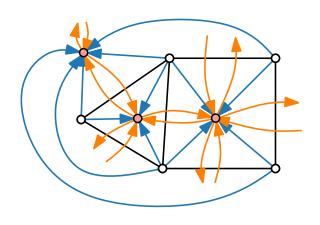


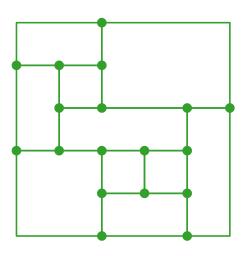
Visualisation of graphs

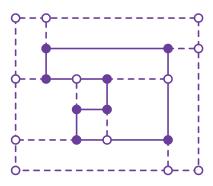
Orthogonal layouts

Flow methods

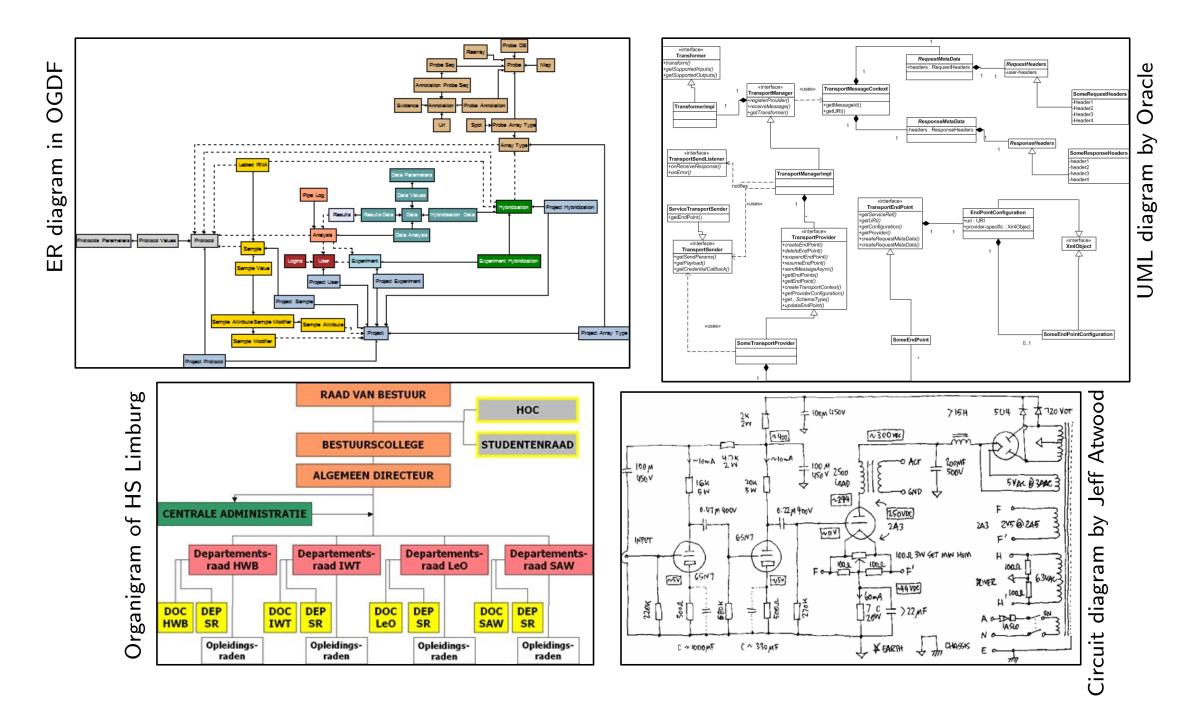
Jonathan Klawitter · Summer semester 2020

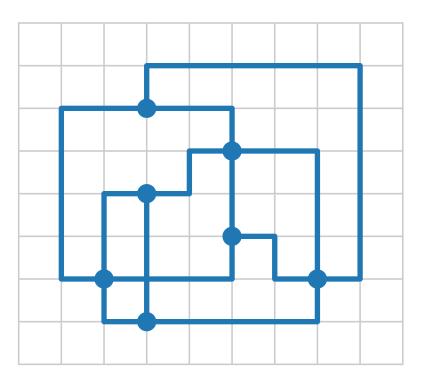


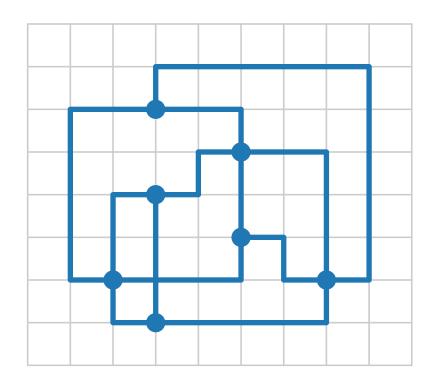




Orthogonal layout – applications



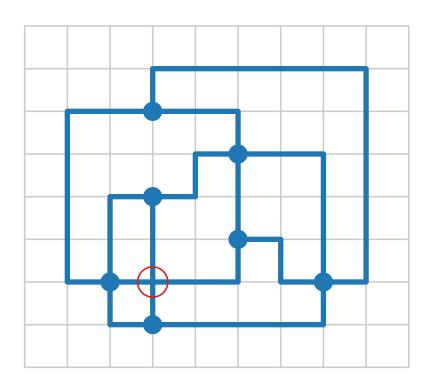




Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

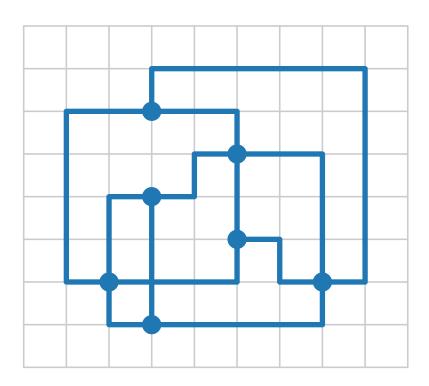
- veritices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.



Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- veritices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.



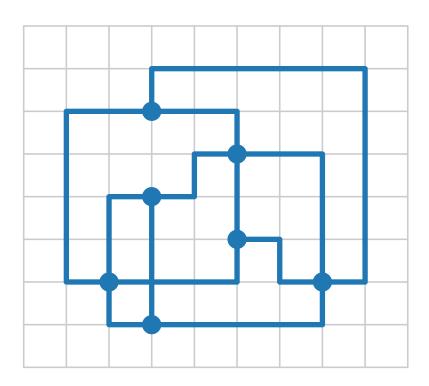
Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- veritices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒bends lie on grid points
- Max degree of each vertex is at most 4



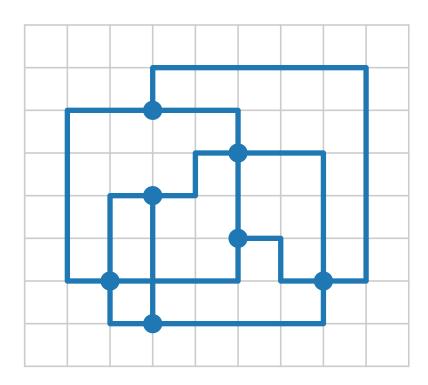
Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- veritices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒bends lie on grid points
- Max degree of each vertex is at most 4
 - Otherwise ———



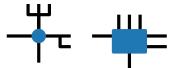
Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- veritices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

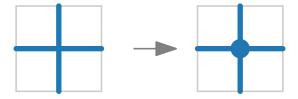
Observations.

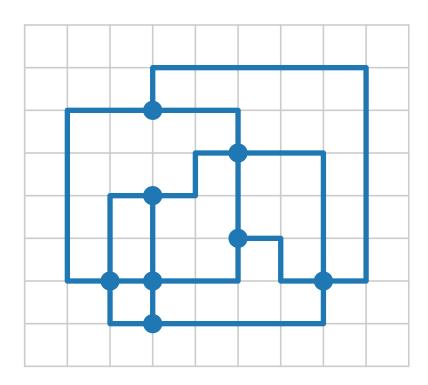
- Edges lie on grid ⇒bends lie on grid points
- Max degree of each vertex is at most 4
 - Otherwise



Planarisation.

- Fix embedding
- Crossings become vertices





Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- veritices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

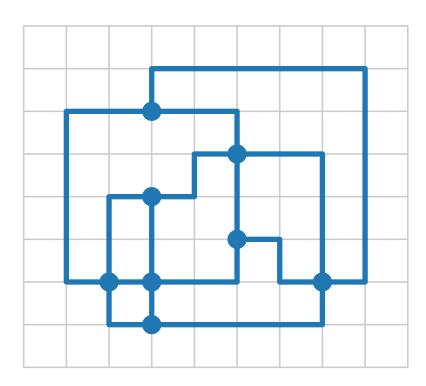
Observations.

- Edges lie on grid ⇒bends lie on grid points
- Max degree of each vertex is at most 4
 - Otherwise

Planarisation.

- Fix embedding
- Crossings become vertices





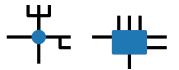
Definition.

A drawing Γ of a graph G = (V, E) is called **orthogonal** if

- veritices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical segments, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on grid ⇒bends lie on grid points
- Max degree of each vertex is at most 4
 - Otherwise



Planarisation.

- Fix embedding
- Crossings become vertices

Aesthetic criteria.

- Number of bends
- Length of edges
- Width, height, area
- Monotonicity of edges
- ..

Three-step approach:

[Tam87]

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

Three-step approach:

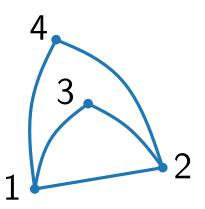
[Tam87]

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

reduce crossings

combinatorial embedding/planarisation



Three-step approach:

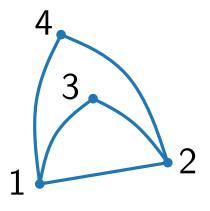
[Tam87]

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

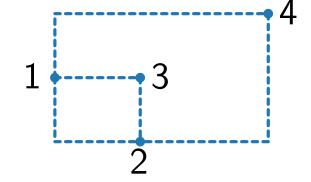
reduce crossings

combinatorial embedding/planarisation



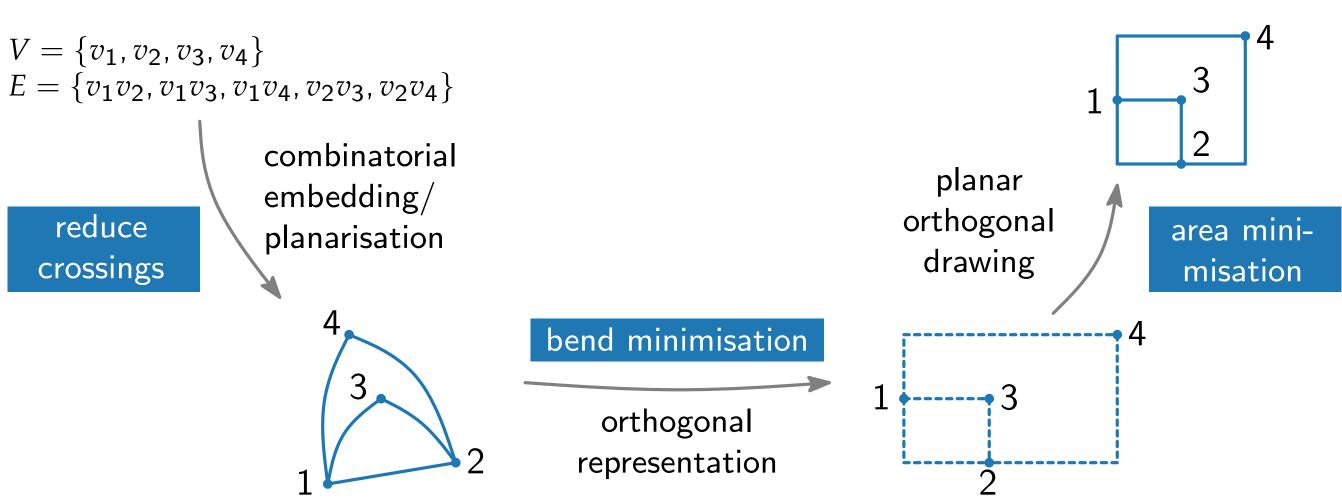
bend minimisation

orthogonal representation



Three-step approach:

[Tam87]



Idea.

Describe orthogonal drawing combinatorically.

Idea.

Describe orthogonal drawing combinatorically.

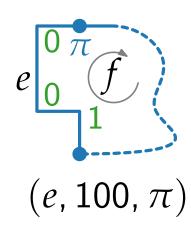
Definitions.

Idea.

Describe orthogonal drawing combinatorically.

Definitions.

- \blacksquare Let e be an edge with the face f to the right.
 - An edge description of e wrt f is a triple (e, δ, α) where
 - lacksquare δ is a sequence of $\{0,1\}^*$ $(0=\mathrm{right}\ \mathrm{bend},\ 1=\mathrm{left}\ \mathrm{bend})$
 - lpha is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'

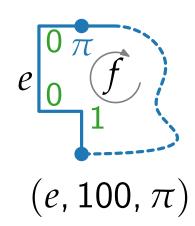


Idea.

Describe orthogonal drawing combinatorically.

Definitions.

- Let e be an edge with the face f to the right.
 - An edge description of e wrt f is a triple (e, δ, α) where
 - lacksquare δ is a sequence of $\{0,1\}^*$ (0 = right bend, 1 = left bend)
 - lpha is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'
- A face representation H(f) of f is a clockwise ordered sequence of edge descriptions (e, δ, α) .



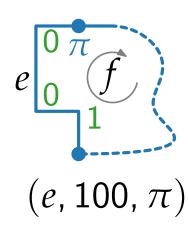
Idea.

Describe orthogonal drawing combinatorically.

Definitions.

- Let e be an edge with the face f to the right. An edge description of e wrt f is a triple (e, δ, α) where
 - lacksquare δ is a sequence of $\{0,1\}^*$ (0 = right bend, 1 = left bend)
 - lpha is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'
- A face representation H(f) of f is a clockwise ordered sequence of edge descriptions (e, δ, α) .
- \blacksquare An orthogonal representation H(G) of G is defined as

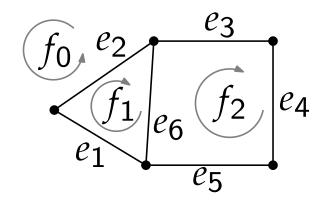
$$H(G) = \{ H(f) \mid f \in F \}.$$



$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

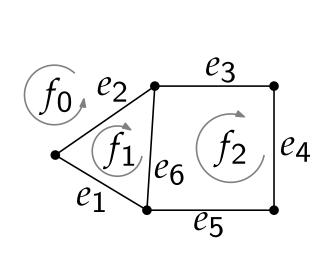


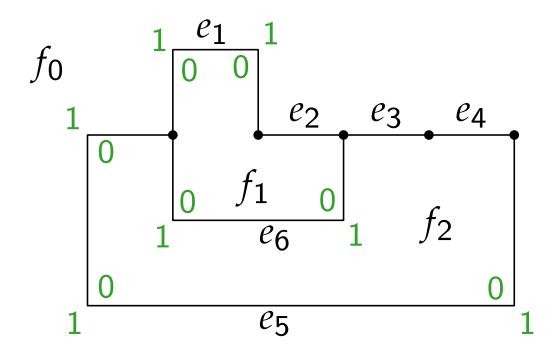
Combinatorial "drawing" of H(G)?

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

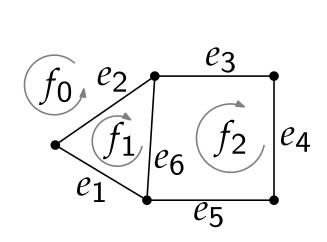


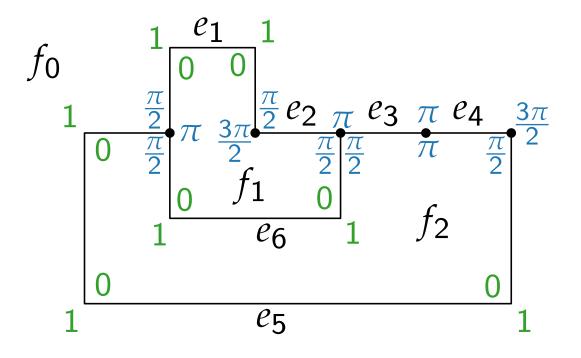


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

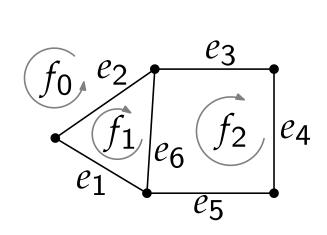


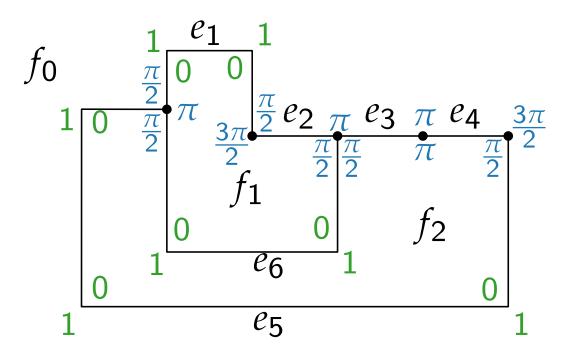


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

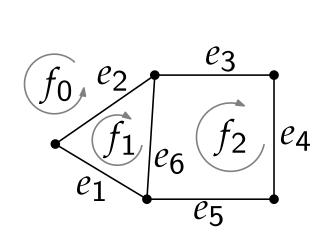


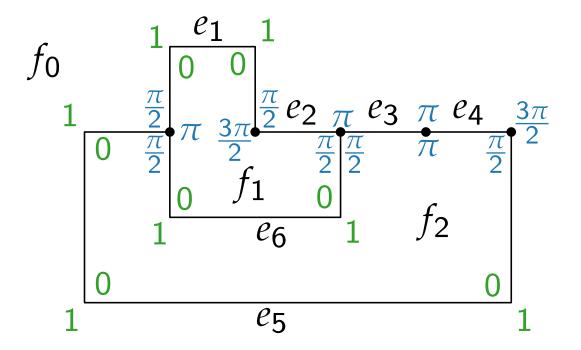


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

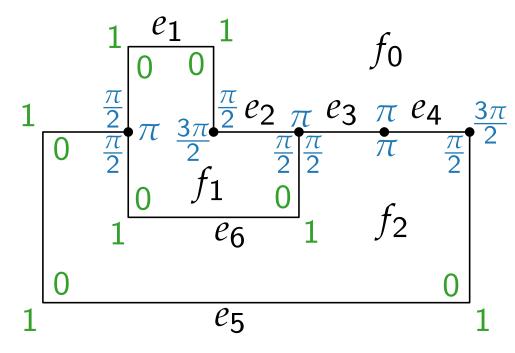
$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$



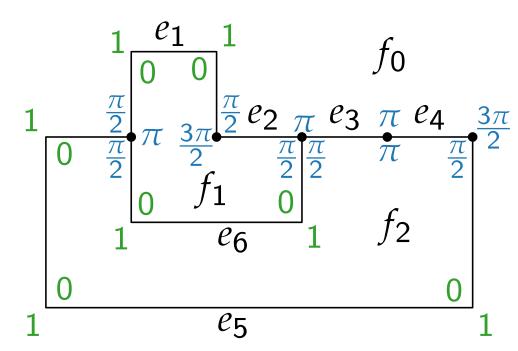


Concrete coordinates are not fixed yet!

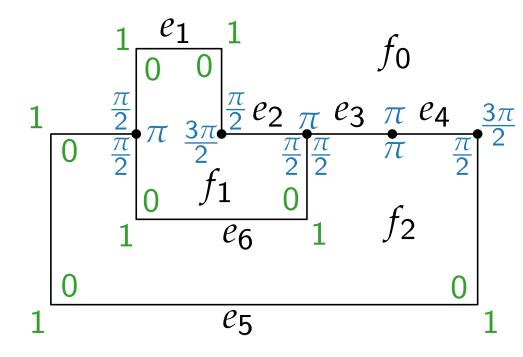
(H1) H(G) corresponds to F, f_0 .



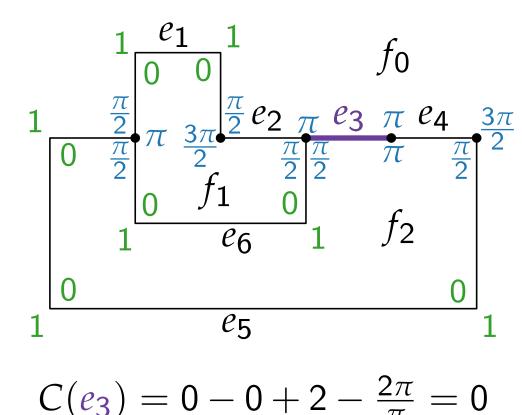
- (H1) H(G) corresponds to F, f_0 .
- (H2) For an edge $\{u,v\}$ shared by faces f and g with $((u,v),\delta_1,\alpha_1)\in H(f)$ and $((v,u),\delta_2,\alpha_2)\in H(g)$ sequence δ_1 is reversed and inverted δ_2 .



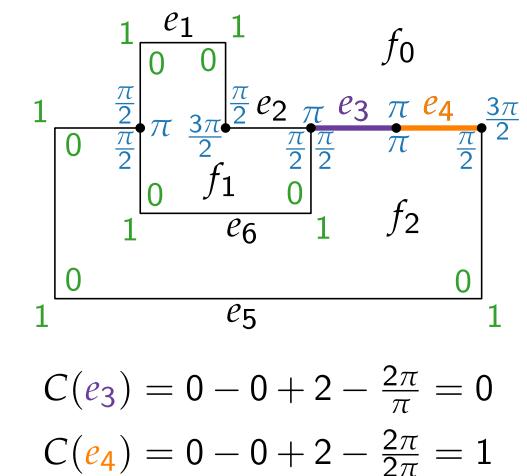
- (H1) H(G) corresponds to F, f_0 .
- (H2) For an edge $\{u,v\}$ shared by faces f and g with $((u,v),\delta_1,\alpha_1)\in H(f)$ and $((v,u),\delta_2,\alpha_2)\in H(g)$ sequence δ_1 is reversed and inverted δ_2 .
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r=(e,\delta,\alpha)$. For $C(r):=|\delta|_0-|\delta|_1+2-2\alpha/\pi$ it holds that: $\sum_{r\in H(f)}C(r)=\begin{cases} -4 & \text{if } f=f_0\\ +4 & \text{otherwise.} \end{cases}$



- (H1) H(G) corresponds to F, f_0 .
- (H2) For an edge $\{u,v\}$ shared by faces f and g with $((u,v),\delta_1,\alpha_1)\in H(f)$ and $((v,u),\delta_2,\alpha_2)\in H(g)$ sequence δ_1 is reversed and inverted δ_2 .
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r=(e,\delta,\alpha)$. For $C(r):=|\delta|_0-|\delta|_1+2-2\alpha/\pi$ it holds that: $\sum_{r\in H(f)}C(r)=\begin{cases} -4 & \text{if } f=f_0\\ +4 & \text{otherwise.} \end{cases}$



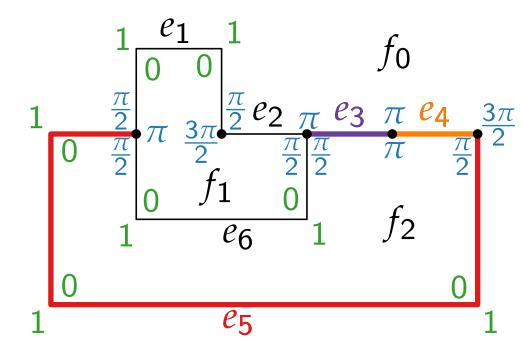
- (H1) H(G) corresponds to F, f_0 .
- (H2) For an edge $\{u,v\}$ shared by faces f and g with $((u,v),\delta_1,\alpha_1) \in H(f)$ and $((v,u),\delta_2,\alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r=(e,\delta,\alpha)$. For $C(r):=|\delta|_0-|\delta|_1+2-2\alpha/\pi$ it holds that: $\sum_{r\in H(f)}C(r)=\begin{cases} -4 & \text{if } f=f_0\\ +4 & \text{otherwise.} \end{cases}$



- (H1) H(G) corresponds to F, f_0 .
- (H2) For an edge $\{u,v\}$ shared by faces f and g with $((u,v),\delta_1,\alpha_1) \in H(f)$ and $((v,u),\delta_2,\alpha_2) \in H(g)$ sequence δ_1 is reversed and inverted δ_2 .
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r=(e,\delta,\alpha)$. For $C(r):=|\delta|_0-|\delta|_1+2-2\alpha/\pi$ it holds that: $\sum_{r\in H(f)}C(r)=\begin{cases} -4 & \text{if } f=f_0\\ +4 & \text{otherwise.} \end{cases}$

$$C(e_3) = 0 - 0 + 2 - \frac{2\pi}{\pi} = 0$$
 $C(e_4) = 0 - 0 + 2 - \frac{2\pi}{2\pi} = 1$
 $C(e_5) = 3 - 0 + 2 - \frac{2\pi}{2\pi} = 4$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For an edge $\{u, v\}$ shared by faces f and g with $((u,v),\delta_1,\alpha_1)\in H(f)$ and $((v,u),\delta_2,\alpha_2)\in H(g)$ sequence δ_1 is reversed and inverted δ_2 .
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ and $r = (e, \delta, \alpha)$. For $C(r) := |\delta|_0 - |\delta|_1 + 2 - 2\alpha/\pi$ it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$



(H4) For each vertex
$$v$$
 the sum of incident angles is 2π . $C(e_3) = 0 - 0 + 2 - \frac{2\pi}{\pi} = 0$ $C(e_4) = 0 - 0 + 2 - \frac{2\pi}{2\pi} = 1$ $C(e_5) = 3 - 0 + 2 - \frac{2\pi}{2\pi} = 4$

Bend minimisation with given embedding

Geometric bend minimisation.

Given: Plane graph G = (V, E) with maximum degree 4

lacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal drawing with minimum number of bends

that preserves the embedding.

Bend minimisation with given embedding

Geometric bend minimisation.

Given: \blacksquare Plane graph G = (V, E) with maximum degree 4

lacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal drawing with minimum number of bends

that preserves the embedding.

Compare with the following variation.

Combinatorial bend minimisation.

Given: \blacksquare Plane graph G = (V, E) with maximum degree 4

lacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal representation H(G) with minimum

number of bends that preserves the embedding

Combinatorial bend minimisation

Combinatorial bend minimisation.

Given: \blacksquare Plane graph G = (V, E) with maximum degree 4

lacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal representation H(G) with minimum

number of bends that preserves the embedding

Combinatorial bend minimisation

Combinatorial bend minimisation.

Given: Plane graph G = (V, E) with maximum degree 4

lacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal representation H(G) with minimum

number of bends that preserves the embedding

Idea.

Formulate as a network flow problem:

- \blacksquare a unit of flow $= \angle \frac{\pi}{2}$
- vertices $\stackrel{\angle}{\longrightarrow}$ faces (# $\angle \frac{\pi}{2}$ per face)
- faces $\xrightarrow{\angle}$ neighbouring faces (# bends toward the neighbour)

Reminder: *s*-*t* flow network

Flow network (D = (V, A); s, t; u) with

- lacktriangle directed graph D = (V, A)
- \blacksquare edge *capacity* $u: A \to \mathbb{R}_0^+$
- \blacksquare source $s \in V$, sink $t \in V$

A function $X: A \to \mathbb{R}_0^+$ is called *s-t-flow*, if:

$$0 \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in A \tag{1}$$

$$\sum_{(i,j)\in A} X(i,j) - \sum_{(j,i)\in A} X(j,i) = 0 \qquad \forall i \in V \setminus \{s,t\}$$
 (2)

Reminder: general flow network

Flow network $(D = (V, A); \ell; u; b)$ with

- lacksquare directed graph D = (V, A)
- \blacksquare edge *lower bound* $\ell \colon A \to \mathbb{R}_0^+$
- \blacksquare edge *capacity* $u: A \to \mathbb{R}_0^+$
- node production/consumption $b: V \to \mathbb{R}$ with $\sum_{i \in V} b(i) = 0$

A function $X: A \to \mathbb{R}_0^+$ is called **valid flow**, if:

$$\ell(i,j) \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in A \tag{3}$$

$$\sum_{(i,j)\in A} X(i,j) - \sum_{(j,i)\in A} X(j,i) = b(i) \qquad \forall i \in V$$
(4)

Problems for flow networks

Valid flow problem.

Find a valid flow $X: A \to \mathbb{R}_0^+$, i.e., such that

- lower bounds $\ell(e)$ and capacities u(e) are respected (inequalities (3)) and
- \blacksquare consumption/production b(i) satisfied (inequalities (4)).

Problems for flow networks

Valid flow problem.

Find a valid flow $X: A \to \mathbb{R}_0^+$, i.e., such that

- lower bounds $\ell(e)$ and capacities u(e) are respected (inequalities (3)) and
- lacktriangle consumption/production b(i) satisfied (inequalities (4)).

Additionally provided:

■ Cost function cost: $A \to \mathbb{R}_0^+$ and $\operatorname{cost}(X) := \sum_{(i,j) \in A} \operatorname{cost}(i,j) \cdot X(i,j)$

Problems for flow networks

Valid flow problem.

Find a valid flow $X: A \to \mathbb{R}_0^+$, i.e., such that

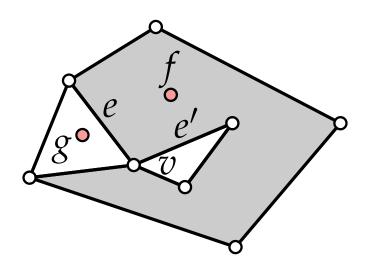
- lower bounds $\ell(e)$ and capacities u(e) are respected (inequalities (3)) and
- \blacksquare consumption/production b(i) satisfied (inequalities (4)).

Additionally provided:

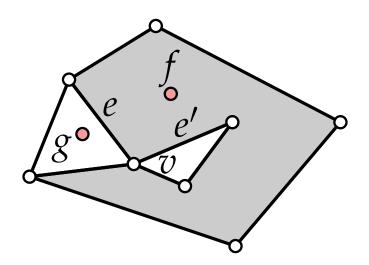
■ Cost function cost: $A \to \mathbb{R}_0^+$ and $\operatorname{cost}(X) := \sum_{(i,j) \in A} \operatorname{cost}(i,j) \cdot X(i,j)$

Miminum cost flow problem.

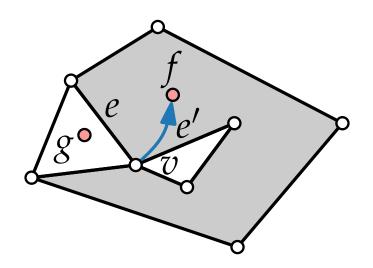
Find a valid flow $X: A \to \mathbb{R}_0^+$, that minimises cost function cost(X) (over all valid flows).



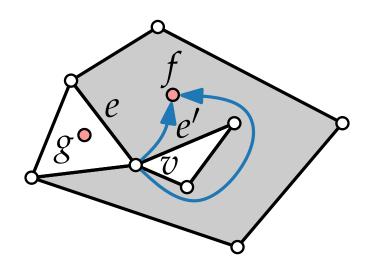
Define flow network $N(G) = ((V \cup F, A); \ell; u; b; cost)$:



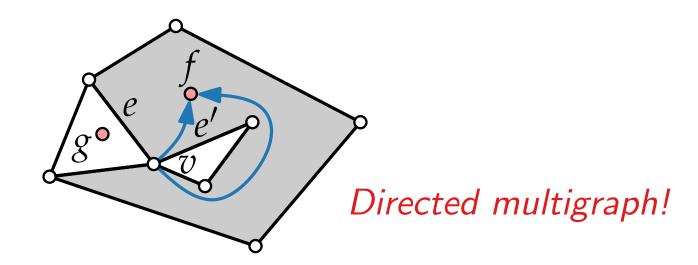
Define flow network $N(G) = ((V \cup F, A); \ell; u; b; cost)$:



Define flow network $N(G) = ((V \cup F, A); \ell; u; b; cost)$:

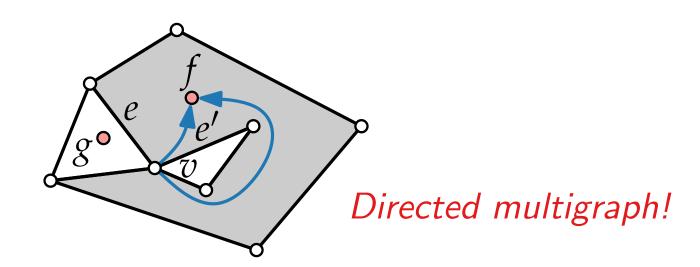


Define flow network $N(G) = ((V \cup F, A); \ell; u; b; cost)$:



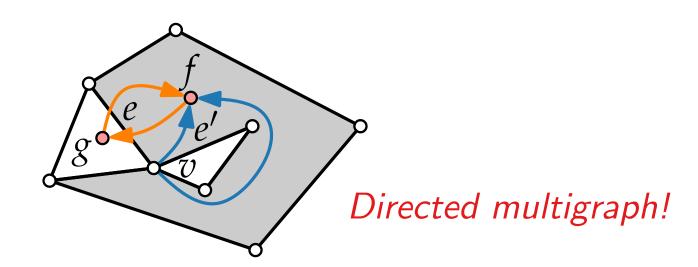
Define flow network $N(G) = ((V \cup F, A); \ell; u; b; cost)$:

■ $A = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$



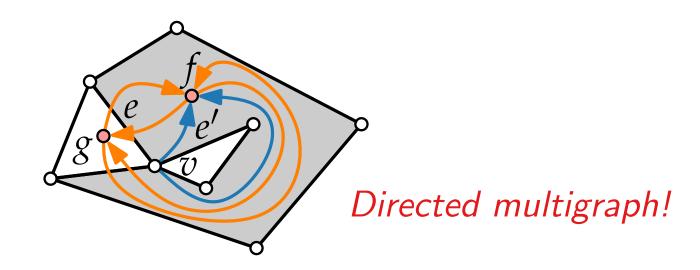
Define flow network $N(G) = ((V \cup F, A); \ell; u; b; cost)$:

■ $A = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$



Define flow network $N(G) = ((V \cup F, A); \ell; u; b; cost)$:

■ $A = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$



- $A = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$

- $A = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2\deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$

$$\begin{bmatrix} 1 & 2 & 1 \\ & -6 \\ 1 & 1 \end{bmatrix}$$

- $\blacksquare A = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2\deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_w b(w) \stackrel{?}{=} 0$

$$\begin{bmatrix} 1 & 2 & 1 \\ & -6 & \\ 1 & 1 \end{bmatrix}$$

- $\blacksquare A = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2\deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_w b(w) = 0$

$$egin{bmatrix} 1 & 2 & 1 \\ & -6 \\ 1 & 1 \\ \end{bmatrix}$$

- $\blacksquare A = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2\deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_w b(w) = 0$

$$\forall (v, f) \in A, v \in V, f \in F \qquad \ell(v, f) := \leq X(v, f) \leq =: u(v, f)$$

$$\cot(v, f) =$$

$$\forall (f, g) \in A, f, g \in F \qquad \ell(f, g) := \leq X(f, g) \leq =: u(f, g)$$

$$\cot(f, g) =$$

- $A = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_w b(w) = 0$

$$\forall (v, f) \in A, v \in V, f \in F$$

$$\ell(v, f) := 1 \le X(v, f) \le 4 =: u(v, f)$$

$$\cot(v, f) = 0$$

$$\forall (f, g) \in A, f, g \in F$$

$$\ell(f, g) := \le X(f, g) \le =: u(f, g)$$

$$\cot(f, g) =$$

- $A = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$

$$b(f) = 4 \quad \forall b \in V$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_w b(w) = 0$$
(Euler)

$$\forall (v, f) \in A, v \in V, f \in F$$

$$\ell(v, f) := 1 \le X(v, f) \le 4 =: u(v, f)$$

$$\cot(v, f) = 0$$

$$\forall (f, g) \in A, f, g \in F$$

$$\ell(f, g) := 0 \le X(f, g) \le \infty =: u(f, g)$$

$$\cot(f, g) = 1$$

Why is it enough?

Exercise

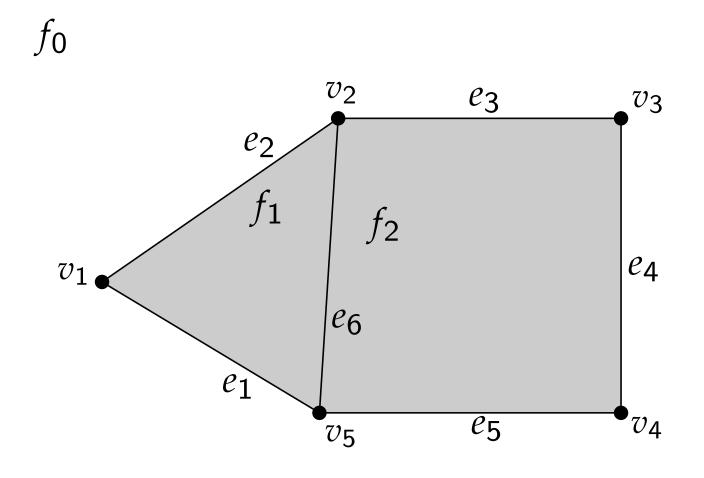
Flow network for bend minimisation

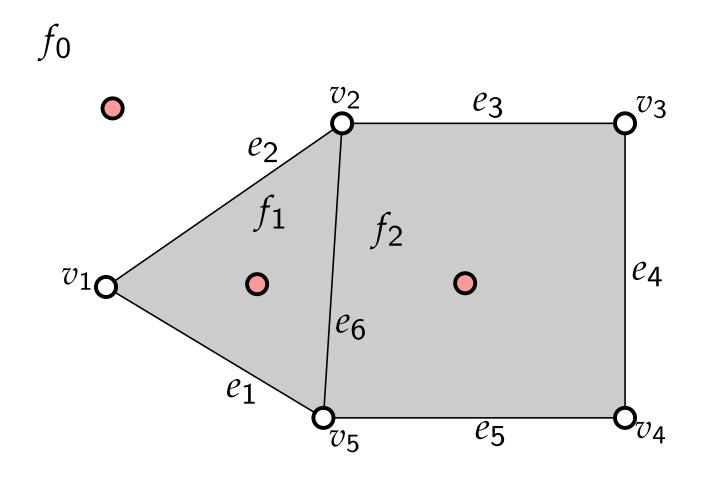
- $A = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$
- $b(f) = -2\deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_w b(w) = 0$

$$\forall (v,f) \in A, v \in V, f \in F \qquad \ell(v,f) := 1 \leq X(v,f) \leq 4 =: u(v,f)$$

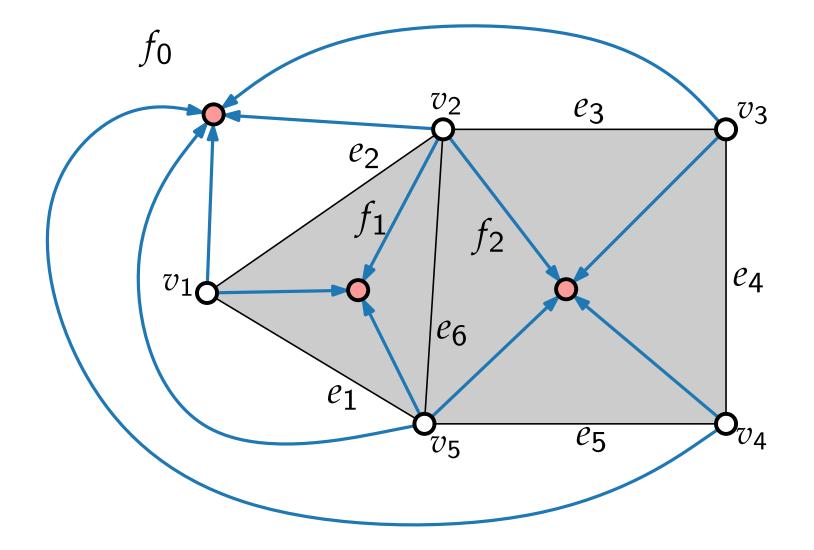
$$\cos t(v,f) = 0$$

$$\forall (f,g) \in A, f,g \in F \qquad \ell(f,g) := 0 \leq X(f,g) \leq \infty =: u(f,g)$$
 We model only the number of bends.

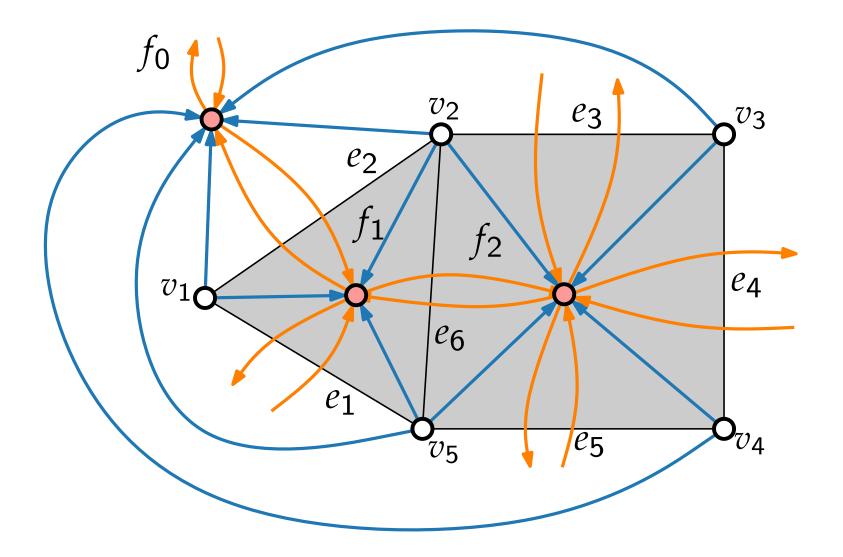




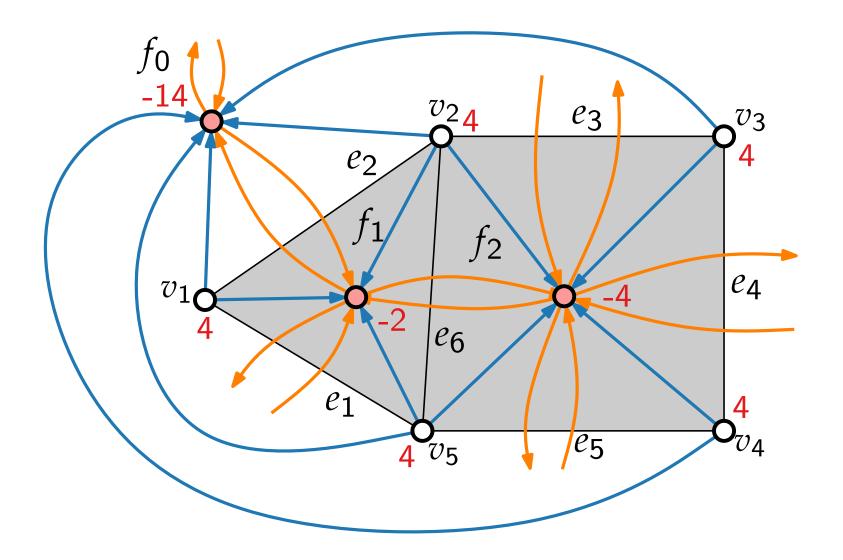
Legend



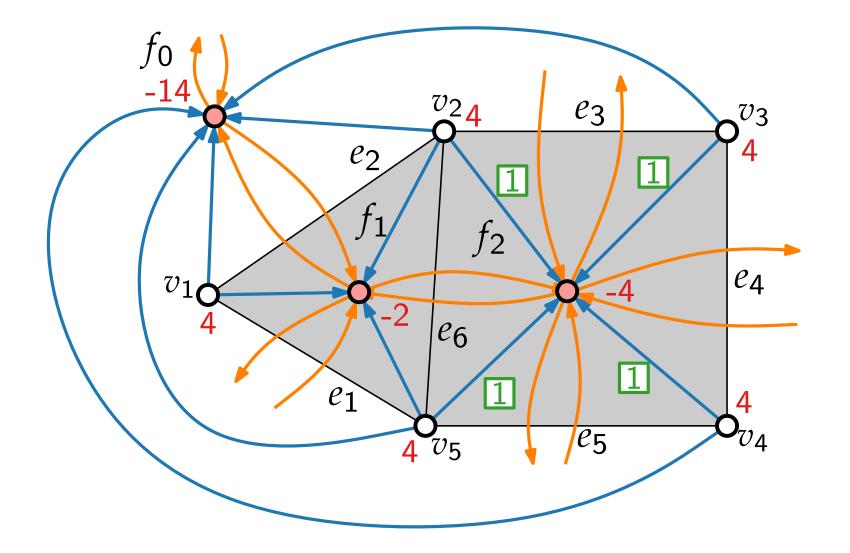
$$V$$
 \bigcirc $\ell/u/cost$ $V \times F \supset \frac{1/4/0}{2}$



$$V$$
 O
 F $\ell/u/cost$
 $V \times F \supseteq \frac{1/4/0}{r}$
 $F \times F \supseteq \frac{0/\infty/1}{r}$

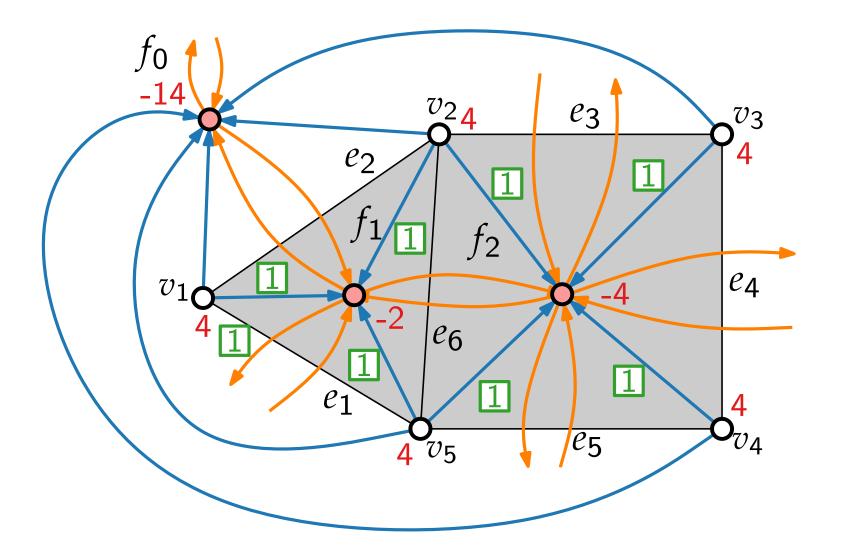


$$V$$
 O
 F $\ell/u/cost$
 $V \times F \supseteq \frac{1/4/0}{2}$
 $F \times F \supseteq \frac{0/\infty/1}{2}$
 $V \times F \supseteq \frac{1/4/0}{2}$

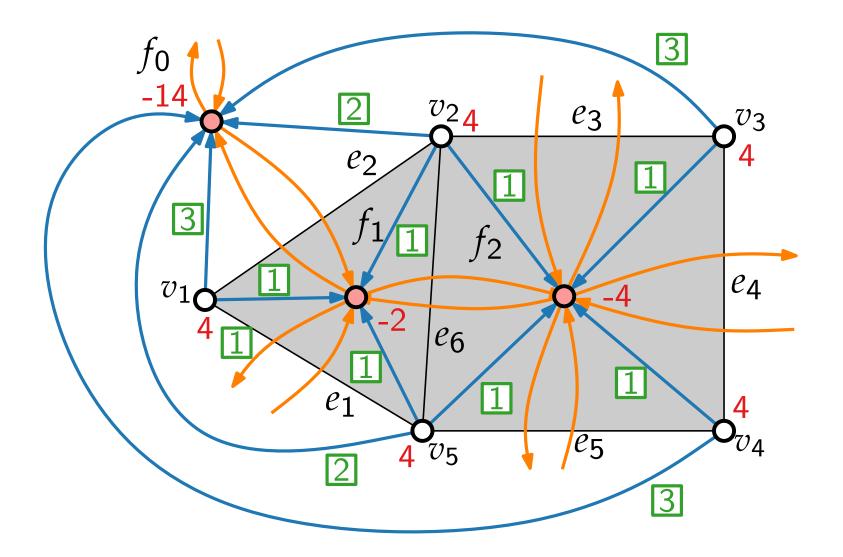


$$V$$
 O
 F O
 $\ell/u/cost$
 $V \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$
 $4 = b$ -value

3 flow

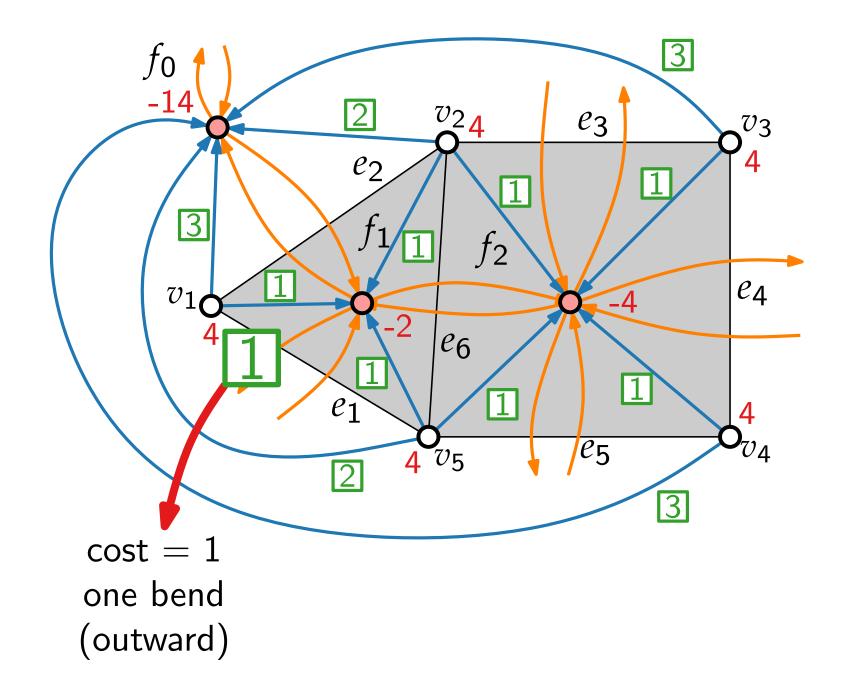


$$V$$
 O
 F $\ell/u/cost$
 $V \times F \supseteq \frac{1/4/0}{2}$
 $F \times F \supseteq \frac{0/\infty/1}{4}$
 $4 = b$ -value



$$V$$
 O
 F O
 $\ell/u/cost$
 $V \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$
 $4 = b$ -value

3 flow



$$V$$
 O
 F • $\ell/u/\cos t$
 $V \times F \supseteq \frac{1/4/0}{2}$
 $F \times F \supseteq \frac{0/\infty/1}{4}$
 $V \times F \supseteq \frac{1/4/0}{4}$
 $V \times F \supseteq \frac{1/4/0}{2}$
 $V \times V \times F \supseteq \frac{1/4/0}{2}$
 $V \times V \times V = \frac{1/4/0}{2}$
 $V \times V \times V = \frac{1/4/0}{2}$
 $V \times V =$

Bend minimisation — result

Theorem. [Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Bend minimisation — result

Theorem. [Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

Bend minimisation – result

Theorem. [Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

 \Leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.

Bend minimisation – result

Theorem. [Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \Leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).

```
(H1)
```

(H2)

(H3)

(H4)

Bend minimisation – result

Theorem. [Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
 - Transform from flow to orthogonal description.
 - Show properties (H1)–(H4).

```
(H1)
(H2)
```

(H3)

(H4) Total angle at each vertex = 2π

Bend minimisation — result

Theorem. [Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \Leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
- (H1) H(G) matches F, f_0
- (H2) Bend order inverted and reversed on opposite sides
- (H3)
- (H4) Total angle at each vertex = 2π

Bend minimisation — result

Theorem. [Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \Leftarrow Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
- (H1) H(G) matches F, f_0
- (H2) Bend order inverted and reversed on opposite sides
- (H3) Angle sum of $f = \pm 4$
- (H4) Total angle at each vertex = 2π

Theorem. [Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

 \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.

Theorem. [Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
- Define flow $X: A \to \mathbb{R}_0^+$.
- \blacksquare Show that X is a valid flow and has cost k.

Theorem. [Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
- Define flow $X: A \to \mathbb{R}_0^+$.
- \blacksquare Show that X is a valid flow and has cost k.

(N1)
$$X(vf) = 1/2/3/4$$

Theorem. [Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
- Define flow $X: A \to \mathbb{R}_0^+$.
- lacksquare Show that X is a valid flow and has cost k.

(N1)
$$X(vf) = 1/2/3/4$$

(N2)
$$X(fg) := |\delta_{fg}|_0$$
, (e, δ_{fg}, x) describes $e \stackrel{*}{=} fg$ from $f \checkmark$

Theorem. [Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
- Define flow $X: A \to \mathbb{R}_0^+$.
- lacksquare Show that X is a valid flow and has cost k.

(N1)
$$X(vf) = 1/2/3/4$$

(N2)
$$X(fg) := |\delta_{fg}|_0$$
, (e, δ_{fg}, x) describes $e \stackrel{*}{=} fg$ from f

Theorem. [Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends iff the flow network N(G) has a valid flow X with cost k.

Proof.

- \Rightarrow Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
- Define flow $X: A \to \mathbb{R}_0^+$.
- \blacksquare Show that X is a valid flow and has cost k.

(N1)
$$X(vf) = 1/2/3/4$$

(N2)
$$X(fg) := |\delta_{fg}|_0$$
, (e, δ_{fg}, x) describes $e \stackrel{*}{=} fg$ from f

(N3) capacities, deficit/demand coverage

$$(N4) \cos t = k$$

Bend minisation – remarks

■ From Theorem follows that the combinatorial orthogonal bend minimisation problem for plane graphs can be solved using an algorithm for the Min-Cost-Flow problem.

