
Oops, I did it again - Funny Programming Fails

Lukas Iffländer Tim Hegemann
December 14, 2016

1

Funny Programming Fails

2

Outline

How to accidentally cheat PABS

Toyota - Nothing is Impossible, even Code that Kills

A Story of Knights and Farmers

Funny Takeouts

Broken by Optimization

Santas Sled

3

How to accidentally cheat PABS

The Assignment

Implement the MergeSort algorithm for arrays of int in Java

4

PABS Tests

@Test

public void testMergeSortSorted() {

int[] testArray = {1, 2, 3, 4, 5, 6};

MergeSort.sort(testArray);

assertArrayEquals("Array not sorted",

new int[] {1, 2, 3, 4, 5, 6}, testArray);

}

@Test

public void testMergeSortSortedDesc() {

int[] testArray = {6, 5, 4, 3, 2, 1};

MergeSort.sort(testArray);

assertArrayEquals("Array not sorted",

new int[] {1, 2, 3, 4, 5, 6}, testArray);

}

5

More PABS Tests

// testMergeSort:

int[] testArray = {1, 3, 7, 5, 2, 9};

// [...]

// testMergeSort2:

int[] testArray = {16, 22, 38, 27, 85, 38, 60};

// [...]

// testMergeSort3:

int[] testArray = {7, 75, 24, 20, 12, 54, 19,

42, 73, 81};

// [...]

// testMergeSort4:

int[] testArray = {8, 12, 69, 31, 49, 49, 40, 3, 53,

13, 84, 36, 86, 72, 89, 94, 70};

6

Seems legit ...

The following code passes ALL six tests:

7

Accepted Solution

public static void sort(int[] arr) {

if (arr.length < 2) return;

sort(arr, 0, arr.length - 1);

merge(arr, 0, arr.length / 2, arr.length - 1);

}

static void sort(int[] arr, int start, int end) {

if (end - start == 1) return;

int mid = (start + end + 1) / 2;

sort(arr, start, mid);

sort(arr, mid, end);

merge(arr, start, mid, end);

}

8

Accepted Solution

static void merge(int[] arr, int start,

int mid, int end) {

while (start < end || mid < end) {

if (arr[start] <= (arr[mid])) {

if (start < mid) start++;

else mid++;

} else {

int tmp = arr[mid];

arr[mid] = arr[start];

arr[start++] = tmp;

}

}

}

9

Accepted Solution

Try this example:
sort(new int[] {3, 4, 1, 2})

Invariant for merge(...) :
Both Parts are sorted ⇒ The whole becomes sorted

10

Debugging

// {3, 4, 1, 2} 0 2 3

merge(int[] arr, int start, int mid, int end) {

// true

while (start < end || mid < end) {

// 3 1

if (arr[start] <= (arr[mid])) {

if (start < mid) start++;

else mid++;

} else { // => swap(0, 2); start++

int tmp = arr[mid];

arr[mid] = arr[start];

arr[start++] = tmp;

}

}

}

11

Debugging

// {1, 4, 3, 2} 1 2 3

merge(int[] arr, int start, int mid, int end) {

// true

while (start < end || mid < end) {

// 4 3

if (arr[start] <= (arr[mid])) {

if (start < mid) start++;

else mid++;

} else { // => swap(1, 2); start++

int tmp = arr[mid];

arr[mid] = arr[start];

arr[start++] = tmp;

}

}

}

12

Debugging

// {1, 3, 4, 2} 2 2 3

merge(int[] arr, int start, int mid, int end) {

// true

while (start < end || mid < end) {

// 4 4

if (arr[start] <= (arr[mid])) {

if (start < mid) start++; // false

else mid++;

} else {

int tmp = arr[mid];

arr[mid] = arr[start];

arr[start++] = tmp;

}

}

}

13

Debugging

// {1, 3, 4, 2} 2 3 3

merge(int[] arr, int start, int mid, int end) {

// true

while (start < end || mid < end) {

// 4 2

if (arr[start] <= (arr[mid])) {

if (start < mid) start++;

else mid++;

} else { // => swap(2, 3); start++

int tmp = arr[mid];

arr[mid] = arr[start];

arr[start++] = tmp;

}

}

}

14

Debugging

// {1, 3, 2, 4} 3 3 3

merge(int[] arr, int start, int mid, int end) {

// false false

while (start < end || mid < end) {

//

if (arr[start] <= (arr[mid])) {

if (start < mid) start++;

else mid++;

