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Orthogonal layout — applications
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Definition.
A drawing I" of a graph G = (V, E) is called orthogonal if

M veritices are drawn as points on a grid,
. B each edge is represented as a sequence of alternating
l horizontal and vertical segments, and

= pairs of edges are disjoint or cross orthogonally.
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Orthogonal layout — definition

‘Definition.

A drawing I" of a graph G = (V, E) is called orthogonal if

M veritices are drawn as points on a grid,

. B each edge is represented as a sequence of alternating

— l horizontal and vertical segments, and

= pairs of edges are disjoint or cross orthogonally.

Observations. Planarisation. Aesthetic criteria.

B Edges lie on grid = B Fix embedding B Number of bends
bends lie on grid points ™ Crossings become B Length of edges

B Max degree of each vertices B Width, height, area

vertex is at most 4 N B Monotonicity of edges
m Otherwise _T_‘: _*: | | "
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V ={v1,v2,03,04}
E = {v1v5, 0103, 0104, U203, U204 }
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Topology - Shape - Metrics
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Idea.
Describe orthogonal drawing combinatorically.



Orthogonal representation

Idea.
Describe orthogonal drawing combinatorically.

Definitions.
Let G = (V, E) be a plane graph with faces F and outer face fg.



Orthogonal representation

Idea.
Describe orthogonal drawing combinatorically.

Definitions.
Let G = (V, E) be a plane graph with faces F and outer face fg.

B Let e be an edge with the face f to the right.

An edge description of e wrt f is a triple (e, J, a) where
m J is a sequence of {0,1}* (0 = right bend, 1 = left bend)
m «is angle € {Z, 7, 37,271} between e and next edge ¢’
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Orthogonal representation

Idea.
Describe orthogonal drawing combinatorically.

Definitions.

Let G = (V, E) be a plane graph with faces F and outer face fg.

B Let e be an edge with the face f to the right.

An edge description of e wrt f is a triple (e, J, a) where
m J is a sequence of {0,1}* (0 = right bend, 1 = left bend)
m «is angle € {Z, 7, 37,271} between e and next edge ¢’

B A face representation H(f) of f is a clockwise ordered
sequence of edge descriptions (e, d, a).

B An orthogonal representation H(G) of G is defined as

H(G) = 1H(f) | f € F}.




Orthogonal representation — example

H(fo) = ((e1,11, %), (es, 111, 37), (e4, D, 77), (e3,D, 1), (€2, D, F))
H(f1) = ((e1,00, ), (e2,D, 5). (6, 00, 77))
H(f2) = ((e5,000, %), (e, 11, 5 ), (e3,D, 71), (€4, D, 7))

ombinatoria rawing o !
€1 $
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Orthogonal representation — example

H(fo) = ((e1,11, %), (es, 111, 37), (e4, D, 71), (e3,D, 77), (€2, D,

H(f1) = ((e1,00, ), (e2,D, 5). (6, 00, 77))
H(f2) = ((e5,000, %), (e, 11, 5 ), (e3,D, 71), (€4, D, 7))
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Orthogonal representation — example

H(fo) = ((e1,11, %), (es, 111, 37), (e4, D, 77), (e3,D, 1), (€2, D, F))
H(f1) = ((e1,00, ), (e2,D, 5). (6, 00, 77))
H(f2) = ((e5,000, %), (e, 11, 5 ), (e3,D, 71), (€4, D, 7))

fo 0 0
7T
s 1 7T37T§€27z€3 7T €4 31

—t
N
—t
p—t

1 €5 1

Concrete coordinates are not fixed yet!



Correctness of an orthogonal representation

(H1) H(G) corresponds to F, fj.

1 €1 1
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Correctness of an orthogonal representation
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1
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Correctness of an orthogonal representation

(H1) H(G) corresponds to F, fj.
(H2) For an edge {u, v} shared by faces f and ¢ with

e
(1,0),81,01) € H(f) and ((0,4),0,00) € H(g)  '[50] fo
sequence 071 Is reversed and inverted 05. 1_%% 3n%82 7 €3 mes 3r
(H3) Let |d|g (resp. |6]1) be the number of zeros 0 31 2 gF Tog
(resp. ones) in § and r = (e, 0, ). L 0 2
For C(r) := |6]o — |6]; +2 — 2a/7 it holds that: Lot
(4 if f = f - > 0
Y C(r) =K 5

reH(f) \—|—4 otherwise.
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(H1) H(G) corresponds to F, fj.
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Correctness of an orthogonal representation

(H1) H(G) corresponds to F, fj.