Bend minisation – remarks

- From Theorem follows that the combinatorial orthogonal bend minimisation problem for plane graphs can be solved using an algorithm for the Min-Cost-Flow problem.
- This special flow problem for a planar network N(G) can be solved in $O(n^{3/2})$ time. [Cornelsen, Karrenbauer GD 2011]

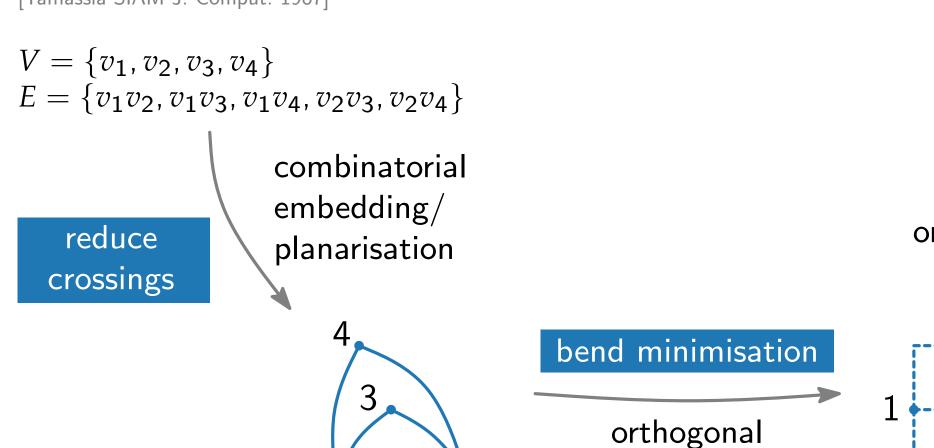
Bend minisation – remarks

- From Theorem follows that the combinatorial orthogonal bend minimisation problem for plane graphs can be solved using an algorithm for the Min-Cost-Flow problem.
- This special flow problem for a planar network N(G) can be solved in $O(n^{3/2})$ time. [Cornelsen, Karrenbauer GD 2011]
- Bend minimization without a given combinatorial embedding is an NP-hard problem. [Garg, Tamassia SIAM J. Comput. 2001]

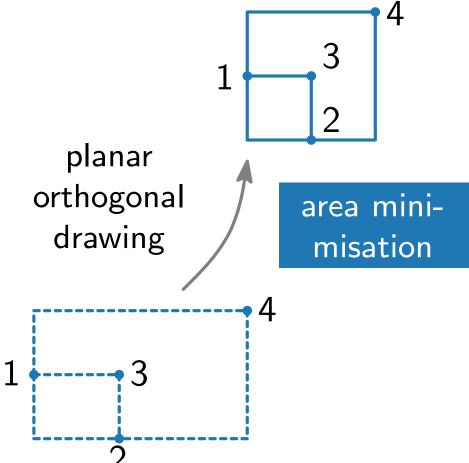
Topology - Shape - Metrics

Three-step approach:

[Tamassia SIAM J. Comput. 1987]



representation



Compaction problem.

Given: Plane graph G = (V, E) with maximum degree 4

lacksquare Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Compaction problem.

Given: \blacksquare Plane graph G = (V, E) with maximum degree 4

lacksquare Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

→ Guarantees possible ■ minimum total edge length

minimum area

Compaction problem.

Given: \blacksquare Plane graph G = (V, E) with maximum degree 4

lacksquare Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

→ Guarantees possible ■ minimum total edge length

minimum area

Properties.

- bends only on the outer face
- opposite sides of a face have the same length

Compaction problem.

Given: \blacksquare Plane graph G = (V, E) with maximum degree 4

lacksquare Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

→ Guarantees possible ■ minimum total edge length

minimum area

Properties.

- bends only on the outer face
- opposite sides of a face have the same length

Idea.

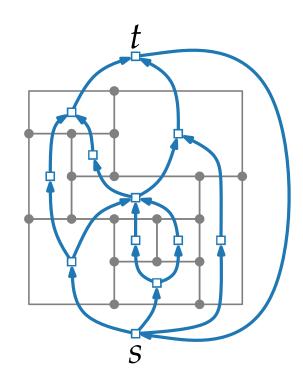
Formulate flow network for horizontal/vertical compaction

Flow network for edge length assignment

Definition.

Flow Network $N_{\mathsf{hor}} = ((W_{\mathsf{hor}}, A_{\mathsf{hor}}); \ell; u; b; \mathsf{cost})$

- \blacksquare $W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\} \blacksquare$
- $A_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f$ lies $below g\} \cup \{(t,s)\}$
- $u(a) = \infty \quad \forall a \in A_{\mathsf{hor}}$
- lacktriangledown $\operatorname{cost}(a) = 1 \quad \forall a \in A_{\mathsf{hor}}$
- $b(f) = 0 \quad \forall f \in W_{\mathsf{hor}}$

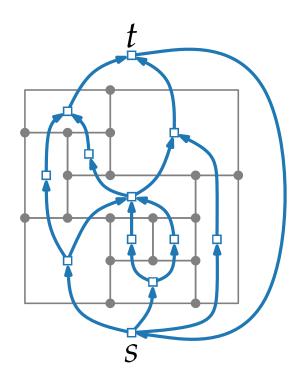


Flow network for edge length assignment

Definition.

Flow Network $N_{\mathsf{hor}} = ((W_{\mathsf{hor}}, A_{\mathsf{hor}}); \ell; u; b; \mathsf{cost})$

- \blacksquare $W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\} \blacksquare$
- $A_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$
- $u(a) = \infty \quad \forall a \in A_{\mathsf{hor}}$
- lacktriangledown $\operatorname{cost}(a) = 1 \quad \forall a \in A_{\mathsf{hor}}$
- $b(f) = 0 \quad \forall f \in W_{\mathsf{hor}}$



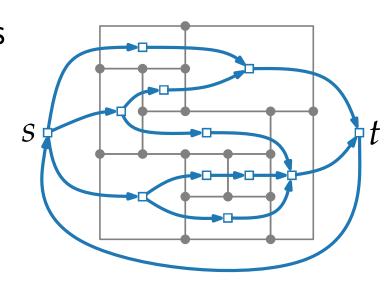
s and t represent lower and upper side of f_0

Flow network for edge length assignment

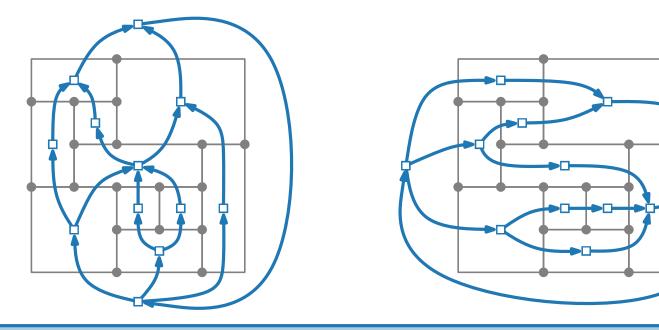
Definition.

Flow Network $N_{\text{ver}} = ((W_{\text{ver}}, A_{\text{ver}}); \ell; u; b; \text{cost})$

- $W_{\text{ver}} = F \setminus \{f_0\} \cup \{s, t\}$
- $A_{\text{ver}} = \{(f, g) \mid f, g \text{ share a } \textit{vertical} \text{ segment and } f \text{ lies to the } \textit{left} \text{ of } g\} \cup \{(t, s)\}$
- $\ell(a) = 1 \quad \forall a \in A_{\mathsf{ver}}$
- $u(a) = \infty \quad \forall a \in A_{\mathsf{ver}}$
- lacktriangledown $\operatorname{cost}(a) = 1 \quad \forall a \in A_{\mathsf{ver}}$
- $lackbox{1}{\bullet} b(f) = 0 \quad \forall f \in W_{\text{ver}}$



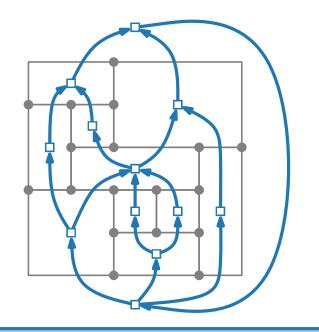
Compaction – result

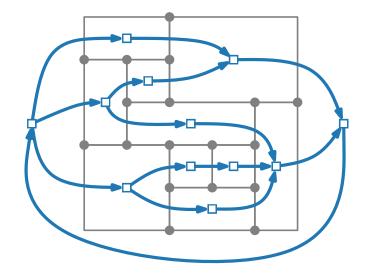


Theorem.

Valid min-cost-flows for N_{hor} and N_{ver} exists iff corresponding edge lenghts induce orthogonal drawing.

Compaction – result





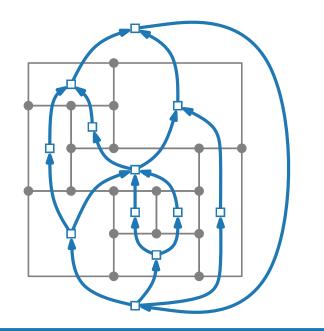
Theorem.

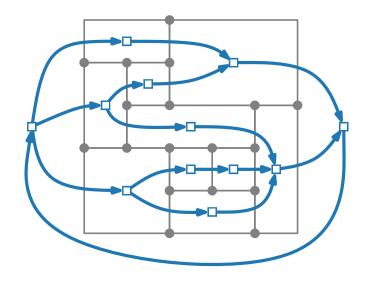
Valid min-cost-flows for N_{hor} and N_{ver} exists iff corresponding edge lenghts induce orthogonal drawing.

What values of the drawing represent the following?

- $\blacksquare |X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$?
- $\sum_{a \in A_{hor}} X_{hor}(a) + \sum_{a \in A_{ver}} X_{ver}(a)$

Compaction – result





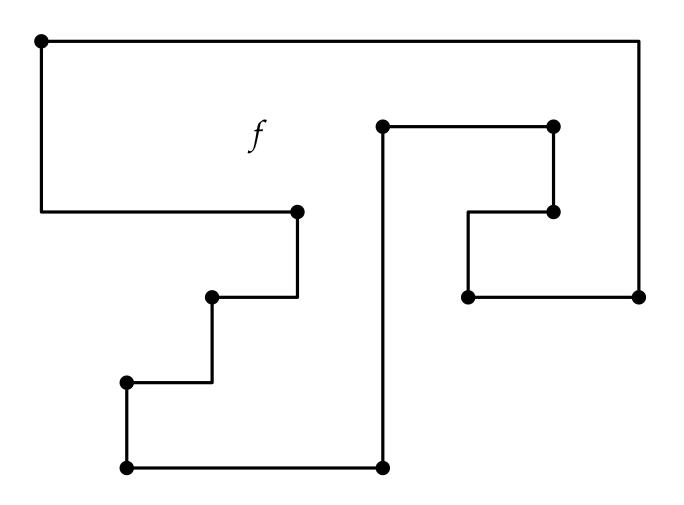
What if not all faces rectangular?

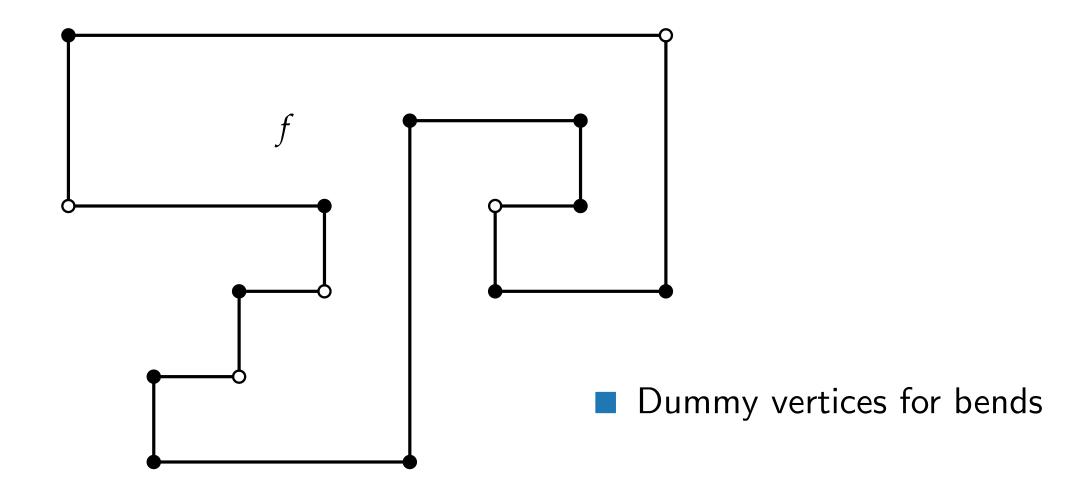
Theorem.

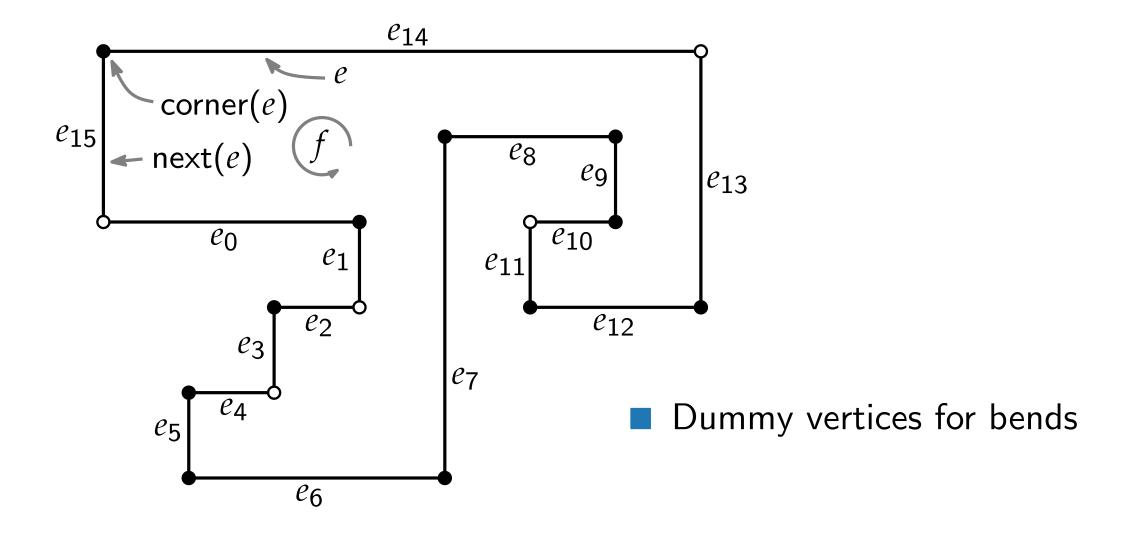
Valid min-cost-flows for N_{hor} and N_{ver} exists iff corresponding edge lenghts induce orthogonal drawing.

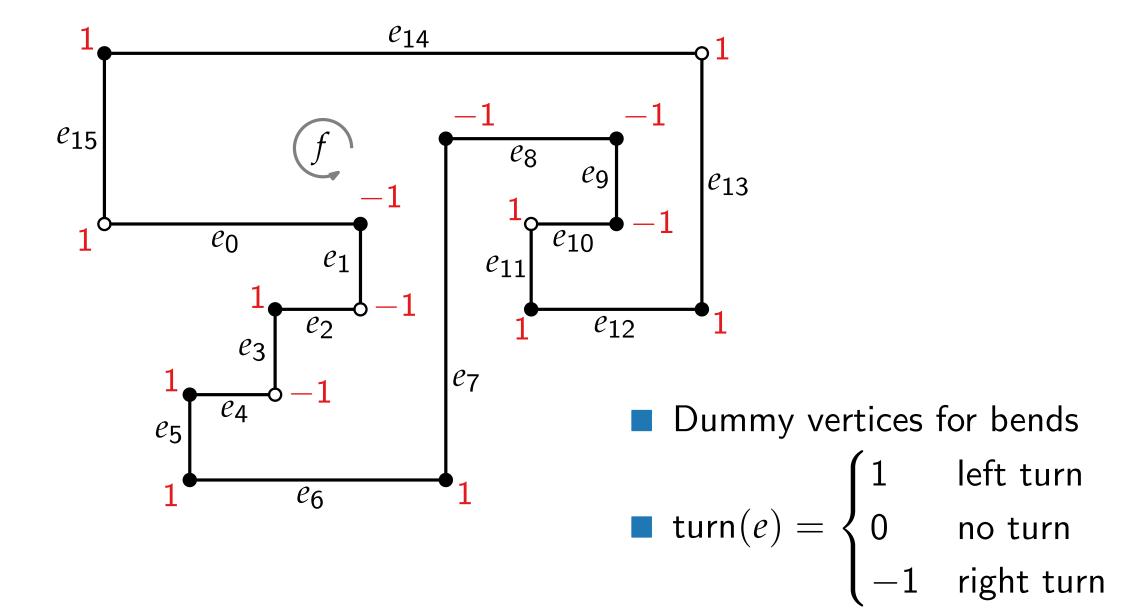
What values of the drawing represent the following?

