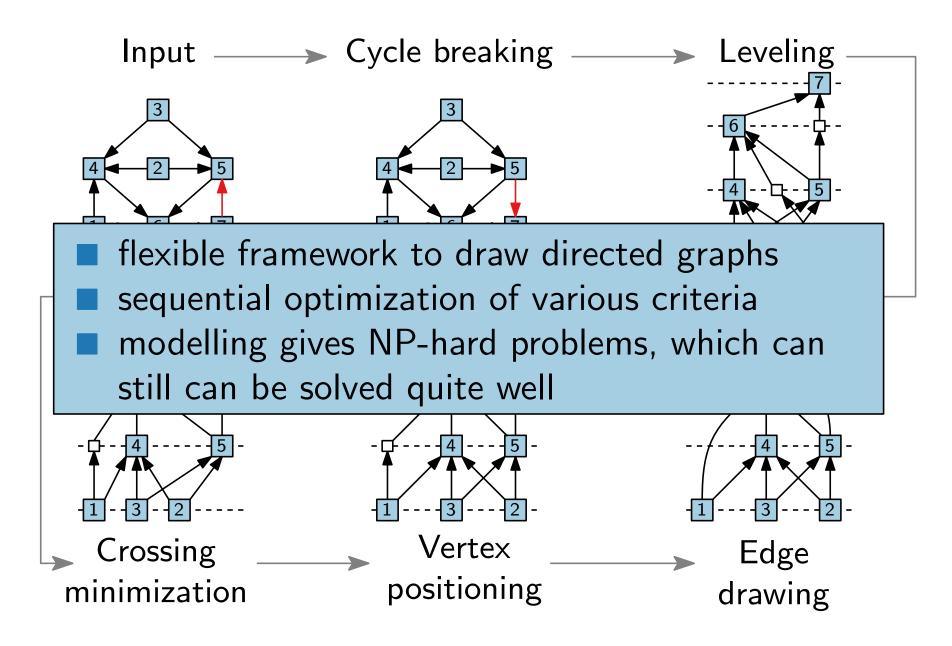
Classical approach – Sugiyama framework

[Sugiyama, Tagawa, Toda '81]



Classical approach – Sugiyama framework

[Sugiyama, Tagawa, Toda '81]



Literature

Detailed explanations of steps and proofs in

- [GD Ch. 11] and [DG Ch. 5]
- based on
- [Sugiyama, Tagawa, Toda '81] Methods for visual understanding of hierarchical system structures
- and refined with results from
- [Berger, Shor '90] Approximation alogorithms for the maximum acyclic subgraph problem
- [Eades, Lin, Smith '93] A fast and effective heuristic for the feedback arc set problem
- [Garey, Johnson '83] Crossing number is NP-complete
- [Eades, Whiteside '94] Drawing graphs in two layers
- [Eades, Wormland '94] Edge crossings in drawings of bipartite graphs
- [Jünger, Mutzel '97] 2-Layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms