Visualization of Graphs

Lecture 1a:
The Graph Visualization Problem

Johannes Zink

Organizational

Lectures: ■ Johannes Zink (M4, room 01.007, johannes.zink@uni-wuerzburg.de)
■ Friday, 10:15-11:45, SE II
■ videos (in German) from 2021 by Jonathan Klawitter available on WueCampus
Tutorials: ■ Oksana Firman (M4, room 01.005, oksana.firman@uni-wuerzburg.de)
■ Wednesday, 16:00-17:30, SE 8 physics building (first tutorial: April 26)
■ one exercise sheet each week (Friday to Friday; first sheet appears today)

- 20 points per sheet

■ average score 50% or more \Rightarrow bonus of 0.3 grade points
■ submit solutions online (WueCampus)
■ we recommend using ${ }^{A} T_{E} \mathrm{E}$ - template on WueCampus!
■ discussions and solutions...

Books

G. Di Battista, P. Eades, R. Tamassia, I. Tollis:

Graph Drawing: Algorithms for the Visualization of Graphs Prentice Hall, 1998

T. Nishizeki, Md. S. Rahman:

Planar Graph Drawing

R. Tamassia:

Handbook of Graph Drawing and Visualization CRC Press, 2013
http://cs.brown.edu/people/rtamassi/gdhandbook/

What Is This Course About?

Learning objectives

■ Overview of graph visualization
■ Improved knowledge of modeling and solving problems via graph algorithms

Visualization problem:

■ Given a graph G, visualize it with a drawing Γ

Here:

- Reducing the visualization problem to its algorithmic core

$$
\text { graph class } \Rightarrow \text { layout style } \Rightarrow \text { algorithm } \Rightarrow \text { analysis }
$$

■ modeling

- data structures
- divide \& conquer, incremental
- proofs

■ combinatorial optimization (flows, ILPs)

- force-based algorithm

What Is This Course About?

Topics

- Drawing Trees and Series-Parallel Graphs

■ Tutte Embedding and Force-Based Drawing Algorithms
■ Straight-Line Drawings of Planar Graphs

- Orthogonal Grid Drawings
- Octilinear Drawings for Metro Maps

■ Upwards Planar Drawings
■ Hierarchical Layouts of Directed Graphs

- Contact Representations

■ Visibility Representations

- The Crossing Lemma
- Beyond Planarity

Graphs and Their Representations

What is a graph?

■ graph $G=(V, E)$
■ vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
\square edges $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, where each edge is a pair from V

Representation?

- Adjacency matrix

- Set notation

```
V = {\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\mp@subsup{v}{3}{},\mp@subsup{v}{4}{},\mp@subsup{v}{5}{},\mp@subsup{v}{6}{},\mp@subsup{v}{7}{},\mp@subsup{v}{8}{},\mp@subsup{v}{9}{},\mp@subsup{v}{10}{}}
E={{\mp@subsup{v}{1}{},\mp@subsup{v}{2}{}},{\mp@subsup{v}{1}{},\mp@subsup{v}{8}{}},{\mp@subsup{v}{2}{},\mp@subsup{v}{3}{}},{\mp@subsup{v}{3}{},\mp@subsup{v}{5}{}},{\mp@subsup{v}{3}{},\mp@subsup{v}{9}{}},
    {v\mp@subsup{v}{3}{},\mp@subsup{v}{10}{}},{\mp@subsup{v}{4}{},\mp@subsup{v}{5}{\prime}},{\mp@subsup{v}{4}{},\mp@subsup{v}{6}{}},{\mp@subsup{v}{4}{},\mp@subsup{v}{9}{}},{\mp@subsup{v}{5}{},\mp@subsup{v}{8}{}},
    {v\mp@subsup{v}{6}{},\mp@subsup{v}{8}{}},{\mp@subsup{v}{6}{},\mp@subsup{v}{9}{}},{\mp@subsup{v}{7}{},\mp@subsup{v}{8}{}},{\mp@subsup{v}{7}{},\mp@subsup{v}{9}{}},{\mp@subsup{v}{8}{},\mp@subsup{v}{10}{}},
    {v9, v10 }}
```

- Adjacency list

$v_{1}:$	v_{2}, v_{8}
$v_{2}:$	v_{1}, v_{3}
$v_{3}:$	$v_{2}, v_{5}, v_{9}, v_{10}$
$v_{4}:$	v_{5}, v_{6}, v_{9}
$v_{5}:$	v_{3}, v_{4}, v_{8}

$$
\begin{array}{ll}
v_{6}: & v_{4}, v_{8}, v_{9} \\
v_{7}: & v_{8}, v_{9} \\
v_{8}: & v_{1}, v_{5}, v_{6}, v_{7}, v_{9}, v_{10} \\
v_{9}: & v_{3}, v_{4}, v_{6}, v_{7}, v_{8}, v_{10} \\
v_{10}: & v_{3}, v_{8}, v_{9}
\end{array}
$$

Why to Draw Graphs?