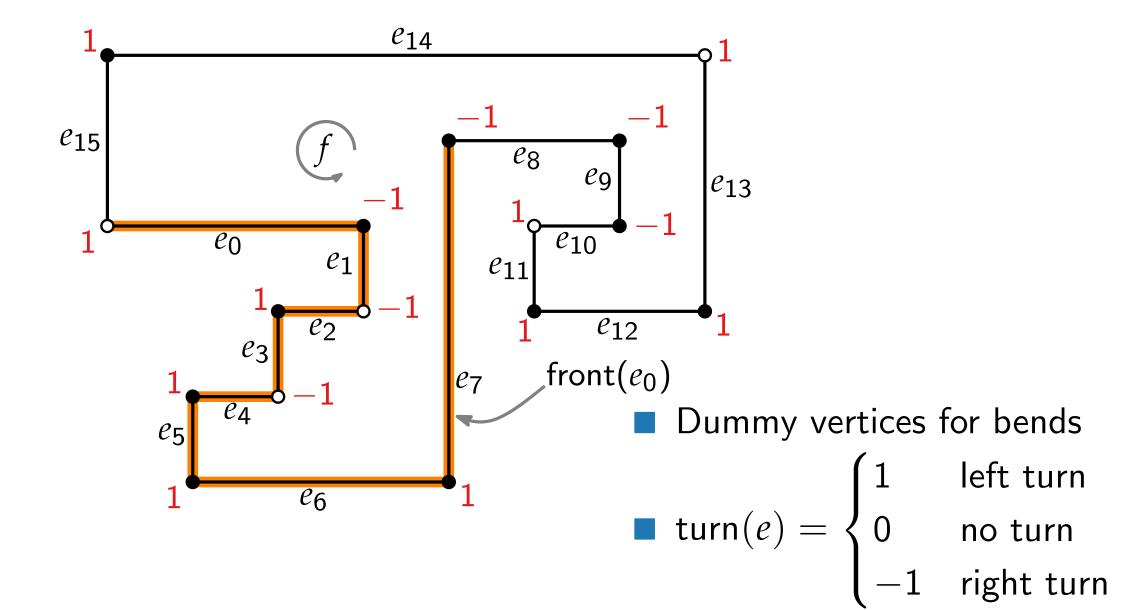
- $\blacksquare |X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$?
- $\sum_{a \in A_{hor}} X_{hor}(a) + \sum_{a \in A_{ver}} X_{ver}(a)$

