
Problem F: Those who
trespass against us

Manuel Wolz, Marvin Ewald, Tim Janiak

Description

Somewhere in the great North American plains live the tribes of chiefs
Blue Eagle, Red Beaver, and Green Serpent. Their population is
scattered over numerous villages all over the land and conflict arises
whenever members of different tribes meet while traveling across the
plains.
To put an end to the constant animosities the chiefs have decided that
the land should be divided between the tribes so that they can avoid
each other when moving between villages belonging to the same tribe.
More precisely, they want to construct two border fences – thus
dividing the land into three regions – such that two villages lie in the
same region precisely when they belong to the same tribe.

Description

The villages are represented by
points in the Euclidean plane
that are colored blue, red or
green, depending on the tribe,
and the fences should be drawn
in the form of two polygons.
The polygons may not touch or
intersect themselves or each
other and none of the points
may lie on their boundary.

Constraints

• Villages
• At least one village per colour
• In total 100 villages at most
• On unique integer coordinates anywhere from -1000 to 1000

Constraints

• Villages
• At least one village per colour
• In total 100 villages at most
• On unique integer coordinates anywhere from -1000 to 1000

• Fences
• A maximum of 1000 vertices per polygon
• Vertices on coordinates between -3000 and 3000 with up to five decimal

places of precision

Input

• 1st line: Number of villages 6

Input

• 1st line: Number of villages
• Subsequent lines correspond to

one village each, containing:
• x-coordinate
• y-coordinate

0 0
0 1
1 0
1 1
2 0
2 1

Input

• 1st line: Number of villages
• Subsequent lines correspond to

one village each, containing:
• x-coordinate
• y-coordinate
• Colour (1: blue, 2: red, 3: green)

2
1
1
3
3
2

Output

• 1st line: Number of vertices in one
polygon

4

Output

• 1st line: Number of vertices in one
polygon
• Subsequent lines correspond to the

vertices in clockwise or counter-
clockwise order, containing:
• x-coordinate
• y-coordinate

-0.3 1.0
1.0 -0.3
1.3 0.0
0.0 1.3

Output

• 1st line: Number of vertices in one
polygon
• Subsequent lines correspond to the

vertices in clockwise or counter-
clockwise order, containing:
• x-coordinate
• y-coordinate

• Repeat for the second polygon 4
0.7 1.0
2.0 -0.3
2.3 0.0
1.0 1.3

Idea

• Select the two colours with
fewest villages

Idea

• Select the two colours with
fewest villages
• Start polygons on opposite

sides of the area with villages

Idea

• Select the two colours with
fewest villages
• Start polygons on opposite

sides of the area with villages
• Connect the villages
• Easy for some

Idea

• Select the two colours with
fewest villages
• Start polygons on opposite

sides of the area with villages
• Connect the villages
• Easy for some
• Harder for others

Idea

• Select the two colours with
fewest villages
• Start polygons on opposite

sides of the area with villages
• Connect the villages
• Easy for some
• Harder for others
à use ”wiggle room” from -0.5

to +0.5 around the column

Idea

• Create connections which
don’t pass through other
(potential) villages

Idea

• Create connections which
don’t pass through other
(potential) villages
• Use each half for one colour to

prevent crossing

Idea

• Create connections which
don’t pass through other
(potential) villages
• Use each half for one colour to

prevent crossing
• More vertices but fewer special

cases

Idea

• Create connections which
don’t pass through other
(potential) villages
• Use each half for one colour to

prevent crossing
• More vertices but fewer special

cases x2

Idea

• Create connections which
don’t pass through other
(potential) villages
• Use each half for one colour to

prevent crossing
• More vertices but fewer special

cases x3

Are there too many vertices?

• Constraint: 1000 vertices per
polygon

Are there too many vertices?

• Constraint: 1000 vertices per
polygon
• 4 for the hub

Are there too many vertices?

• Constraint: 1000 vertices per
polygon
• 4 for the hub
• 4 per occupied column

Are there too many vertices?

• Constraint: 1000 vertices per
polygon
• 4 for the hub
• 4 per occupied column
• 4 per village

Are there too many vertices?

• Constraint: 1000 vertices per
polygon
• 4 for the hub
• 4 per occupied column
• 4 per village

• Fine, even with 100 villages,
each in a different column:
4 + 400 + 400 = 804 < 1000

Implementation
10

3 1 3
1 3 1

2 3 2
2 1 2

4 1 1
5 3 1

3 3 3
2 2 1

5 2 2
3 2 3

Input:

Implementation

• Group the villages by colour:
!(#)

2 3 2
2 1 2

5 2 2

3 1 3

3 3 3
3 2 3

Implementation

• Group the villages by colour:
!(#)
• Sort them by their x-coordinate:
!(# log#)

2 3 2

2 1 2
5 2 2

3 1 3

3 3 3

3 2 3

Implementation

• Group the villages by colour:
!(#)
• Sort them by their x-coordinate:
!(# log#)
• Sort villages sharing colour and

column by their y-coordinate:
! # log# (in total)

2 1 2

2 3 2
5 2 2

3 1 3

3 2 3

3 3 3

Implementation

• Add the hub vertices: ! 1
2 1 2

2 3 2
5 2 2

Implementation

• Add the hub vertices: !(1)
• Loop over the villages sorted by

their x-coordinate: ! %
• Add the column’s vertices: ! 1

2 1 2

2 3 2

Implementation

• Add the hub vertices: !(1)
• Loop over the villages sorted by

their x-coordinate: ! %
• Add the column’s vertices: ! 1
• Loop over the the villages sorted

by y, to add the vertices around it:
!(%) (in total)

2 3 2

Implementation

• Add the hub vertices: !(1)
• Loop over the villages sorted by

their x-coordinate: ! %
• Add the column’s vertices: ! 1
• Loop over the the villages sorted

by y, to add the vertices around it:
!(%) (in total)

2 1 2

Implementation

• Add the hub vertices: !(1)
• Loop over the villages sorted by

their x-coordinate: ! %
• Add the column’s vertices: ! 1
• Loop over the the villages sorted

by y, to add the vertices around it:
!(%) (in total)

5 2 2

Implementation

• Add the hub vertices: !(1)
• Loop over the villages sorted by

their x-coordinate: ! %
• Add the column’s vertices: ! 1
• Loop over the the villages sorted

by y, to add the vertices around it:
!(%) (in total)

• Repeat for the second polygon:
! %

3 1 3

3 2 3
3 3 3

Implementation

• Add the hub vertices: !(1)
• Loop over the villages sorted by

their x-coordinate: ! %
• Add the column’s vertices: ! 1
• Loop over the the villages sorted

by y, to add the vertices around it:
!(%) (in total)

• Repeat for the second polygon:
! %
• Total: !(% log%)with % ≤ 49

1 3 1
4 1 1

5 3 1
2 2 1

Visualizer

• Graphical representation of in-
and outputs of the problem
• Enables the generation of new

inputs for testing
• More applicable to smaller sized

samples

Visualizer

• Doesn’t check whether the
output is within the constraints
or correct
• Assumes correct format
• Allows the export of invalid

inputs (e.g. too many, too few or
out of bounds villages)