(H2) For an edge {u, v} shared by faces f and ¢ with

((u,v),61,01) € H(f) and ((v,u),d2,a2) € H(Q)
sequence 01 is reversed and inverted 05.

(H3) Let |d|g (resp. |6]1) be the number of zeros
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Bend minimisation with given embedding
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Geometric bend minimisation.

Given: ® Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face fg

Find:  Orthogonal drawing with minimum number of bends
that preserves the embedding.
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Compare with the following variation.

‘Combinatorial bend minimisation.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face fg

Find:  Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

.




Combinatorial bend minimisation

‘Combinatorial bend minimisation.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face fg

Find:  Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

\.




Combinatorial bend minimisation

‘Combinatorial bend minimisation.
Given: m Plane graph G = (V, E) with maximum degree 4
® Combinatorial embedding F and outer face fg

Find:  Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

.

Idea.
Formulate as a network flow problem:

B a unit of flow = L5
B vertices -5 faces (# £75 per face)

B faces -5 neighbouring faces (# bends toward the
neighbour)



Reminder: s-t flow network

Flow network (D = (V, A);s, t; u) with
B directed graph D = (V, A)

B edge capacity u: A — IR(J)r

B sources €V, sinkteV

A function X: A — R is called s-i-flow, if:

0< X(i,j)<u(i,j) V(j) eA
Y X(i,j)— Y X(ji)=0 Vie V\{s,t}

(i,j)eA (ji)eA

(1)
(2)

10



Reminder: general tlow network

Flow network (D = (V, A); ¢; u; b) with

B directed graph D = (V, A)

B edge lower bound £: A — IR(J)r

B edge capacity u: A — IRSr

B node production/consumption b: V. — R with

>icV b(i) —

A function X: A — IR{ is called valid flow, if:

5(' ]') < X(i,j) < u(i, ]') v(i.j) € A

Y X(i,] Y X(j,i)=10b(i VieV
(i,j)eA (ji)eA

(3)
(4)

11



Problems for flow networks

'Valid flow problem.
Find a valid flow X: A — Ry, i.e., such that
B lower bounds /(e) and capacities u(e) are respected
(inequalities (3)) and

B consumption/production b(i) satisfied (inequalities (4)).

.

12 -
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Additionally provided:

B Cost function cost: A — IR(J)r and
cost(X) 1= }Y(i.jyea cost(i, j) - X(i, f)
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Problems for flow networks

'Valid flow problem.

Find a valid flow X: A — Ry, i.e., such that

B lower bounds /(e) and capacities u(e) are respected
(inequalities (3)) and

B consumption/production b(i) satisfied (inequalities (4)). )

\.

Additionally provided:

B Cost function cost: A — IR(J)r and
cost(X) 1= }Y(i.jyea cost(i, j) - X(i, f)

‘Miminum cost flow problem.
Find a valid flow X: A — IR(J)F, that minimises cost function
cost(X) (over all valid flows).

N
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Define flow network N(G) = ((VUF, A); ¢; u; b; cost):

13 -



Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):
B A={(vf), € VXF]|v between edges e,¢’ of of}

13 -



Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):
B A={(vf), € VXF]|v between edges e,¢’ of of}

13 -



Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):
B A={(vf), € VXF]|v between edges e,¢’ of of}

13 -



Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):
B A={(vf), € VXF]|v between edges e,¢’ of of}

Directed multigraph!

13 -



Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):

mBA={(vf),, € VXF]|v between edges ¢,¢’ of 9f} U
{ € Fx F | f, g have common edge e}

Directed multigraph!

13 -



Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):

mBA={(vf),, € VXF]|v between edges ¢,¢’ of 9f} U
{ € Fx F | f, g have common edge e}

Directed multigraph!