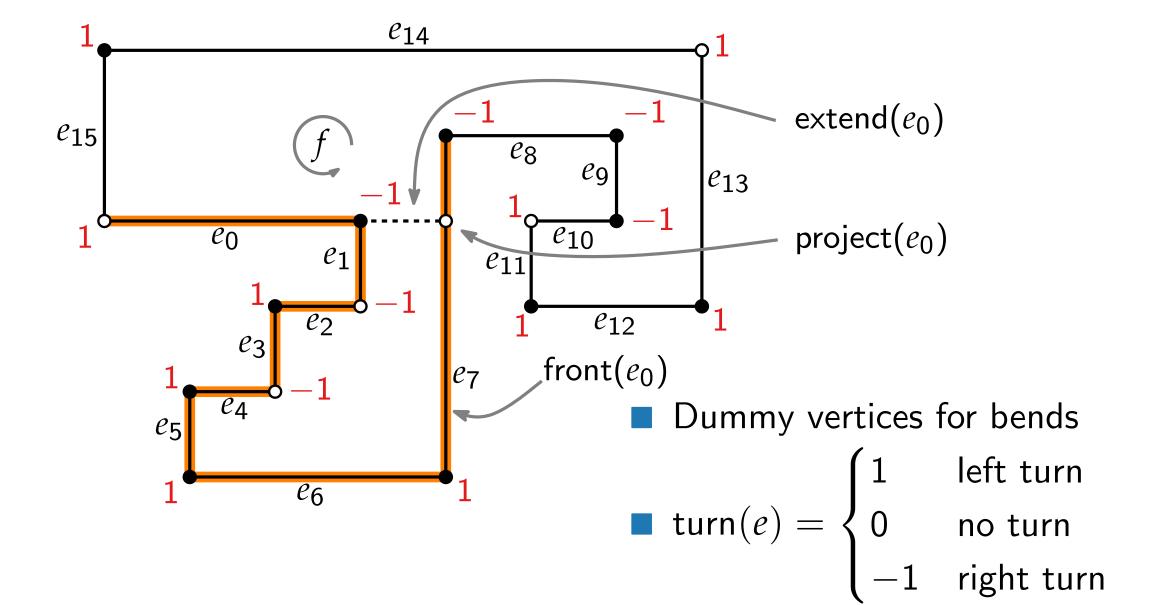


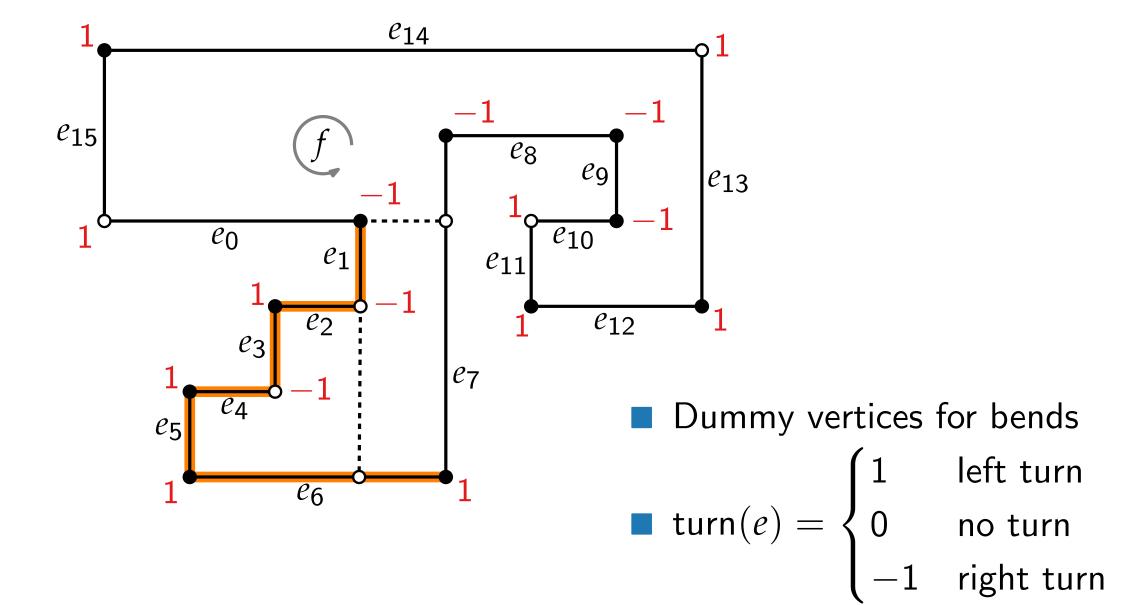


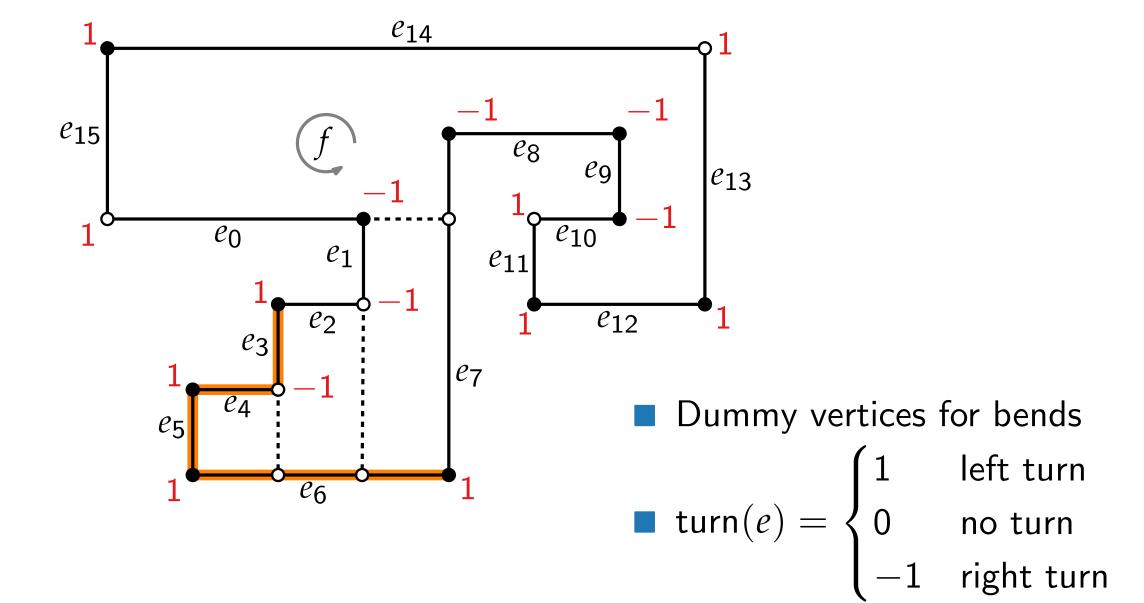


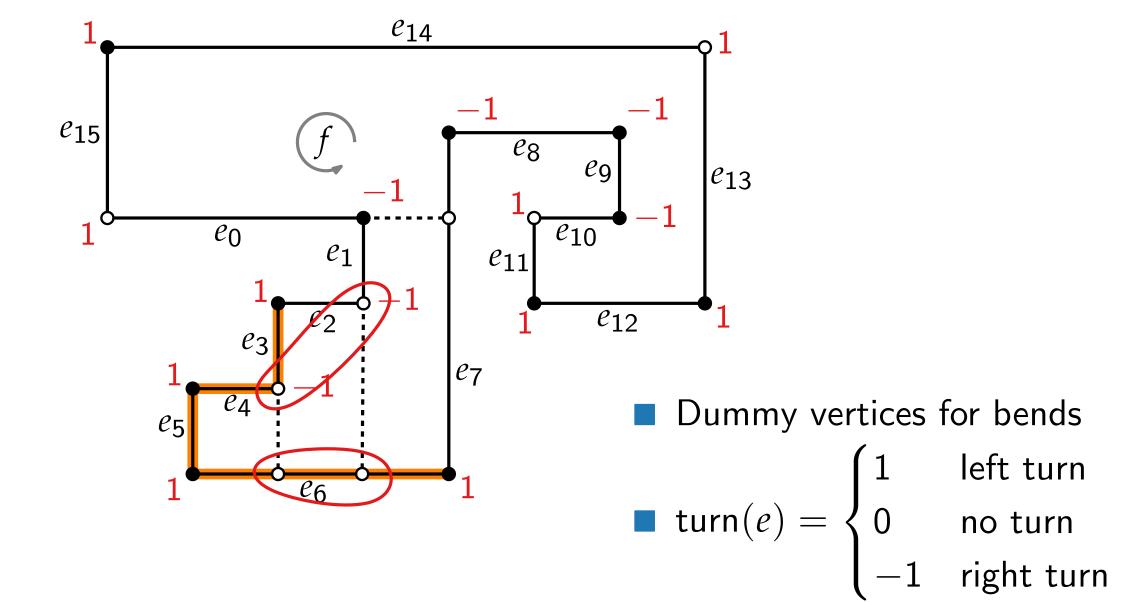


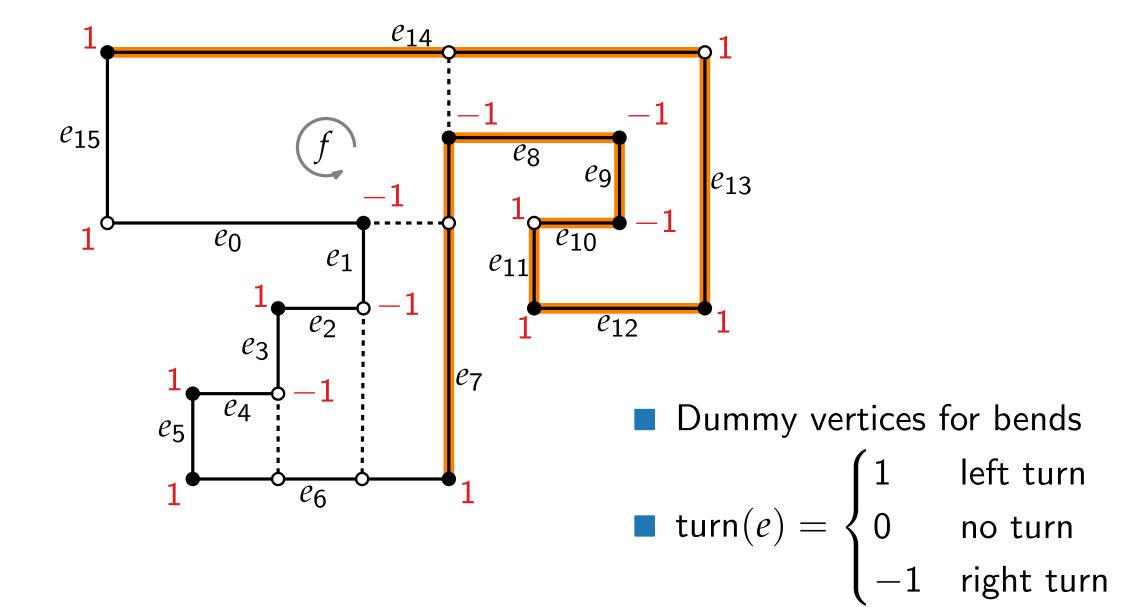


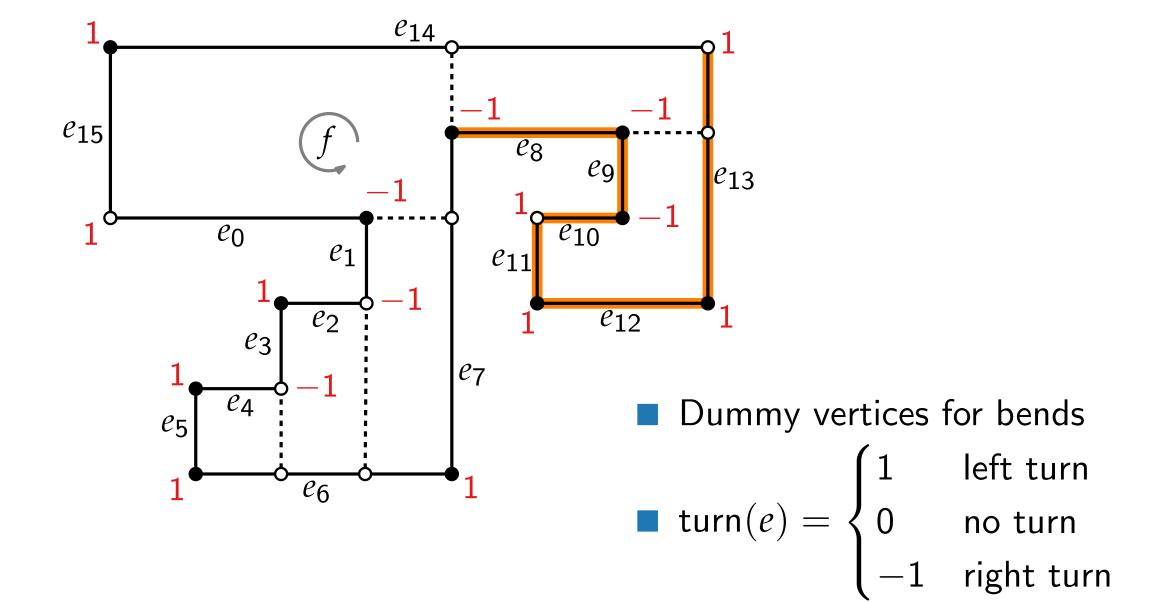


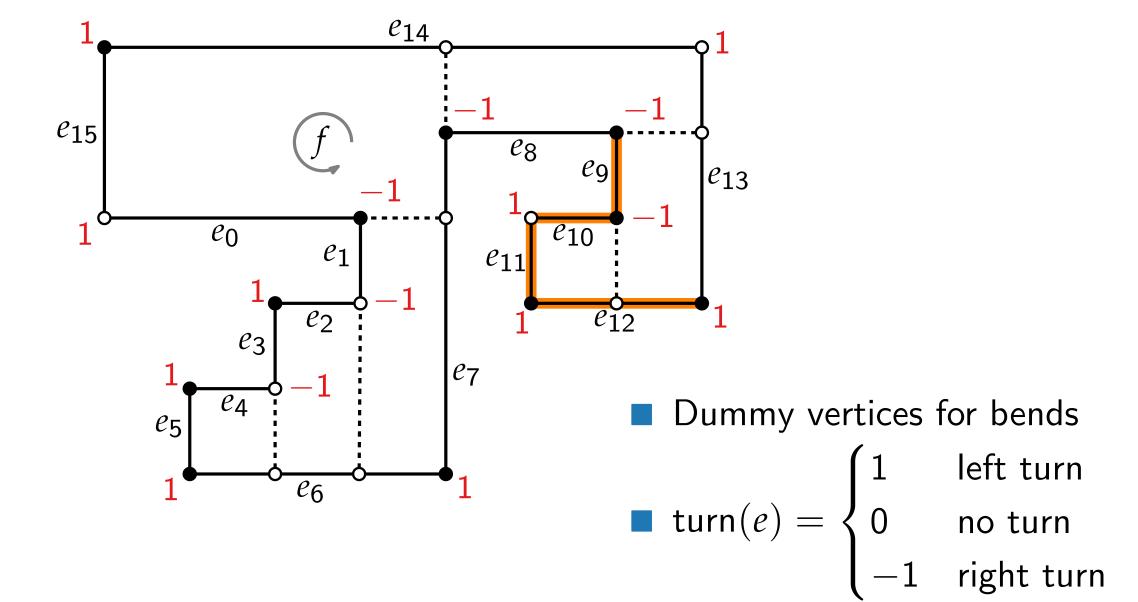


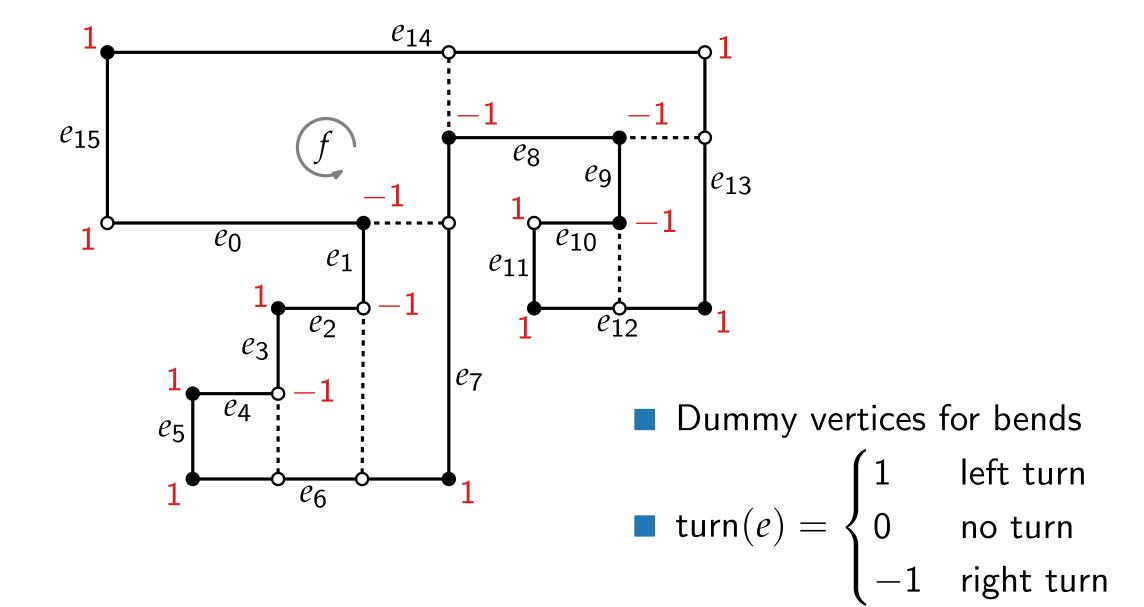


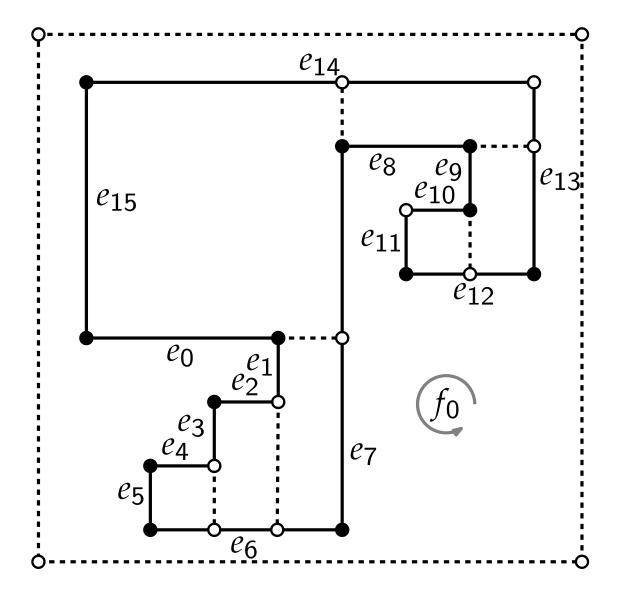


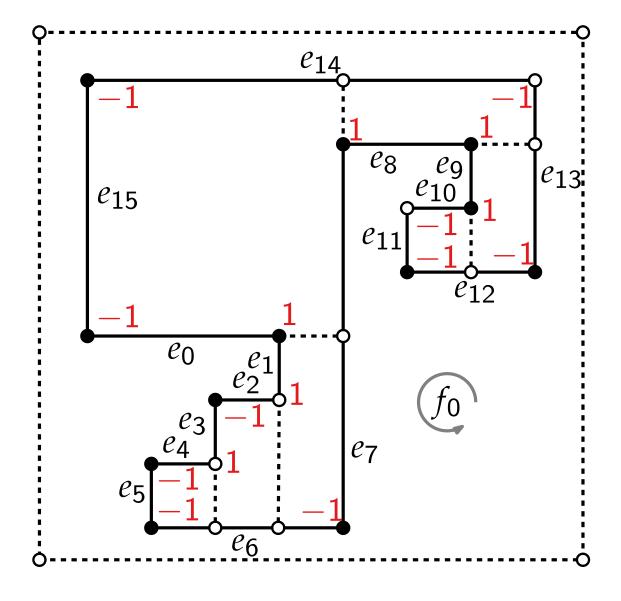


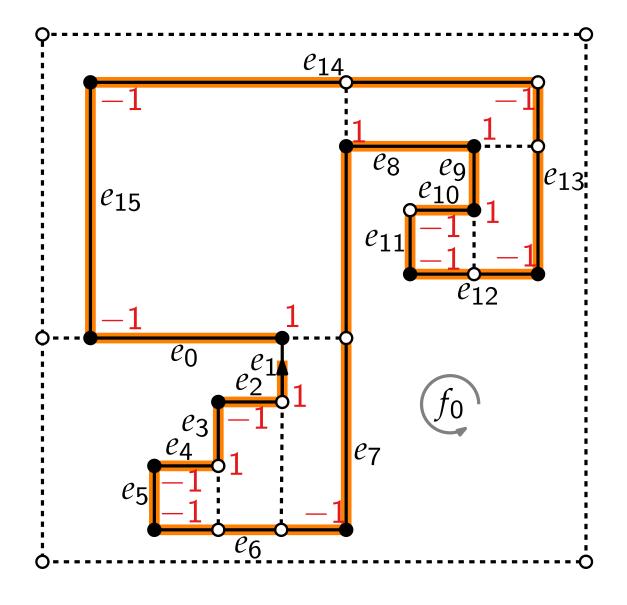


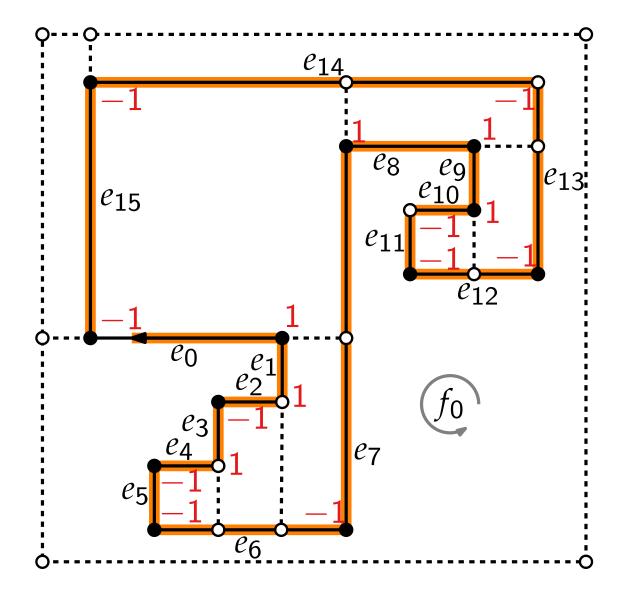


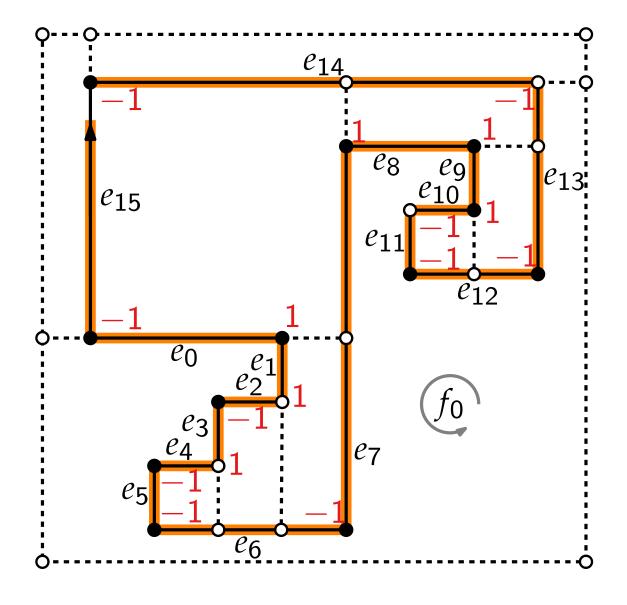


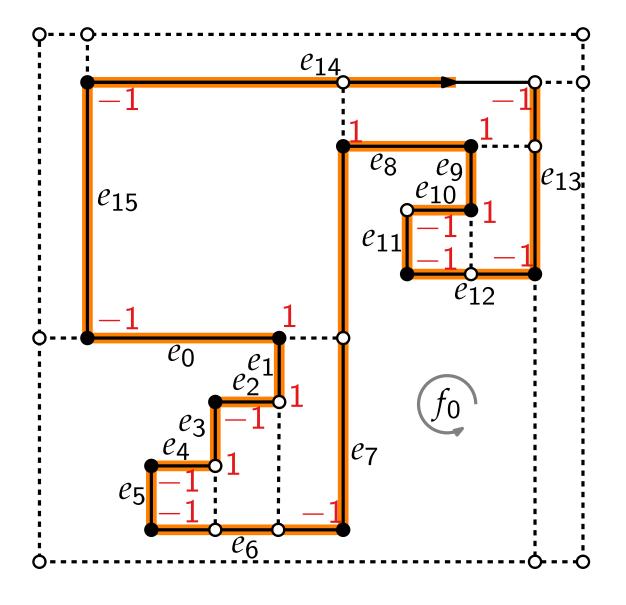


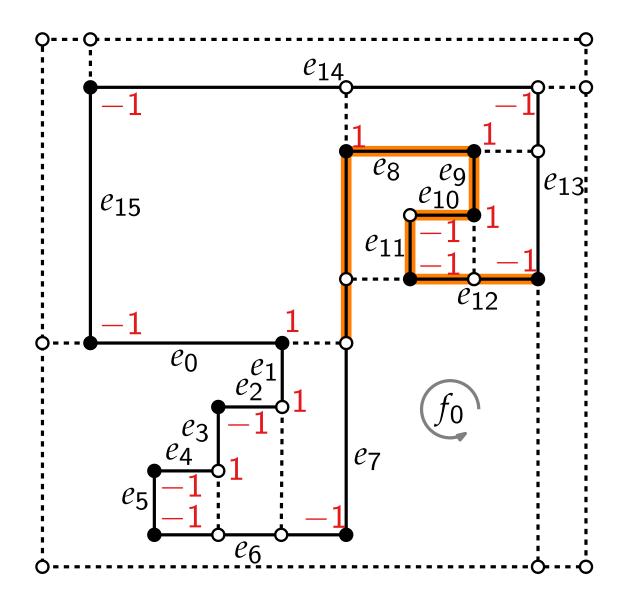


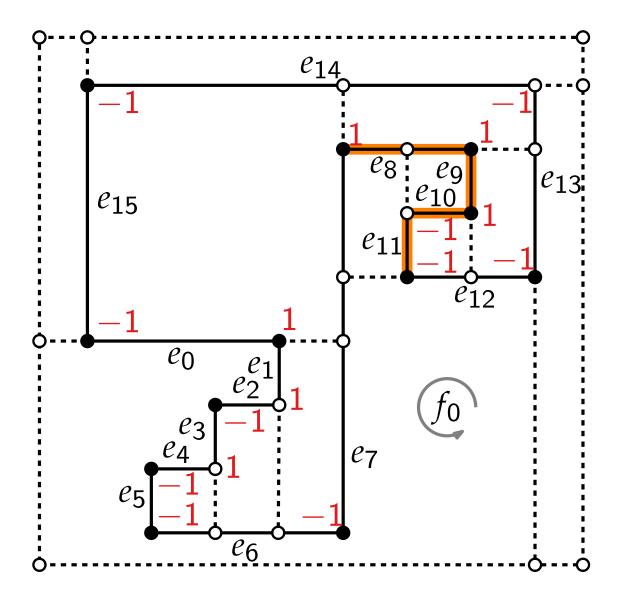


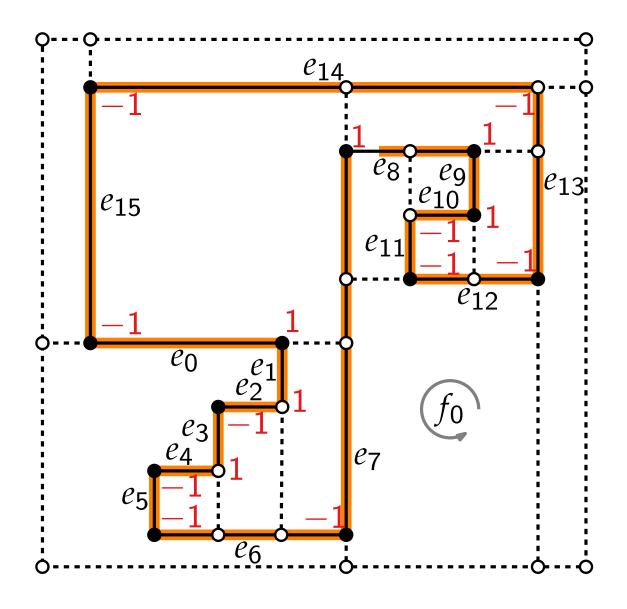


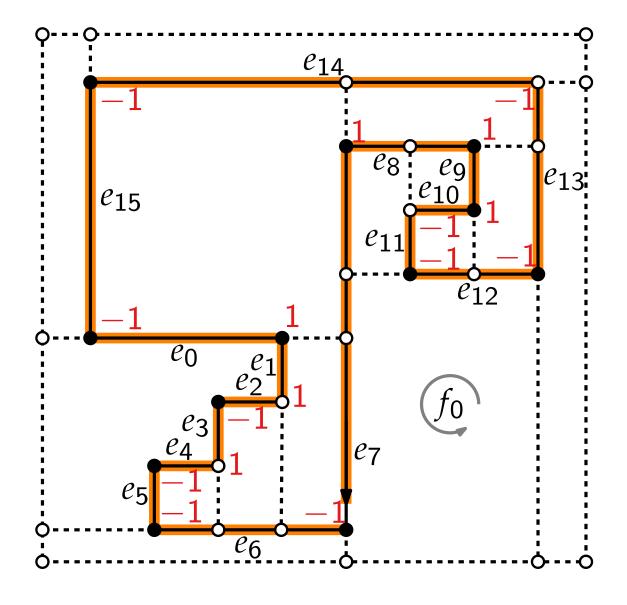


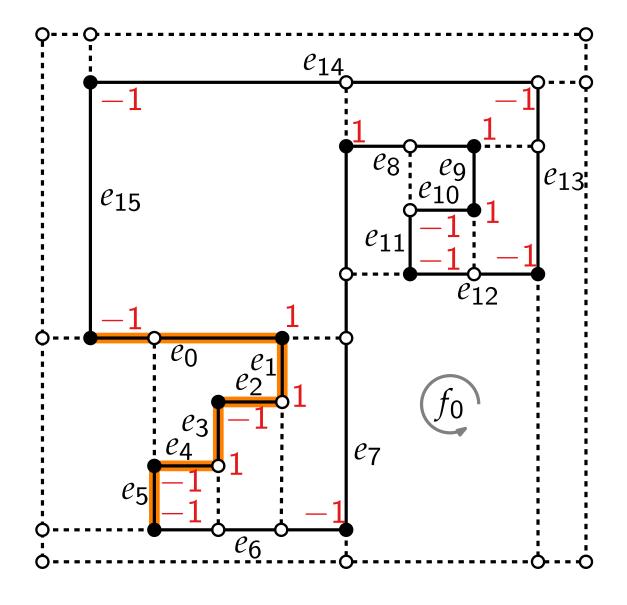


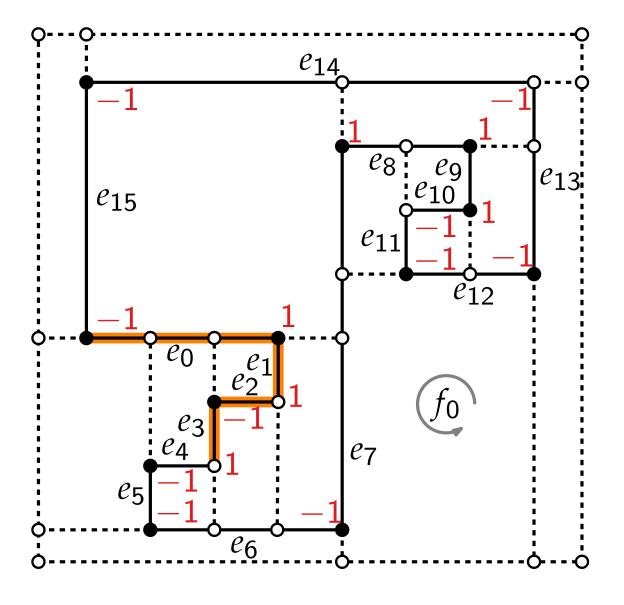


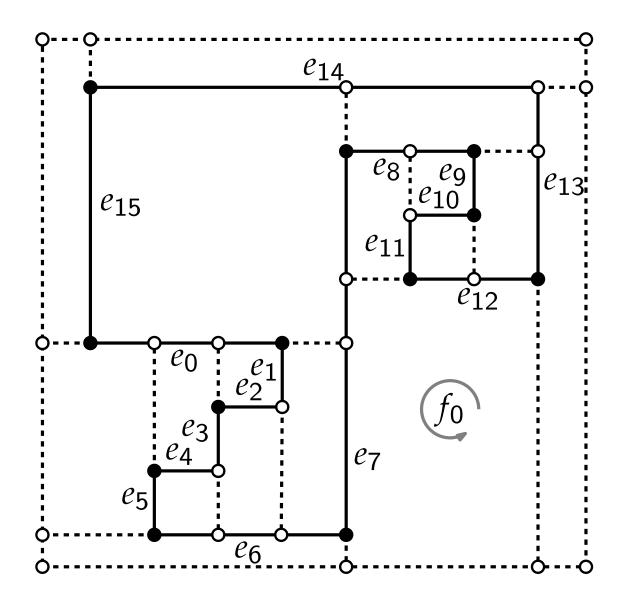


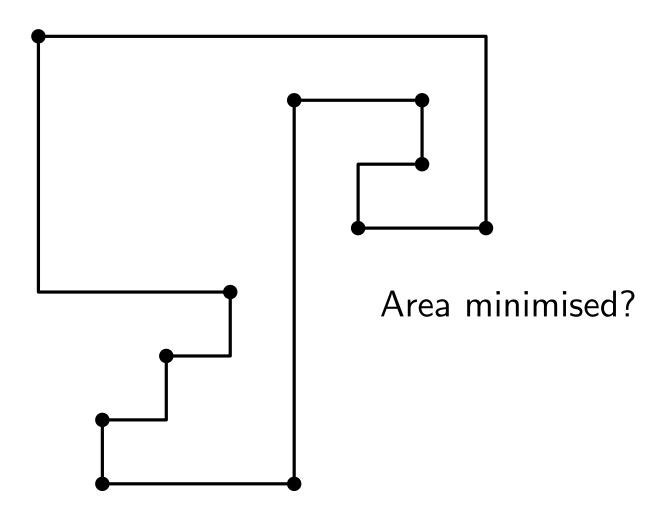


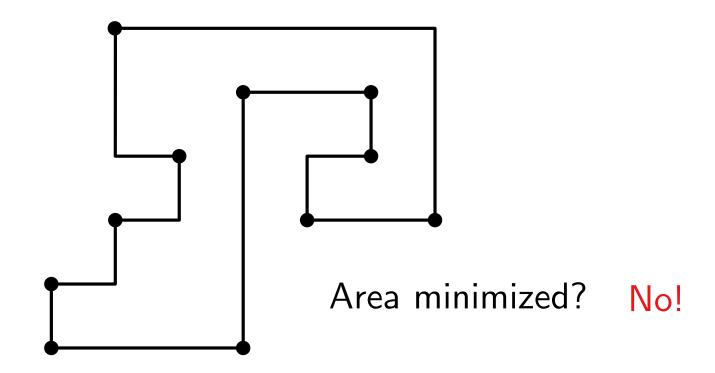


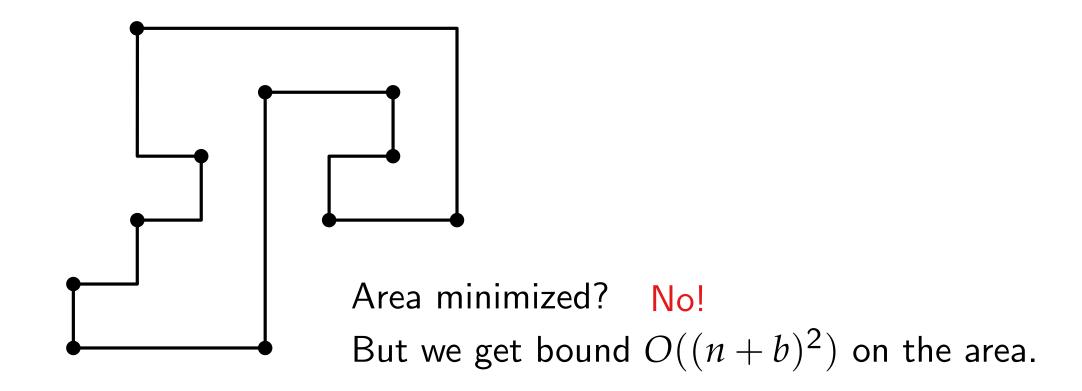


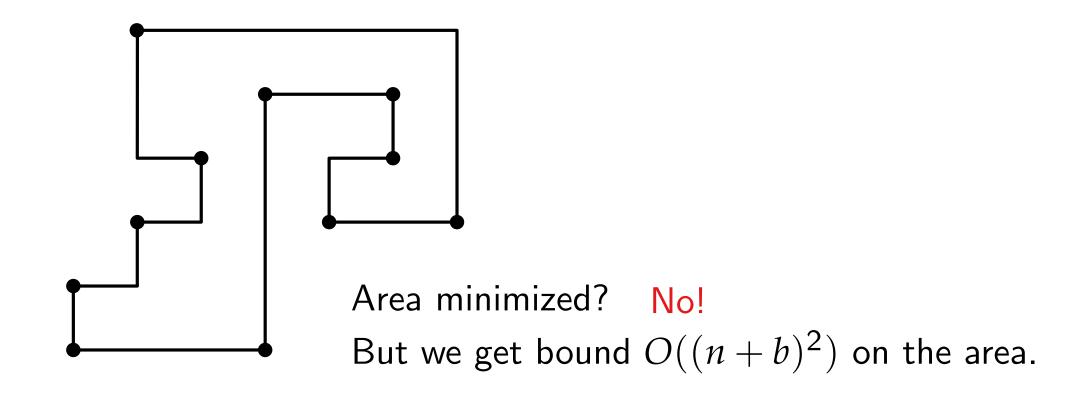












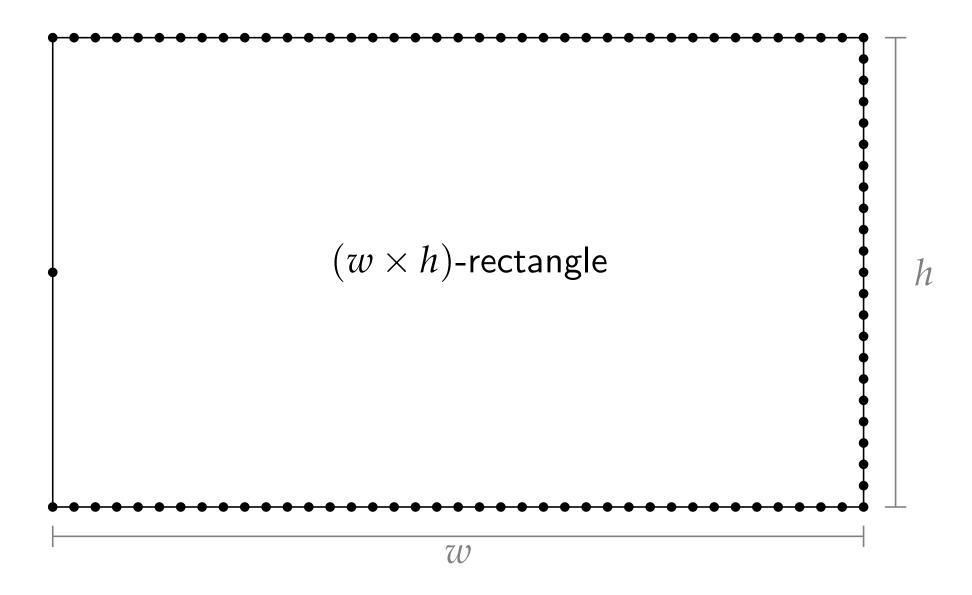
Compaction for given orthogonal representation is in general NP-hard.

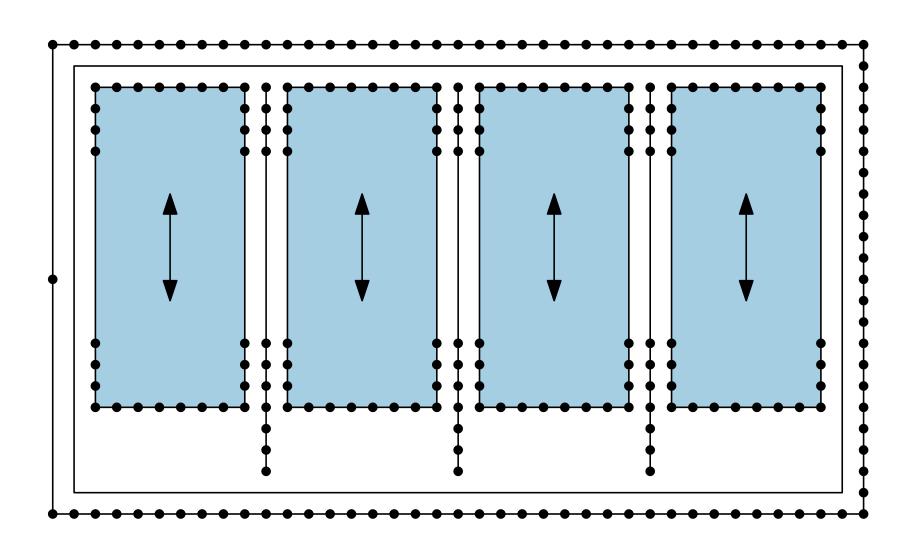
Reduction via SAT

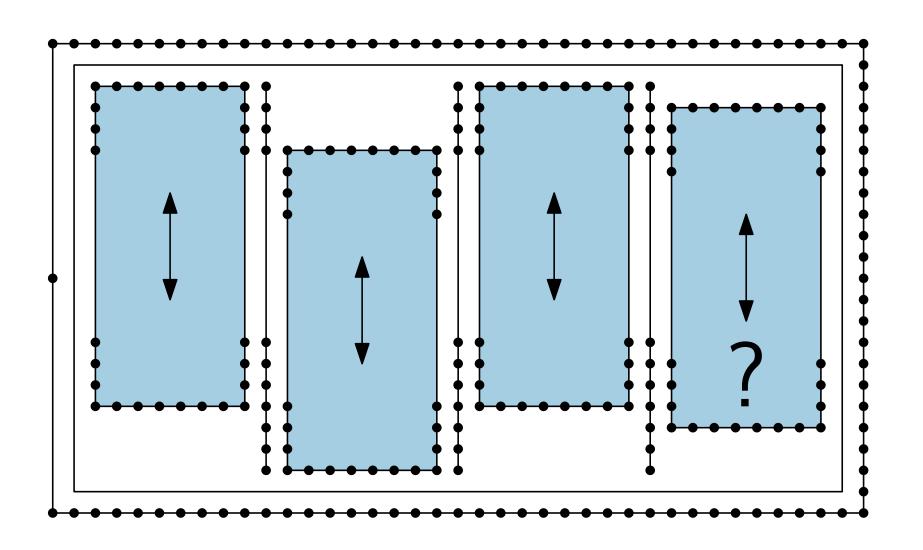
- Reduction via SAT
 - \blacksquare *n* variables x_1, \ldots, x_n
 - \blacksquare *m* clauses C_1, \ldots, C_m ;
