

Visualization of graphs

Partial visibility representation extension

With SPQR-trees

Jonathan Klawitter · Summer semester 2020

■ An **SPQR-tree** *T* is a decomposition of a planar graph *G* by **separation pairs**.

■ An **SPQR-tree** *T* is a decomposition of a planar graph *G* by **separation pairs**.

- An SPQR-tree *T* is a decomposition of a planar graph *G* by separation pairs.
- \blacksquare The nodes of T are of four types:
 - S nodes represent a series composition
 - P nodes represent a parallel composition
 - Q nodes represent a single edge
 - R nodes represent 3-connected (rigid) subgraphs

- An SPQR-tree *T* is a decomposition of a planar graph *G* by separation pairs.
- \blacksquare The nodes of T are of four types:
 - S nodes represent a series composition
 - P nodes represent a parallel composition
 - Q nodes represent a single edge
 - R nodes represent 3-connected (*rigid*) subgraphs
- A decomposition tree of a series-parallel graph is an SPQR-tree without R nodes.

- An SPQR-tree *T* is a decomposition of a planar graph *G* by separation pairs.
- \blacksquare The nodes of T are of four types:
 - S nodes represent a series composition
 - P nodes represent a parallel composition
 - Q nodes represent a single edge
 - R nodes represent 3-connected (rigid) subgraphs
- A decomposition tree of a series-parallel graph is an SPQR-tree without R nodes.
- \blacksquare T represents all planar embeddings of G.

- An SPQR-tree *T* is a decomposition of a planar graph *G* by separation pairs.
- \blacksquare The nodes of T are of four types:
 - S nodes represent a series composition
 - P nodes represent a parallel composition
 - Q nodes represent a single edge
 - R nodes represent 3-connected (rigid) subgraphs
- A decomposition tree of a series-parallel graph is an SPQR-tree without R nodes.
- lacksquare T represents all planar embeddings of G.
- lacksquare T can be computed in $\mathcal{O}(n)$ time. [Gutwenger, Mutzel '01]

Vertices correspond to horizontal open line segments called bars

- Vertices correspond to horizontal open line segments called bars
- **Edges** correspond to vertical unobstructed vertical sightlines

- Vertices correspond to horizontal open line segments called bars
- **Edges** correspond to vertical unobstructed vertical sightlines

- Vertices correspond to horizontal open line segments called bars
- Edges correspond to vertical unobstructed vertical sightlines
- What about unobstructed 0-width vertical sightlines? Do all visibilities induce edges?

- Vertices correspond to horizontal open line segments called bars
- Edges correspond to vertical unobstructed vertical sightlines
- What about unobstructed 0-width vertical sightlines? Do all visibilities induce edges?

Models.

- Vertices correspond to horizontal open line segments called bars
- Edges correspond to vertical unobstructed vertical sightlines
- What about unobstructed 0-width vertical sightlines? Do all visibilities induce edges?

Models.

■ Strong: Edge $uv \Leftrightarrow$ unobstructed 0-width vertical sightlines

- Vertices correspond to horizontal open line segments called bars
- Edges correspond to vertical unobstructed vertical sightlines
- What about unobstructed 0-width vertical sightlines? Do all visibilities induce edges?

Models.

- Strong: Edge $uv \Leftrightarrow$ unobstructed 0-width vertical sightlines
- **E**: Edge $uv \Leftrightarrow \epsilon$ wide vertical sightlines for $\epsilon > 0$

- Vertices correspond to horizontal open line segments called bars
- Edges correspond to vertical unobstructed vertical sightlines
- What about unobstructed 0-width vertical sightlines? Do all visibilities induce edges?

Models.

- Strong: Edge $uv \Leftrightarrow$ unobstructed 0-width vertical sightlines
- ε : Edge $uv \Leftrightarrow \varepsilon$ wide vertical sightlines for $\varepsilon > 0$
- Weak: Edge $uv \Rightarrow$ unobstructed vertical sightlines exists, i. e., any subset of *visible* pairs

Recognition problem.

Given a graph G, **decide** if there exists a weak/strong/ ε bar visibility representation ψ of G.

Recognition problem.

Given a graph G, **decide** if there exists a weak/strong/ ε bar visibility representation ψ of G.

Construction problem.

Given a graph G, construct a weak/strong/ ε bar visibility representation ψ of G when one exists.

Recognition problem.

Given a graph G, **decide** if there exists a weak/strong/ ε bar visibility representation ψ of G.

Construction problem.