} else {

int tmp = arr[mid];

arr[mid] = arr[start];

arr[start++] = tmp;

}

}

}

15

Conclusion

• This merge(...) method is totally crap!
• Result of sort({3, 4, 1, 2}) is {2, 1, 3, 4}

• Six JUnit tests failed to detect this!
• One of them testing a 17 elements array

16

Toyota - Nothing is Impossible, even
Code that Kills

Unintended Acceleration

17

Unintended Acceleration

• Toyota cars suddenly
accelerate at full power

• Breakting does NOT stop
the acceleration

• Only way to stop is
handbrake
Breaking distance up to
100 meters!!!

• 81 deaths so far!

18

Unintended Acceleration

• Toyota cars suddenly
accelerate at full power

• Breakting does NOT stop
the acceleration

• Only way to stop is
handbrake
Breaking distance up to
100 meters!!!

• 81 deaths so far!

18

First Investigation

• Acceleration code investigated by NASA
• Did not find a “smoking gun”
• But

• tight timeline
• limited information / access (trade secrets)
• no exoneration of the system

• Statement of U.S. Transportation Secretary:

“We enlisted the best and brightest engineers to study
Toyota’s electronic systems, and the verdict is in. There is
no electronic-based cause for unintended high-speed

acceleration in Toyotas.”

• Lesson: Politicians do not know jack shit about software.

19

First Investigation

• Acceleration code investigated by NASA
• Did not find a “smoking gun”
• But

• tight timeline
• limited information / access (trade secrets)
• no exoneration of the system

• Statement of U.S. Transportation Secretary:

“We enlisted the best and brightest engineers to study
Toyota’s electronic systems, and the verdict is in. There is
no electronic-based cause for unintended high-speed

acceleration in Toyotas.”

• Lesson: Politicians do not know jack shit about software.

19

First Investigation

• Acceleration code investigated by NASA
• Did not find a “smoking gun”
• But

• tight timeline
• limited information / access (trade secrets)
• no exoneration of the system

• Statement of U.S. Transportation Secretary:

“We enlisted the best and brightest engineers to study
Toyota’s electronic systems, and the verdict is in. There is
no electronic-based cause for unintended high-speed

acceleration in Toyotas.”

• Lesson: Politicians do not know jack shit about software.

19

Why did NASA not find Anything

• Software in one chip not analyzed at all.
Only main CPU software analyzed.

• Toyota told NASA they had EDAC (Error Detection and
Correction)

• But: There was no EDAC for the RAM

20

Why did NASA not find Anything

• Software in one chip not analyzed at all.
Only main CPU software analyzed.

• Toyota told NASA they had EDAC (Error Detection and
Correction)

• But: There was no EDAC for the RAM

20

Why did NASA not find Anything

• Software in one chip not analyzed at all.
Only main CPU software analyzed.

• Toyota told NASA they had EDAC (Error Detection and
Correction)

• But: There was no EDAC for the RAM

20

Code “Architecture”

256’600 Non-Commented Lines C Source
39’000 Non-Commented Lines C Headers (Main CPU only)

??? Proprietary Monitor Chip Software

Code only for acceleration!

21

Code “Architecture”

256’600 Non-Commented Lines C Source
39’000 Non-Commented Lines C Headers (Main CPU only)

??? Proprietary Monitor Chip Software

Code only for acceleration!

21

Software Testing @ Toyota

Testing only at vehicle level.

No

• Unit Testing
• Integration testing

22

Vehicle Testing not Enough

• Vehicle level testing useful and important
• Unexpected component interactions
• Environment influences in real-world application

• Complete testing at vehicle level unpractical
• Too many combinations of possible conditions, timings
• Too many possible sources for failures

• Two faults can counter each other
• Source of defects hard to locate

23

Toyota Coding Rules

• 11 of 35 rules suggested for road vehicles found in coding
rules

• Rules last updated 1998
• Those weren’t followed:
105 of 343 switch keywords without default

• 14 of 35 rules violated, 7’134 violations
• Macros
• Use of #undef

24

Static Code Analysis

• Coverity
97 variables declared but not referenced
5 include recurision

• Codesonar
2272 global variable declared with different types
333 cast alters value
99 condition contains side-effect
64 multiple declaration of global variable
22 uninitialized variables

• Uno
89 possibly uninitialized variable
2 array of 16 byte initialized with 17 bytes

25

Code Complexity

Spaghetti Code

• McCabe Cyclomatic Complexity Metric
• Number of “eyes” in flow control graph
• Unit tests harder with complex graph
• Over 50 considered “untestable”

• Toyota Code
• 67 functions with complexity over 50
• Throttle angle function: 146
1300 LOC, no test plan

26

Global Variables

• Ideal Number: ZERO
• Toyota: 9’273 - 11’528 global variables

6’971 local static sufficient
1’086 file static sufficient

27

Other Issues

• Poor isolation of task functions
• Many large functions
• Reviews informal and only on some modules
• No configuration management
• No bug tracking system
• No formal specification

28

Lesson

• Write code you can be confident of it being safe
• You should be able to sleep with the knowledge of
software being used in production.

29

Personal Story

30

Personal Story

31

A Story of Knights and Farmers

Singlethreaded Algorithm

32

Multithreaded Algorithm

33

Multithreaded Algorithm

The graphic rendered by the multithreaded algorithm is
corrupt:

• Some pixels have a different color than they should
• Some pixels have no color at all

⇒ We need sychronization :(

34

Synchronized Multithreaded Algorithm

private final Semaphore rendezvous;

private final Queue<Knight> knights;

// Implementation: ConcurrentLinkedQueue

public void runMT(int nThreads) {

ExecutorService pool =

Executors.newFixedThreadPool(nThreads);

do {

// do some preparation ... fill knight queue

for (int i = 0; i < nThreads; i++) {

pool.submit(this::run);

}

rendezvous.acquire(nThreads);

} while (/*work to do*/);

pool.shutdown();

} 35

Synchronized Multithreaded Algorithm

private void run() {

while (!knights.isEmpty()) {

Knight knight = knights.remove();

while (!knight.isSatisfied()) {

// do stuff ...

}

}

rendezvous.release();

}

36

Synchronized Multithreaded Algorithm

• The multithreaded variant of the algorithm works (same
output as the singlethreaded one)

• It is way faster (factor 2.3 on an Intel Core i3 [2C + HTT])

• Rendering a 1080p scene randomly fails...
• Rendering a 4K scene always fails
• DEADLOCK

37

Synchronized Multithreaded Algorithm

• The multithreaded variant of the algorithm works (same
output as the singlethreaded one)

• It is way faster (factor 2.3 on an Intel Core i3 [2C + HTT])
• Rendering a 1080p scene randomly fails...

• Rendering a 4K scene always fails
• DEADLOCK

37

Synchronized Multithreaded Algorithm

• The multithreaded variant of the algorithm works (same
output as the singlethreaded one)

• It is way faster (factor 2.3 on an Intel Core i3 [2C + HTT])
• Rendering a 1080p scene randomly fails...
• Rendering a 4K scene always fails

• DEADLOCK

37

Synchronized Multithreaded Algorithm

• The multithreaded variant of the algorithm works (same
output as the singlethreaded one)

• It is way faster (factor 2.3 on an Intel Core i3 [2C + HTT])
• Rendering a 1080p scene randomly fails...
• Rendering a 4K scene always fails
• DEADLOCK

37

Debugging

• Deadlock occurs on heavy load
• The only blocking structure is that semaphore we added
• Debugging prints tell us the semaphore stucks because of
too few release() calls

• ⇒ some threads never finish

38

Broken Synchronized Multithreaded Algorithm

private void run() {

// ----->

while (!knights.isEmpty()) {

Knight knight = knights.remove();

// <----- IS NOT ATOMIC (but should!)

while (!knight.isSatisfied()) {

// do stuff ...

}

}

rendezvous.release();

}

39

Fixed Synchronized Multithreaded Algorithm

private void run() {

Knight knight;

while ((knight = knights.poll()) != null) {

while (!knight.isSatisfied()) {

// do stuff ...

}

}

rendezvous.release();

}

40

Working 8K Example

41

Conclusions

• Threads can disappear when they throw an uncaught
exception or error

• Threads from ThreadPools do not even log something to
stdout/stderr when they die

• Check for exceptions on your own
• Use Rust

42

Funny Takeouts

Count it UP!

x = 0;

while x < 5

x = x + 1;

end

%do something with x ...

43

Abbreviations can be tricky!

try {

//...

} catch (SecurityException sex) {

//...

}

44

Redeclaration

public class A {
protected String foo;
public void setFoo(String fooVal);
public String getFoo();
public void doSomething() {
. . .
foo = x.munge();

. . .
}};

public class B extends A {
/* redeclared here for clarity */
protected String foo;
public void doSomething() {
. . .
foo = x.munge();

. . .
}}

45

Work for nothing?

int getRandomize(int randMax)

{

srand (time(NULL));

int randNum; = rand() % randMax + 1;

return 2;

}

46

OMG - why?

int multiplyBy10(int number)

{

std::stringstream str;

str << number << '0';

str >> number;

return number;

}

47

Correct result but ...

void get_tomorrow_date(struct timeval *date)

{

sleep(86400); // 60 * 60 * 24

gettimeofday(date, 0);

}

48

Like code structure?

// Not a joke, I've really seen that

for ($i=0 ; $i<3 ; $i++) {

switch($i) {

case 1:

// do some stuff

break;

case 2:

// do some stuff

break;;

case 3:

// do some stuff

break;

}

}

49

Double Kill

$('body *:visible').hide().show();

$('body *:not(:visible)').show().hide()

50

Broken by Optimization

Broken by Optimization

There is an ancient legend, every programmer knows, that
aggressive compiler optimizations break your code

51

Broken by Optimization

This legend is true

52

The example

#include "stdio.h"

int main() {

int i, j = 0;

for (i = 1; i > 0; i += i)

++j;

printf("%d\n", j);

}

53

Try the example

$ gcc example.c

$./a.out

31

$ �

54

At release...

$ gcc -O3 -Wall example.c

$./a.out

�

55

At release...

$ gcc -O3 -Wall example.c

$./a.out

^C

$ �

56

gcc -O0 -S example.c

#include "stdio.h"

int main() {
int i, j = 0;
for (i = 1; i > 0; i += i)

++j;
printf("%d\n", j);

}

main:
[...]

movl $0, -8(%rbp)
movl $1, -4(%rbp)
jmp .L2

.L3:
addl $1, -8(%rbp)
movl -4(%rbp), %eax
addl %eax, %eax
movl %eax, -4(%rbp)

.L2:
cmpl $0, -4(%rbp)
jg .L3
movl -8(%rbp), %eax
movl %eax, %esi
movl $.LC0, %edi
movl $0, %eax
call printf

[...]
57

gcc -O3 -S example.c

#include "stdio.h"

int main() {
int i, j = 0;
for (i = 1; i > 0; i += i)

++j;
printf("%d\n", j);

}

main:
.LFB11:

.cfi_startproc

.p2align 4,,10

.p2align 3
.L2:

jmp .L2
.cfi_endproc

[...]

58

Well then?

• OK - indeed -O3 is very aggressive

• Trying -O2 …
• Same result (even same assembler code!)
• Then -O1 ?!
• At least this one works:

59

Well then?

• OK - indeed -O3 is very aggressive
• Trying -O2 …

• Same result (even same assembler code!)
• Then -O1 ?!
• At least this one works:

59

Well then?

• OK - indeed -O3 is very aggressive
• Trying -O2 …
• Same result (even same assembler code!)

• Then -O1 ?!
• At least this one works:

59

Well then?

• OK - indeed -O3 is very aggressive
• Trying -O2 …
• Same result (even same assembler code!)
• Then -O1 ?!

• At least this one works:

59

Well then?

• OK - indeed -O3 is very aggressive
• Trying -O2 …
• Same result (even same assembler code!)
• Then -O1 ?!
• At least this one works:

59

gcc -O1 -S example.c

#include "stdio.h"

int main() {
int i, j = 0;
for (i = 1; i > 0; i += i)

++j;
printf("%d\n", j);

}

.main
[...]

movl $0, %esi
movl $1, %eax

.L2:
addl $1, %esi
addl %eax, %eax
testl %eax, %eax
jg .L2
movl $.LC0, %edi
movl $0, %eax
call printf
movl $0, %eax

[...]

60

What happened?

GCC signed integer overflow
optimization

$ gcc -O3 -fno-strict-overflow example.c produces nearly
the same assembler code as $ gcc -O1 example.c

61

What happened?