13 -



Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):

mBA={(vf),, € VXF]|v between edges ¢,¢’ of 9f} U
{ € Fx F | f, g have common edge e}

Directed multigraph!

13 -



Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):

mBA={(vf),, € VXF]|v between edges ¢,¢’ of 9f} U
{ € Fx F | f, g have common edge e}

Bb(v)=4 YoeV

13 -



13-10

Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):

mBA={(vf),, € VXF]|v between edges ¢,¢’ of 9f} U
{ € Fx F | f, g have common edge e}

Bb(v)=4 YoeV
—4 it f = fo,

m) — —2d
(f) “6G (f) < +4 otherwise
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Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):

mBA={(vf),, € VXF]|v between edges ¢,¢’ of 9f} U
{ € Fx F | f, g have common edge e}

Bb(v)=4 YoeV

/

4 iff=fo ¢ = Lwblw) =0

m) — —2d
(f) “6G (f) < +4 otherwise
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Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):

mBA={(vf),, € VXF]|v between edges ¢,¢’ of 9f} U
{ € Fx F | f, g have common edge e}

Bb(v)=4 YoeV
(—4 ff=fg, ¢ = Luwb(w)=0

m )b = —2d Euler
(f) egg(f) < +4 otherwise =




Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):

mBA={(vf),, € VXF]|v between edges ¢,¢’ of 9f} U
{ € Fx F | f, g have common edge e}

Bb(v)=4 YoeV

B b(f) = —2degg(f) + ¢

V(v,f)e A,veV,feF

v cA f,geF

=0
(Euler)

—4 if f=fo, } = Yw b(w)

+4 otherwise

(o) = <X(o.f) < = u(o,f)
cost(v, f) =
(fg)= <X(fig)< =ulf.g

cost(f, §) =

13-13



Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):

mBA={(vf),, € VXF]|v between edges ¢,¢’ of 9f} U
{ € Fx F | f, g have common edge e}

Bb(v)=4 YoeV

=0
(Euler)

(4 i f=f, } = Yo b(w)

\ +4 otherwise

B b(f) = —2degg(f) + ¢
V(v,f)e A,veV,feF l(v, f):=1

V(s €EAfgEF  Uf.g) =

13- 14



Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):

mBA={(vf),, € VXF]|v between edges ¢,¢’ of 9f} U
{ € Fx F | f, g have common edge e}

Bb(v)=4 YoeV

=0
(Euler)

m b(f) = —2deg(f) +4 ¢ T/ =fo } = Luwb(®)

\ +4 otherwise

V(v,f)e A,veV,feF l(v,f):=1<X(v,f) <4=:u(v,f)
cost(v, f) =0

v cAf.geF  U(f,8):=0<X(f,g) <oo=:u(fg)
cost(f,g) =1

13-15
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Flow network for bend minimisation

Define flow network N(G) = ((VUF, A); ¢; u; b; cost):

mBA={(vf),, € VXF]|v between edges ¢,¢’ of 9f} U
{ € Fx F | f, g have common edge e}

Bb(v)=4 YoeV

(4 i f=f, = Lo b(w) =0

m b(f) = —2degc(f) +

\ +4 otherwise

V(v,f)e A,veV,feF (v, f):=1<X(v,f)K4=:u(v,f)
cost(v, f) =0

v €A f.g€F  Uf g)=0<X(f g) K oo=u(fg)
cost(f,g) =1

We model only the
K number of bends. —l_\_\—
Why is it enough? I:I —
—» Exercise




Flow network example
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Flow network example

fo
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Flow network example

fo
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Flow network example
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Flow network example

fo

14
o

Legend

vV O

F O
¢ /u/cost
1/4/0

v xF o209
0/00/1

FxXF>O ——»

4 = b-value
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Flow network example
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‘Theorem. [Tamassia '87]
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representation H(G) with k bends iff the flow network
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Proof.

< Given valid flow X in N(G) with cost k.
Construct orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.
B Show properties (H1)—(H4).
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Proof.
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Construct orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.
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Bend minimisation — result

‘Theorem. [Tamassia '87]

A plane graph (G, F, fo) has a valid orthogonal
representation H(G) with k bends iff the flow network
N(G) has a valid flow X with cost k.