 - each clause: Disjunction of literals $x_i/\overline{x_i}$ e.g.: $C_1 = x_1 \vee \overline{x_2} \vee x_3$
 - Is $\Phi = C_1 \wedge C_2 \wedge ... \wedge C_m$ satisfiable, i.e., is there an assignment to the variables satisfying every clause?

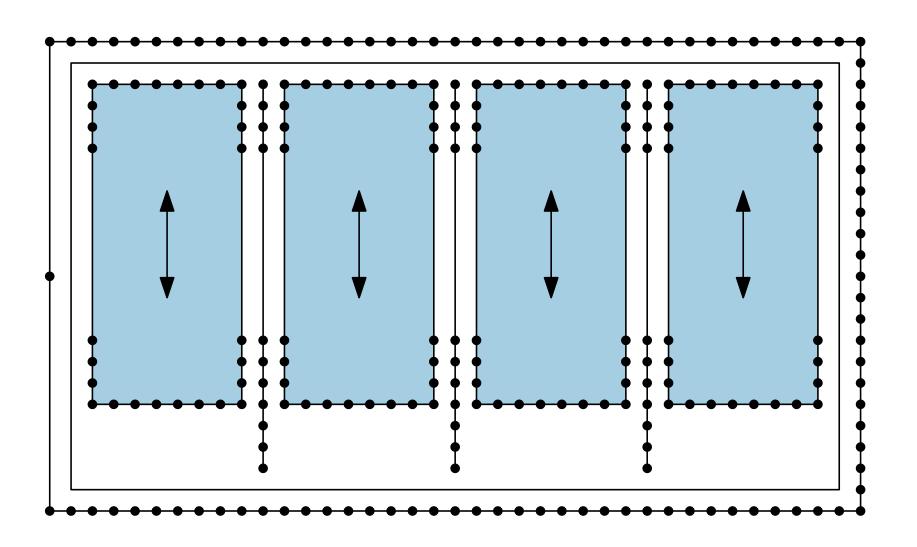
- Reduction via SAT
 - \blacksquare *n* variables x_1, \ldots, x_n
 - \blacksquare *m* clauses C_1, \ldots, C_m ;
 - each clause: Disjunction of literals $x_i/\overline{x_i}$ e.g.: $C_1 = x_1 \vee \overline{x_2} \vee x_3$
 - Is $\Phi = C_1 \wedge C_2 \wedge ... \wedge C_m$ satisfiable, i.e., is there an assignment to the variables satisfying every clause?
- Find an appropriate value K such that (G, H) can be drawn in K area $\Leftrightarrow \Phi$ is satisfiable.

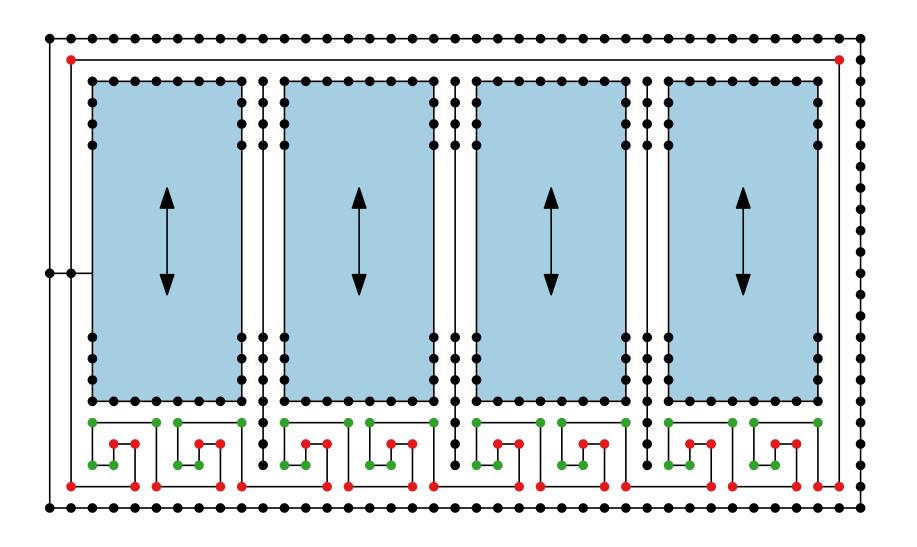
- Reduction via SAT
 - \blacksquare *n* variables x_1, \ldots, x_n
 - \blacksquare *m* clauses C_1, \ldots, C_m ;
 - each clause: Disjunction of literals $x_i/\overline{x_i}$ e.g.: $C_1 = x_1 \vee \overline{x_2} \vee x_3$
 - Is $\Phi = C_1 \wedge C_2 \wedge ... \wedge C_m$ satisfiable, i.e., is there an assignment to the variables satisfying every clause?
- Find an appropriate value K such that (G, H) can be drawn in K area $\Leftrightarrow \Phi$ is satisfiable.
- High level structure of (G, H)
 - boundary
 - belts, and pistons
 - clause gadgets
 - variable gadgets