Given a graph G, construct a weak/strong/ ε bar visibility representation ψ of G when one exists.

Partial Representation Extension (& Construction) problem.

Given a graph G and a **set of bars** ψ' **of** $V' \subset V(G)$, **decide** if there exists a weak/strong/ ε bar visibility representation ψ of G where $\psi|_{V'} = \psi'$ (and **construct** ψ when it exists).

Weak Bar Visibility.

- All planar graphs. [Tamassia & Tollis 1986; Wismath 1985]
- Linear time recognition and construction [T&T '86]
- Representation Extension is NP-complete [Chaplick et al. '14]

Weak Bar Visibility.

- All planar graphs. [Tamassia & Tollis 1986; Wismath 1985]
- Linear time recognition and construction [T&T '86]
- Representation Extension is NP-complete [Chaplick et al. '14]

Strong Bar Visibility.

■ NP-complete to recognize [Andreae '92]

ε -Bar Visibility.

- Planar graphs that can be embedded with all **cut vertices** on the outerface. [T&T 1986, Wismath '85]
- Linear time recognition and construction [T&T '86]
- What about Representation Extension?

Background

ε -Bar Visibility.

- Planar graphs that can be embedded with all **cut vertices** on the outerface. [T&T 1986, Wismath '85]
- Linear time recognition and construction [T&T '86]
- What about Representation Extension?

Let's see!

Recall that an **st-graph** is a planar digraph G with exactly one soure s and one sink t where s and t occur on the outer face of an embedding of G.

Recall that an **st-graph** is a planar digraph G with exactly one soure s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar digraph G with exactly one soure s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an **st-graph** is a planar digraph G with exactly one soure s and one sink t where s and t occur on the outer face of an embedding of G.

Note that testing whether an acyclic planar **di**graph has a weak bar visbility representation is NP-complete.

Observation.

Recall that an **st-graph** is a planar digraph G with exactly one soure s and one sink t where s and t occur on the outer face of an embedding of G.

Note that testing whether an acyclic planar digraph has a weak bar visbility representation is NP-complete.

This is upward planarity testing![Garg & Tamassia '01]

Observation.

Recall that an **st-graph** is a planar digraph G with exactly one soure s and one sink t where s and t occur on the outer face of an embedding of G.

 ε-bar visability testing is easily done via st-graph recognition.

Observation.

Recall that an **st-graph** is a planar digraph G with exactly one soure s and one sink t where s and t occur on the outer face of an embedding of G.

- ϵ -bar visability testing is easily done via st-graph recognition.
- Strong bar visability recognition...open?

Observation.

Recall that an **st-graph** is a planar digraph G with exactly one soure s and one sink t where s and t occur on the outer face of an embedding of G.

- ϵ -bar visability testing is easily done via st-graph recognition.
- Strong bar visability recognition...open?
- In a **rectangular** bar visability representation $\psi(s)$ and $\psi(t)$ span an enclosing rectangle.

Observation.

Theorem 1. [Chaplick et al. '18] **Rectangular** ε -Bar Visibility Representation Extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

Dynamic program via SPQR-trees

Theorem 1. [Chaplick et al. '18]

Rectangular ε -Bar Visibility Representation Extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

- Dynamic program via SPQR-trees
- **Easier version**: $\mathcal{O}(n^2)$

Theorem 1. [Chaplick et al. '18]

Rectangular ε -Bar Visibility Representation Extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

- Dynamic program via SPQR-trees
- **Easier version**: $\mathcal{O}(n^2)$

Theorem 2. [Chaplick et al. '18]

 ε -Bar Visibility Representation Ext. is NP-complete.

Reduction from Planar Monotone 3-SAT

Theorem 1. [Chaplick et al. '18]

Rectangular ε -Bar Visibility Representation Extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

- Dynamic program via SPQR-trees
- **Easier version**: $\mathcal{O}(n^2)$

Theorem 2. [Chaplick et al. '18]

 ε -Bar Visibility Representation Ext. is NP-complete.

Reduction from Planar Monotone 3-SAT

Theorem 3. [Chaplick et al. '18]

 ε -Bar Visibility Representation Ext. is NP-complete for (series-parallel) st-graphs when restricted to the **integer grid** (or if any fixed $\varepsilon > 0$ is specified).

■ Reduction from 3-Partition

Representation extension for st-graphs

Theorem 1'.

Rectangular ε -Bar Visibility Representation Extension can be solved in $\mathcal{O}(n^2)$ time for st-graphs.