. J

Proof.
< Given valid flow X in N(G) with cost k.
Construct orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.

B Show properties (H1)—(H4).

H1) H(G) matches F, fg

H2) Bend order inverted and reversed on opposite sides
H3) Angle sum of f = +4
H4) Total angle at each vertex = 27

AN AN AN /N

v
v
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Bend minimisation — result

‘Theorem. [Tamassia '87]
A plane graph (G, F, fo) has a valid orthogonal

N(G) has a valid flow X with cost k.

.

representation H(G) with k bends iff the flow network

J

Proof.

=- Given an orthogonal representation H(G) with k bends.

Construct valid flow X in N(G) with cost k.

B Define flow X: A — Ry
B Show that X is a valid flow and has cost k.

(N1) X(vf)=1/2/3/4

(N2) X(fg) := |0¢¢]0, (€,0¢4, x) describes e = fq from f

(N3) capacities, deficit/demand coverage
(N4) cost = k
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Bend minisation — remarks

B From Theorem follows that the combinatorial orthogonal
bend minimisation problem for plane graphs can be solved
using an algorithm for the Min-Cost-Flow problem.
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Bend minisation — remarks

B From Theorem follows that the combinatorial orthogonal
bend minimisation problem for plane graphs can be solved
using an algorithm for the Min-Cost-Flow problem.

B This special flow problem for a planar network N(G) can
be solved In O(Tl3/2) time. [Cornelsen, Karrenbauer GD 2011]

B Bend minimization without a given combinatorial
embedding is an NP-hard problem. [Garg, Tamassia SIAM J. Comput. 2001]

16 -



17

Topology - Shape - Metrics

Three-step approach:
[Tamassia SIAM J. Comput. 1987]

V = {v1,v2,03,04} 4

E = {0102, 0103, U104, V203, V204 } 1 ’—13
combinatorial | 2
embedding/ Panar

L orthogonal ini
planarisation 8 area mini-
drawing misation

VNG > minimisation [ a—

reduce
crossings

] ¢------ <3
orthogonal | |
1 2 representation b -i- -----------
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Compaction

(Compaction problem.

Given: m Plane graph G = (V, E) with maximum degree 4
® Orthogonal representation H(G)

kFind: Compact orthogonal layout of G that realizes H(G)

J

Special case.
All faces are rectangles.

— Guarantees possible B minimum total edge length
B minimum area
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Compaction

(Compaction problem.

Given: m Plane graph G = (V, E) with maximum degree 4
® Orthogonal representation H(G)

kFind: Compact orthogonal layout of G that realizes H(G)

J

Special case.
All faces are rectangles.

— Guarantees possible B minimum total edge length
B minimum area

Properties.

B bends only on the outer face

B opposite sides of a face have the same length

Idea.
B Formulate flow network for horizontal /vertical compaction

18 -



Flow network for edge length assignment

Definition.
Flow Network Nyor = ((Whers Anor ); £; t; b; cost)

Whor = F\ {fO} U {S't} =

Anor = {(f,8) | f. g share a horizontal segment and f
lies below ¢} U {(t,s)}

l(a) =1 Vae€ Apor
u(a) =0 Va € Anor
cost(a) =1 Va € Anor
b(f):O Vf € Whor

19 -
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Flow network for edge length assignment

Definition.
Flow Network Nyor = ((Whers Anor ); £; t; b; cost)

Whor = F\ {fO} U {S't} =

Anor = {(f,8) | f. g share a horizontal segment and f
lies below ¢} U {(t,s)}

l(a) =1 Vae€ Apor
u(a) =0 Va € Anor
cost(a) =1 Va € Anor
b(f) =0 Vf € Wher 5

s and t represent lower and
upper side of fo




Flow network for edge length assignment

Definition.
Flow Network Nyer = ((Wyer, Aver); ¢; u; b; cost)

Weer = F\{fo} U {s, t}
Aver ={(f,8) | f, g share a vertical segment and f lies

to the left of g} U{(¢,s)}
l(a) =1 Va & Ayer
u(a) =00 Va € Ayer
cost(a) =1 Va € Aver
b(f) =0 Vf & Wyer

20



Compaction — result

‘Theorem.
Valid min-cost-flows for N}, and Nyer exists iff

corresponding edge lenghts induce orthogonal drawing.
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Compaction — result

‘Theorem.
Valid min-cost-flows for N}, and Nyer exists iff

corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?
B [Xhor(f,s)] and |Xver(t,s)|?