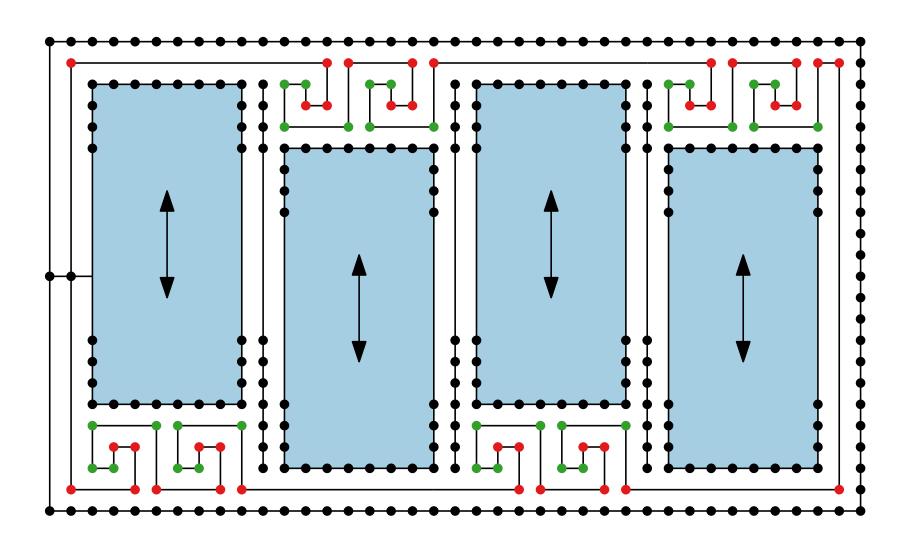


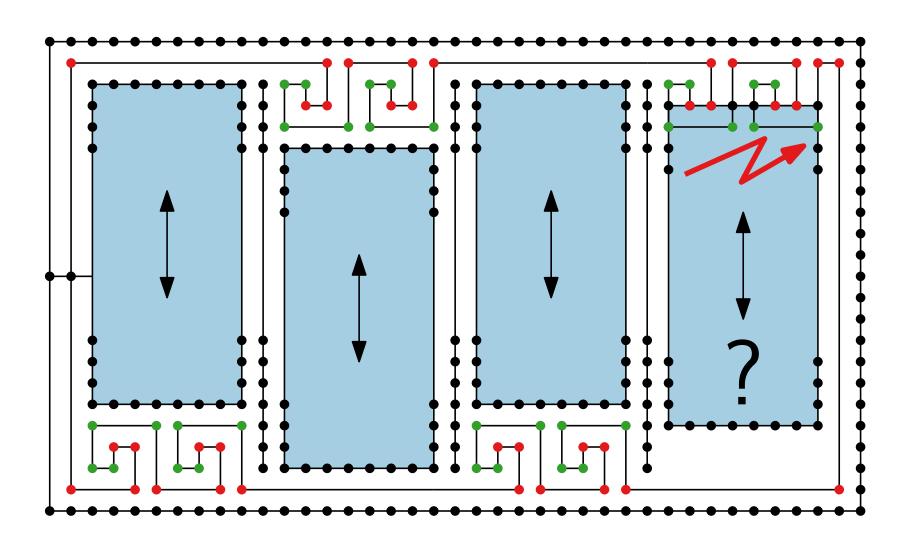


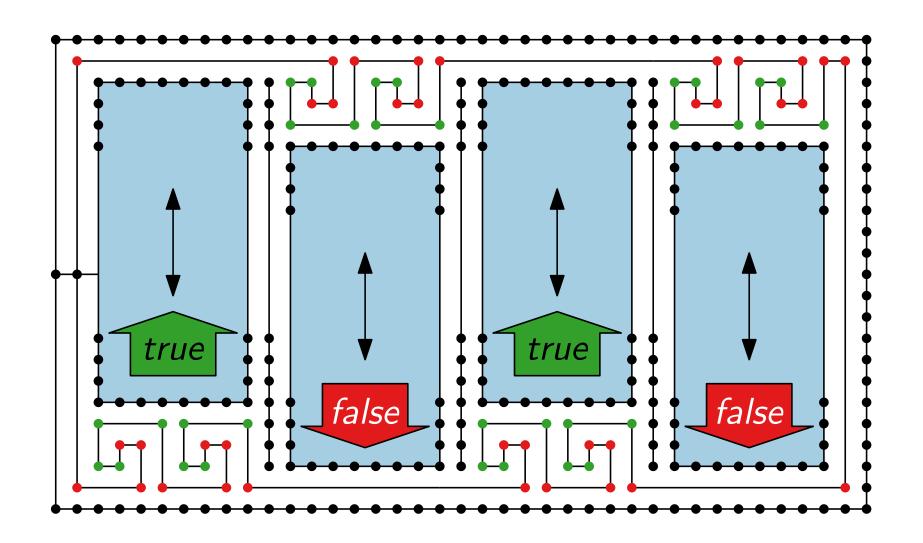


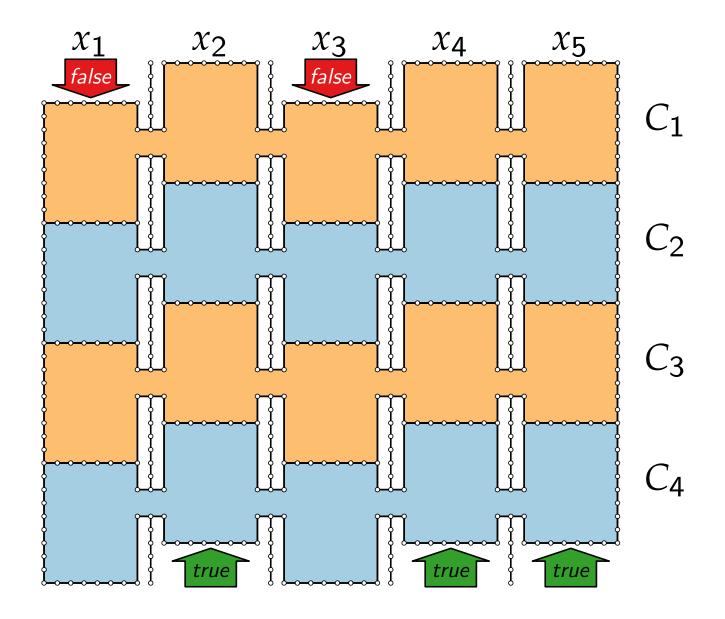


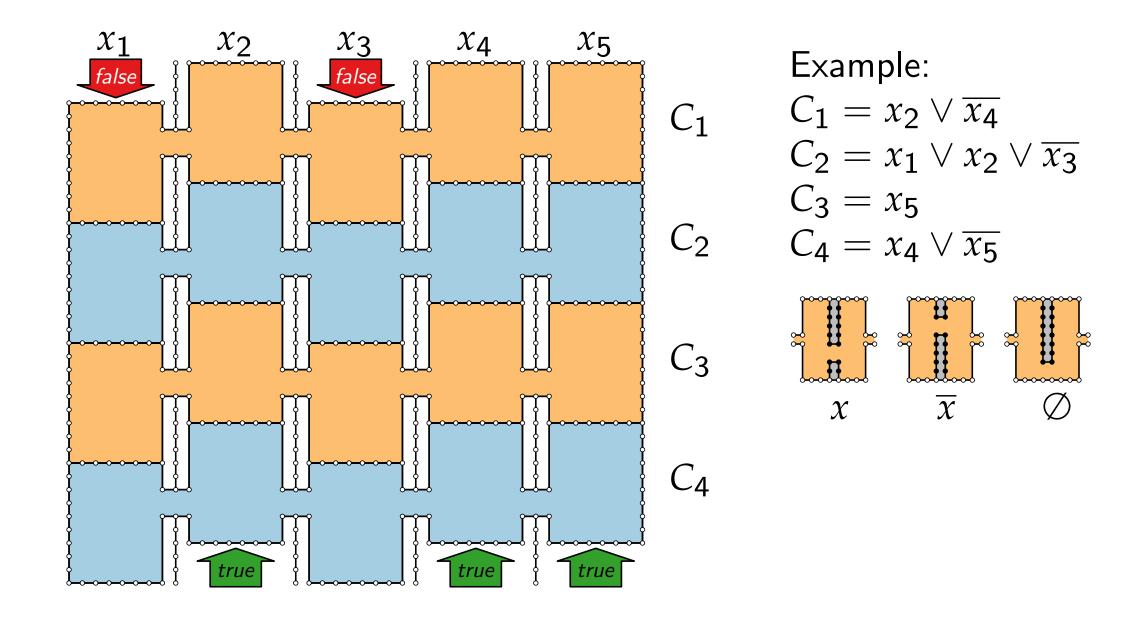


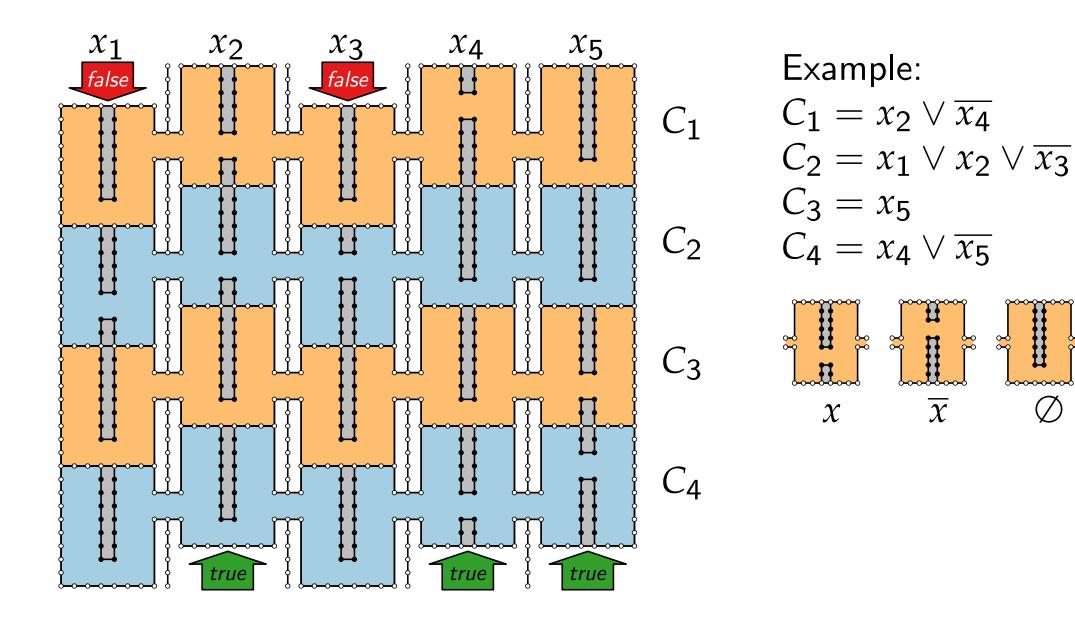


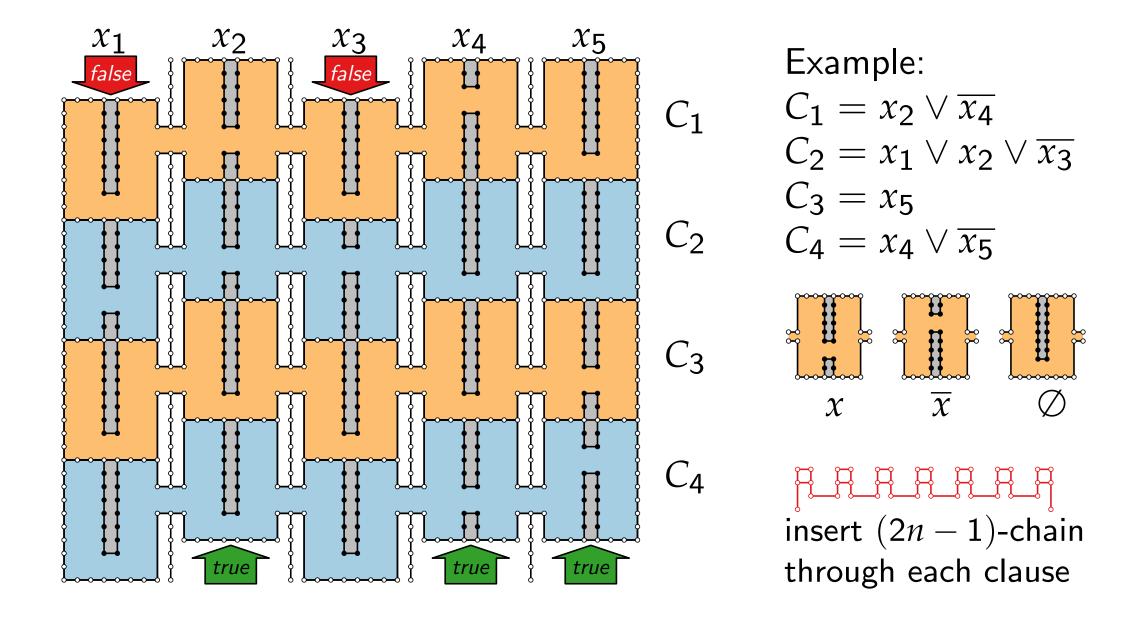


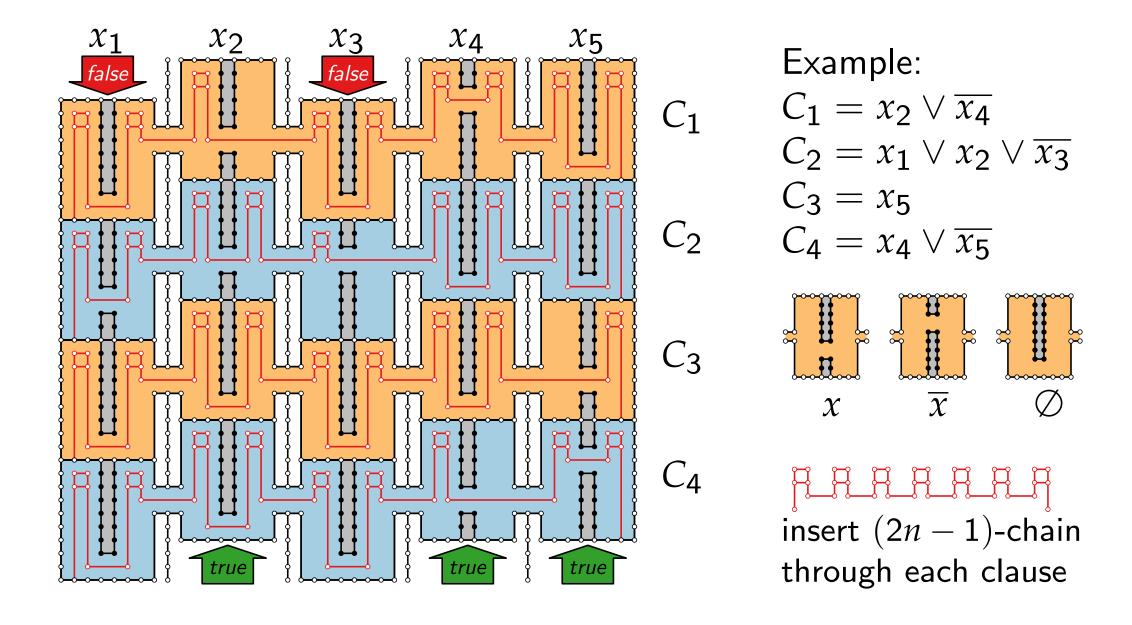


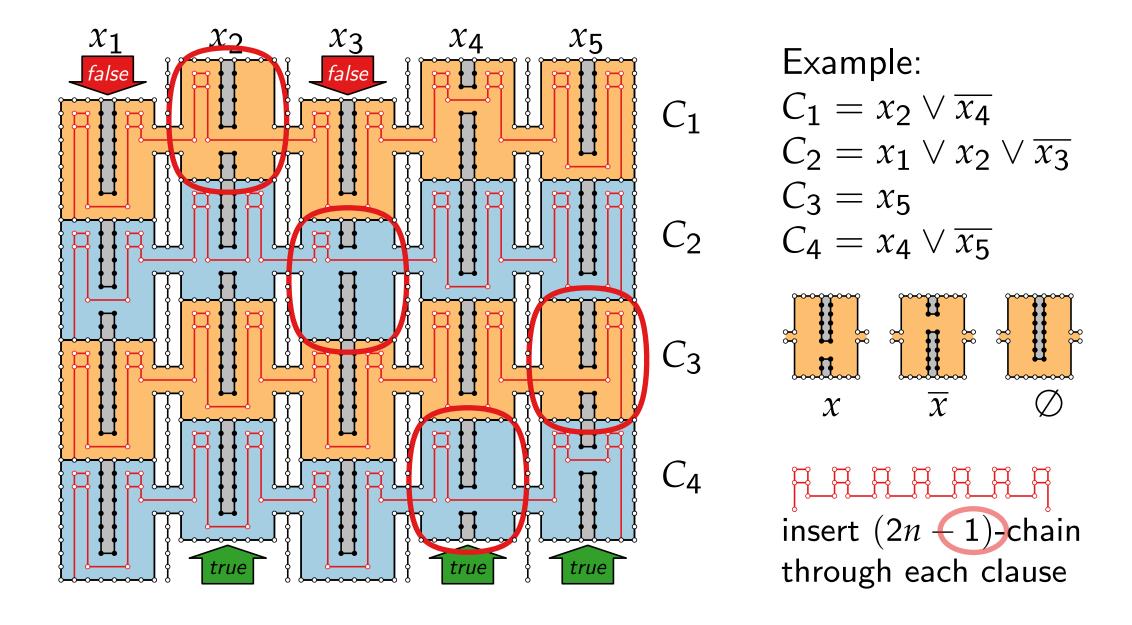




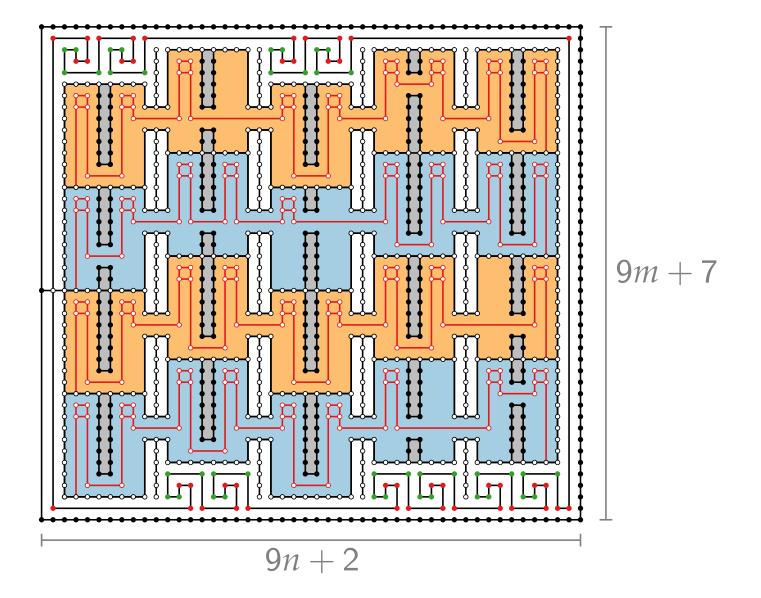




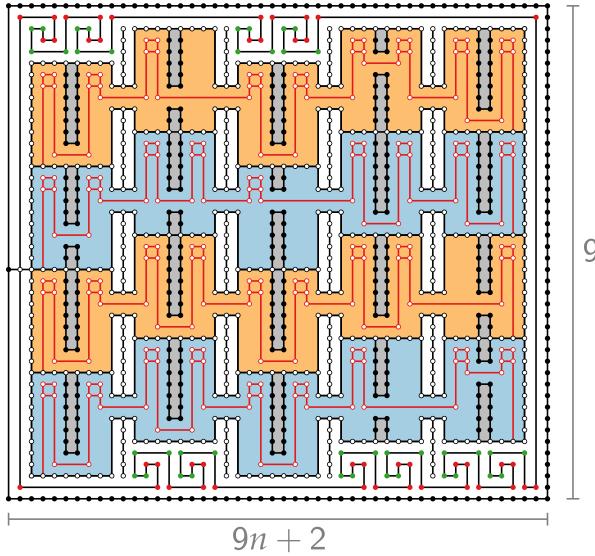




Complete reduction



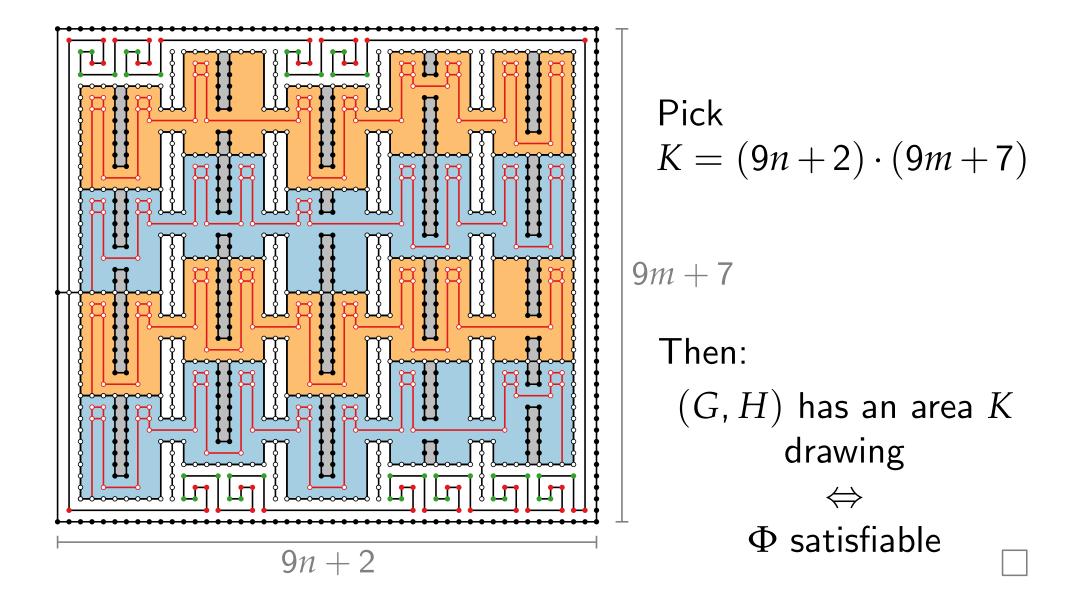
Complete reduction



Pick
$$K = (9n + 2) \cdot (9m + 7)$$

$$9m + 7$$

Complete reduction



Literature

- [GD Ch. 5] for detailed explanation
- [Tam87] Tamassia "On embedding a graph in the grid with the minmum number of bends" 1987 original paper on flow for bend minimisation
- [Pat01] Patrignani "On the complexity of orthogonal compaction" 2001—NP-hardness proof of compactification