Representation extension for st-graphs

Theorem 1'.

Rectangular ε -Bar Visibility Representation Extension can be solved in $\mathcal{O}(n^2)$ time for st-graphs.

- Simplify with assumption on y-coordinates
- Look at connection to SPRQ-trees – tiling
- Solve problems for S, P and R nodes
- Dynamic program via SPQR-tree

- Let G be an st-graph, and ψ' be a representation of $V' \subseteq V(G)$.
- Let $y:V(G)\to\mathbb{R}$ such that
 - for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.
 - for each edge (u, v), y(u) < y(v).

- Let G be an st-graph, and ψ' be a representation of $V' \subseteq V(G)$.
- Let $y:V(G)\to\mathbb{R}$ such that
 - for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.
 - for each edge (u, v), y(u) < y(v).

Lemma 1.

G has a representation extending ψ' iff G has a representation ψ extending ψ' where the y-coordinates of the bars are as in y.

- Let G be an st-graph, and ψ' be a representation of $V' \subseteq V(G)$.
- Let $y:V(G)\to\mathbb{R}$ such that
 - for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.
 - for each edge (u, v), y(u) < y(v).

Lemma 1.

G has a representation extending ψ' iff G has a representation ψ extending ψ' where the y-coordinates of the bars are as in y.

Proof idea. The relative positions of **adjacent** bars must match the order given by y. So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom-to-top.

- Let G be an st-graph, and ψ' be a representation of $V' \subseteq V(G)$.
- Let $y:V(G)\to\mathbb{R}$ such that
 - for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.
 - for each edge (u, v), y(u) < y(v).

Lemma 1.

G has a representation extending ψ' iff G has a representation ψ extending ψ' where the y-coordinates of the bars are as in y.

Proof idea. The relative positions of **adjacent** bars must match the order given by y.

So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom-to-top.

We can now assume all y-coordinates are given!

Lemma 2. The SPQR-tree of an st-graph G induces a recursive **tiling** of any ε -bar visibility representation of G.

Lemma 2. The SPQR-tree of an st-graph G induces a recursive **tiling** of any ε -bar visibility representation of G.

Tiles

Convention. Orange bars are from the partial representation

Tiles

Convention. Orange bars are from the partial representation

Observation.

The bounding box (tile) of any solution ψ , contains the bounding box of the partial representation.

Tiles

Convention. Orange bars are from the partial representation

Observation.

The bounding box (tile) of any solution ψ , contains the bounding box of the partial representation.

How many different tiles can we really have?

- Right **F**ixed due to the orange bar
- Left Loose due to the orange bar

- Left **F**ixed due to the orange bar
- Right Loose due to the orange bar

- Right **F**ixed due to the orange bar
- Left Loose due to the orange bar

- Left **F**ixed due to the orange bar
- Right Loose due to the orange bar

- Right **F**ixed due to the orange bar
- Left Loose due to the orange bar

- Left **F**ixed due to the orange bar
- Right Loose due to the orange bar

- Left **F**ixed due to the orange bar
- Right Loose due to the orange bar

Four different types: FF, FL, LF, LL

- Children of P node with prescribed bars occur in given left-to-right order
- But there might be some gaps...

- Children of P node with prescribed bars occur in given left-to-right order
- But there might be some gaps...

P nodes

- Children of P node with prescribed bars occur in given left-to-right order
- But there might be some gaps...

Idea.

Greedily *fill* the gaps by preferring to "stretch" the children with prescribed bars.

P nodes

- Children of P node with prescribed bars occur in given left-to-right order
- But there might be some gaps...

Idea.

Greedily *fill* the gaps by preferring to "stretch" the children with prescribed bars.

Outcome.

After processing, we must know the valid types for the corresponding subgraphs.

This fixed vertex means we can only make a Fixed-Fixed representation!

Here we have a chance to make all (LL, FL, LF, FF) types.

How does this work?

This fixed vertex means we can only make a Fixed-Fixed representation!

R nodes

- for each child
 - 2 variables encoding fixed/loose type of its tile
 - restriction clauses to subsets of {FF,FL,LF,LL}

- for each child
 - 2 variables encoding fixed/loose type of its tile
 - restriction clauses to subsets of {FF,FL,LF,LL}

- for each face
 - 2 variables encoding position of the splitting line
 - consistency clauses

- for each child
 - 2 variables encoding fixed/loose type of its tile
 - restriction clauses to subsets of {FF,FL,LF,LL}

- for each face
 - 2 variables encoding position of the splitting line
 - consistency clauses

- ordering clauses
 - quadratically many

- for each child
 - 2 variables encoding fixed/loose type of its tile
 - restriction clauses to subsets of {FF,FL,LF,LL}

- for each face
 - 2 variables encoding position of the splitting line
 - consistency clauses

- ordering clauses
 - quadratically many
 - tricky part: use only $O(n \log^2 n)$ clauses

Theorem 2.