Graphs are a mathematical representation of real physical and abstract networks.

Physical networks
■ Metro systems

- Road networks
- Power grids

■ Telecommunication networks

- Integrated circuits

■ ...

Abstract networks

■ Social networks
■ Communication networks

- Phylogenetic networks

■ Metabolic networks
■ Class/Object Relation Digraphs (UML)
■ . .

Why to Draw Graphs?

Graphs are a mathematical representation of real physical and abstract networks.

■ People think visually - complex graphs are hard to grasp without good visualizations!

Why to Draw Graphs?

Graphs are a mathematical representation of real physical and abstract networks.

■ People think visually - complex graphs are hard to grasp without good visualizations!

■ Visualizations help with the communication and exploration of networks.

■ Some graphs are too big to draw them by hand.

We need algorithms that draw graphs automatically to make networks more accessible to humans.

What Are We Interested In?

- Jacques Bertin defined visualization variables (1967)

The Layout Problem?

■ Here restricted to the standard representation, so-called node-link diagrams.


```
Graph Visualization Problem
in: graph G
out: nice drawing }\Gamma\mathrm{ of }
    ■ \Gamma:V(G)->\mp@subsup{\mathbb{R}}{}{2},\mathrm{ vertex }v\mapsto\mathrm{ point }\Gamma(v)
    \Gamma:E(G)->\mathrm{ simple, open curves in }\mp@subsup{\mathbb{R}}{}{2}
        {u,v}\mapsto\Gamma({u,v}) with endpoints}\Gamma(u)\mathrm{ and }\Gamma(v
```


Requirements of a Graph Layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\Gamma(u) \Gamma(v)$
■ orthogonal edges (with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization

Requirements of a Graph Layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\Gamma(u) \Gamma(v)$
■ orthogonal edges (with bends)
■ grid drawings
■ without crossing
2. Aesthetics to be optimized, e.g.

- crossing/bend minimization

Requirements of a Graph Layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\Gamma(u) \Gamma(v)$

- orthogonal edges (with bends)

■ grid drawings
■ without crossing
2. Aesthetics to be optimized, e.g.

- crossing/bend minimization
- edge length uniformity

Requirements of a Graph Layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\Gamma(u) \Gamma(v)$
■ orthogonal edges (with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area

Requirements of a Graph Layout

1. Drawing conventions and requirements, e.g.,

- straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
- orthogonal edges (with bends)

■ grid drawings

- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization

- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution

Requirements of a Graph Layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
■ orthogonal edges (with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution

Requirements of a Graph Layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$

- orthogonal edges (with bends)
- grid drawings
- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization

- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution
- symmetry/structure

Requirements of a Graph Layout

1. Drawing conventions and requirements, e.g.,

- straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
- orthogonal edges (with bends)
- grid drawings
- without crossing

2. Aesthetics to be optimized, e.g.

- crossing/bend minimization
- edge length uniformity
- minimizing total edge length/drawing area
- angular resolution

- symmetry/structure

3. Local Constraints, e.g.

■ restrictions on neighboring vertices (e.g., "upward").
■ restrictions on groups of vertices/edges (e.g., "clustered").

The Layout Problem

```
Graph visualization problem
in: Graph G
out: Drawing \Gamma of G such that
    \square drawing conventions are met,
    \square aesthetic criteria are optimized, while
    |}\mathrm{ some additional constraints are satisfied.
```


Graph Drawing Contest 2023

■ We have seen, it is not always clear how a nice graph visualizations looks like.

- Therefore, there is a contest about graph drawing co-located to the annual International Symposium on Graph Drawing and Network Visualization (GD).

■ September 20, 2023, Isola delle Femmine, Sicily, Italy https://mozart.diei.unipg.it/gdcontest/2023/

- Creative topic: Board-Game Recommendations

■ Live Challenge: Crossing-Minimal Point-Set Embedding

- given: a set of points on the grid and a graph

■ task: assign the vertices to the points

- objective function: minimize the number of crossings

■ Interested in implementing a program for the live challenge? May be done as a Praktikum!