O ZaeAhor Xhor(a) + ZaeAver Xver(a)
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Compaction — result

What if not all
faces rectangular?

‘Theorem.
Valid min-cost-flows for N}, and Nyer exists iff

corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?
B [Xhor(f,s)] and |Xver(t,s)|?

O ZaeAhor Xhor(a) + ZaeAver Xver(a)
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Refinement of (G, H) — inner face
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Refinement of (G, H) — inner face
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Refinement of (G, H) — inner face
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Refinement of (G, H) — inner face
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Refinement of (G, H) — inner face
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Refinement of (G, H) — outer face
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Refinement of (G, H) — outer face
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Refinement of (G, H) — outer face
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Refinement of (G, H) — outer face
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Refinement of (G, H) — outer face

I3

Area minimised?
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Refinement of (G, H) — outer face

I3

Area minimized? No!
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Refinement of (G, H) — outer face

Area minimized? No!
¢ But we get bound O((n + b)?) on the area.
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Refinement of (G, H) — outer face

Area minimized? No!
¢ But we get bound O((n + b)?) on the area.

Compaction for given orthogonal representation is in general NP-hard.
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Compactifying is NP-hard [Patrignani '01]

B Reduction via SAT

B n variables xq, ..., Xn

B m clauses Cq, ..., Ci;

B each clause: Disjunction of literals x;/X;
eg.: C1 =x1VXxyVx3

BIsd®=Ci ANCyA...NC,, satisfiable, i.e., is there an
assignment to the variables satisfying every clause?
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Compactifying is NP-hard [Patrignani '01]

B Reduction via SAT

B n variables x1, ..., x,

B m clauses Cq,...,Cyy;

B each clause: Disjunction of literals x;/X;
eg.: C1 =x1VXxyVx3

BIsd®=Ci ANCyA...NC,, satisfiable, i.e., is there an
assignment to the variables satisfying every clause?

B Find an appropriate value K such that
(G, H) can be drawn in K area < @ is satisfiable.

B High level structure of (G, H)
®m boundary
m belts, and pistons
B clause gadgets
m variable gadgets

24 -



Boundary, belt, and “piston” gadget

(w x h)-rectangle
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Boundary, belt, and “piston” gadget

wﬁi%irﬁﬂ%
i i




Boundary, belt, and “piston” gadget

*—o—

|

SO

|| ]

I

Y
|

T




Boundary, belt, and “piston” gadget

i?ﬂi‘%ﬁ?ir‘ﬂﬂlr
|
T

a-




Clause gadgets




Clause gadgets

Example:
Ci=x2VXxa

Co =x1VXxoVx3
C3 — X5

Cqs = x4V X5

far 1ir i

X X %,

26 -
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Clause gadgets

Example:
Ci=x2VXxag

Co =x1VXxoVx3
C3 — X5

Cqs = x4V X5

far 1ir i

insert (21 — 1)-chain
through each clause
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Clause gadgets

Example:
Ci=x2VXxag

Co =x1VXxoVx3
C3 — X5

Cqs = x4V X5

far 1ir i

insert (21 £ 1)3chain
through each clause

26 -
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Complete reduction

S Pick
el | K=(9n+2)-(9m+7)

o} |9+ 7




Complete reduction

S Pick
el | K=(9n+2)-(9m+7)

2|l Jom +7
Then:
(G, H) has an area K
drawing
~

d satisfiable




| iterature

B [GD Ch. 5] for detailed explanation

B [Tam87] Tamassia “On embedding a graph in the grid with the minmum
number of bends” 1987 — original paper on flow for bend minimisation

m [Pat01] Patrignani “On the complexity of orthogonal compaction”' 2001-
NP-hardness proof of compactification
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