Recap: Material from DS4HUM-1 |
Notebook: Python-Basics (HTML-Version) |
|
|
Notebook: Python-Basics 2 (HTML-Version) |
|
|
Notebook: Numpy (HTML-Version) |
|
|
Notebook: Acquisition and Preprocessing (HTML-Version) |
|
|
Notebook: Descriptive Statistics (HTML-Version) |
|
|
Notebook: Deep-dive into Seaborn (HTML-Version) |
|
|
Notebook: Classification (.ipynb) |
|
|
Slides: Text Classification and Clustering |
|
|
Notebook: Text processing (.ipynb) |
|
|
Slides: Lexical semantics |
|
|
Slides: Text representations |
|
|
Slides: Information Extraction |
|
|
Session 1: Introduction |
Jupyter Notebooks from DS4DH1 (HTML) |
|
|
L1: Course introduction |
|
|
Session 1.5: Recap |
Notebook: Numpy & Pandas (HTML-Version) |
|
|
Notebook: Seaborn (HTML-Version) |
|
|
Session 2: Corpus linguistics & lexicon-semantic resources |
Notebook: Corpus Linguistics (HTML-Version) |
|
|
Session 3: Topic Modeling |
TM: Slides |
|
|
TM: Notebook (ipynb) |
|
|
TM: Notebook (HTML) |
|
|
Session 4: Networks |
Notebook: Graphs & Network analysis (HTML-Version) |
|
|
Session 5: Evaluation & Statistical Testing |
Note: Evaluation & Significance Testing (HTML-Version) |
|
|
Session 8: Deep Learning |
Intro2ML (from DS4DH1) |
|
|
Intro2DL: Autoencoders, CNNs, RNNs |
|
|
Notebook: Deep Learning (HTML) |
|
|
Notebook: Deep Learning (ipynb) |
|
|
Session 9: Interpretability & Fairness |
Notebook: Explainability & Fairness (HTML) |
|
|
Notebook: Interpretability & Fairness (ipynb) |
|
|
Final Project |
Project data |
|
|
Final Project: Description |
|
|
Project report: LaTex Template |
|
|
Project report: Word template |
|
|
Project report: Overleaf LaTex template |
|