Bölüm anahatları

  • Inhalt

    Die Aufgabe eine optimale Lösung für ein gegebenes Problem (Optimierungsproblem) zu ermitteln ist allgegenwärtig in der Informatik. Ein prominentes Beispiel ist das Problem des Handlungsreisenden, bei dem es darum geht eine kürzeste Rundreise zu finden, die eine vorgegebene Menge von Stationen besucht. Leider ist für eine Vielzahl solcher Probleme kein effizienter Algorithmus bekannt, der eine optimale Lösung ermittelt. In der Praxis verwendet man daher häufig Verfahren, die zwar nicht immer optimale aber dafür stets gute Lösungen liefern.

    In dieser Vorlesung beschäftigen wir uns mit Entwurfs- und Analysetechniken für solche Algorithmen. Wir betrachten Verfahren, die eine nachweisbare Approximationsgüte besitzen. Unter Approximationsgüte versteht man das Verhältnis zwischen der Qualität einer approximativen Lösung und einer optimalen Lösung. Zum Beispiel garantiert ein Algorithmus mit Approximationsgüte 2 für das Problem des Handlungsreisenden für jede Eingabe eine Rundreise zu finden, die höchstens doppelt so lang ist wie die kürzeste Rundreise (die im Allgemeinen nachweislich schwer zu berechnen ist).

    Bei Interesse der Teilnehmer*innen kann auch auf fortgeschrittene Techniken in diesem Themengebiet sowie die Grenzen von Approximierbarkeit eingegangen werden, welche anspruchsvollere mathematische Werkzeuge erfordern.


    Lernziele

    Am Ende dieses Kurses sollen die Teilnehmer*innen in der Lage sein, einfache Approximationsverfahren bezüglich ihrer Güte zu analysieren. Außerdem sollen sie grundlegende Entwurfstechniken, wie beispielsweise Greedy, lokale Suche, Skalierung, und LP-basierte Methoden, verstehen und anwenden können.


    Literatur zur Vorlesung


    Approximation Algorithms
    Vijay V. Vazirani
    Springer, 2003
    ISBN: 3-540-65367-8

    The Design of Approximation Algorithms
    David P. Williamson, David B. Shmoys
    Cambridge University Press, 2011
    ISBN: 0521195276
    Kostenlose Online-Version