GCC signed integer overflow
optimization

$ gcc -O3 -fno-strict-overflow example.c produces nearly
the same assembler code as $ gcc -O1 example.c

61

Broken by Optimization

This legend is true
But it’s all your own fault :)

62

Santas Sled

Santas Sled

Now, at the end of this talk, let’s have some look at Santa
Claus’ sled management software:

• for every reindeer save their name and guide (the
reindeer before them)

• save the christmas present for every reindeer
• list all reindeers with the present they get

63

Class Reindeer

public class Reindeer {
private final String name;
private Reindeer guide;

public Reindeer(String name) {...}
public Reindeer getGuide() {...}
public void setGuide(Reindeer guide) {...}
public String getName() {...}

@Override public boolean equals(Object o) {
// [...]
return Objects.equals(name, reindeer.name) &&

Objects.equals(guide, reindeer.guide);
}

@Override public int hashCode() {
return Objects.hash(name, guide);

}
}

64

Class SantasPlan

public class SantasPlan {
Map<Reindeer, String> presents = new HashMap<>();
Reindeer leader;

void prepareForChristmas() {
Reindeer donner = new Reindeer("Donner");
leader = donner;
Reindeer comet = new Reindeer("Comet");
comet.setGuide(donner);
Reindeer blixen = new Reindeer("Blixen");
blixen.setGuide(comet);

presents.put(donner, "noise cancelling headphones");
presents.put(comet, "a fitness tracker");
presents.put(blixen, "new sunglasses");

}

65

Class SantasPlan

void foggyChristmasEve() {
Reindeer rudolph = new Reindeer("Rudolph");
leader.setGuide(rudolph);
leader = rudolph;
presents.put(rudolph, "tissues");

}

public static void main(String[] args) {
SantasPlan plan = new SantasPlan();
plan.prepareForChristmas();
plan.foggyChristmasEve();
for (Reindeer reindeer : plan.presents.keySet()) {

System.out.println(reindeer.getName() +
" gets " + plan.presents.get(reindeer));

}
}

}

66

Guess what happens?

1. Everything runs well

Seriously? We’re talking about FAILS!

2. Rudolph does not show up

Why shouldn’t he?

3. Just Rudolph is shown nobody else

Getting closer…

4. Every reindeer is printet but some loose their presents

You got it!

67

Guess what happens?

1. Everything runs well
Seriously? We’re talking about FAILS!

2. Rudolph does not show up

Why shouldn’t he?

3. Just Rudolph is shown nobody else

Getting closer…

4. Every reindeer is printet but some loose their presents

You got it!

67

Guess what happens?

1. Everything runs well
Seriously? We’re talking about FAILS!

2. Rudolph does not show up
Why shouldn’t he?

3. Just Rudolph is shown nobody else

Getting closer…

4. Every reindeer is printet but some loose their presents

You got it!

67

Guess what happens?

1. Everything runs well
Seriously? We’re talking about FAILS!

2. Rudolph does not show up
Why shouldn’t he?

3. Just Rudolph is shown nobody else
Getting closer…

4. Every reindeer is printet but some loose their presents

You got it!

67

Guess what happens?

1. Everything runs well
Seriously? We’re talking about FAILS!

2. Rudolph does not show up
Why shouldn’t he?

3. Just Rudolph is shown nobody else
Getting closer…

4. Every reindeer is printet but some loose their presents
You got it!

67

Output of main

Blixen gets null

Rudolph gets tissues

Donner gets null

Comet gets null

68

Where is our bug?

@Override

public int hashCode() {

return Objects.hash(name, guide);

}

69

Where is our bug?

• Adding Rudolph as Donner’s guide alters Donners
hashcode

• Altering Donner’s hashcode alters Comet’s hashcode …
• The HashMap stores the presents under the old
hashcodes

• But looks them up calculating the new ones

• ⇒ FAIL!

70

Where is our bug?

• Adding Rudolph as Donner’s guide alters Donners
hashcode

• Altering Donner’s hashcode alters Comet’s hashcode …
• The HashMap stores the presents under the old
hashcodes

• But looks them up calculating the new ones
• ⇒ FAIL!

70

Merry Christmas

71

	How to accidentally cheat PABS
	Toyota - Nothing is Impossible, even Code that Kills
	A Story of Knights and Farmers
	Funny Takeouts
	Broken by Optimization
	Santas Sled