 ε -Bar Visibility Representation Ext. is NP-complete.

■ Reduction from Planar Monotone 3-SAT

Theorem 2.

 ε -Bar Visibility Representation Ext. is NP-complete.

■ Reduction from Planar Monotone 3-SAT

Wire Transmission

transmitting true and false

Wire Transmission

transmitting true and false

Remark. The following details omit the copying gadgets used for multiple occurrences of the variables

NOT gate

NOT gate

Note: the bars of x and y cannot occur between a and b since a and b are not supposed to be adjacent to either of \bot and \top

sublte point: only need to guarantee that "false" values trasmit

sublte point: only need to guarantee that "false" values trasmit

Theorem 3.

 ε -Bar Visibility Representation Ext. is NP-complete for (series-parallel) st-graphs when restricted to the **integer grid** (or if any fixed $\varepsilon > 0$ is specified).

Reduction from 3-Partition

Theorem 3.

 ε -Bar Visibility Representation Ext. is NP-complete for (series-parallel) st-graphs when restricted to the **integer grid** (or if any fixed $\varepsilon > 0$ is specified).

3-Partition.

Input: A set of positive integers $w, a_1, a_2, \ldots, a_{3m}$ such that for each $i = 1, \ldots, 3m$, we have $\frac{w}{4} < a_i < \frac{w}{2}$.

Question: Can $\{a_1, \ldots, a_{3m}\}$ be partitioned into m triples such that the total sum of each triple is exactly w?

Strongly NP-complete [Garey & Johnson '79]

3-Partition.

Input: A set of positive integers $w, a_1, a_2, \ldots, a_{3m}$ such that for each $i = 1, \ldots, 3m$, we have $\frac{w}{4} < a_i < \frac{w}{2}$.

Question: Can $\{a_1, \ldots, a_{3m}\}$ be partitioned into m triples such that the total sum of each triple is exactly w?

$$a_i \rightarrow$$

3-Partition.

Input: A set of positive integers $w, a_1, a_2, \ldots, a_{3m}$ such that for each $i = 1, \ldots, 3m$, we have $\frac{w}{4} < a_i < \frac{w}{2}$.

Question: Can $\{a_1, \ldots, a_{3m}\}$ be partitioned into m triples such that the total sum of each triple is exactly w?

3-Partition.

Input: A set of positive integers $w, a_1, a_2, \ldots, a_{3m}$ such that for each $i = 1, \ldots, 3m$, we have $\frac{w}{4} < a_i < \frac{w}{2}$.

Question: Can $\{a_1, \ldots, a_{3m}\}$ be partitioned into m triples such that the total sum of each triple is exactly w?

Discussion

- rectangular ε -Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- \blacksquare ε -Bar Visibility Representation Extension is NP-complete.
- ε -Bar Visibility Representation Extension is NP-complete for (series-parallel) st-graphs when restricted to the *Integer Grid* (or if any fixed $\varepsilon > 0$ is specified).

Discussion

- rectangular ε -Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- \blacksquare ε -Bar Visibility Representation Extension is NP-complete.
- ε -Bar Visibility Representation Extension is NP-complete for (series-parallel) st-graphs when restricted to the *Integer Grid* (or if any fixed $\varepsilon > 0$ is specified).

Open Problems:

- Can <u>rectangular</u> ε -Bar Visibility Representation Extension can be solved in polynomial time on st-graphs? DAGs?
- $lacktriang{lacktriang}$ Can **Strong** Bar Visibility Recognition / Representation Extension can be solved in polynomial time on st-graphs?

Literature

Main source:

■ [Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18] The Partial Visibility Representation Extension Problem

Referenced papers:

- [Gutwenger, Mutzel '01] A Linear Time Implementation of SPQR-Trees
- [Wismath '85] Characterizing bar line-of-sight graphs
- [Tamassia, Tollis '86] Algorithms for visibility representations of planar graphs
- [Andreae '92] Some results on visibility graphs
- [Chaplick, Dorbec, Kratchovíl, Montassier, Stacho '14] Contact representations of planar graphs: Extending a partial representation is hard