
Symbolisches Rechnen am

Computer

Was erwartet euch? Symbolisches Rechnen am Computer

1. Einfache Taschenrechner-Anwendung

2. Vom Eingabestring zum Expression-Tree

3. Beliebig große Zahlen

4. Eine kleine Demo-Anwendung
Anmerkungen zur

Präsentation werden in diesen

Boxen angegeben :)

17.12.2025 2 / 27

Einfacher Taschenrechner

Implementierung Einfacher Taschenrechner

1 Console.Write("Erste Zahl: ");
2 double a = Double.Parse(Console.ReadLine());
3 Console.Write("Operation: ");
4 string op = Console.ReadLine();
5 Console.Write("Zweite Zahl: ");
6 double b = Double.Parse(Console.ReadLine());
7

8 double result = op switch
9 {

10 "+" => a + b,
11 "-" => a - b,
12 "*" => a * b,
13 "/" => a / b,
14 _ => throw new NotImplementedException()
15 };
16

17 Console.WriteLine("Ergebnis: " + result);

Neuere C#-Versionen können

Script-artig mit sog. Top-Level-

Statements arbeiten

17.12.2025 4 / 27

Probleme Einfacher Taschenrechner

• Hoher Aufwand für Implementierung von Funktionen

‣ sin(𝑥), ⌊𝑥⌋, log𝑏(𝑥), 𝑥𝑦, …

• Kein Support für längere Terme

‣ (5 + 2)8 − 2 ⋅ 9

• Keine Variablen/Konstanten

‣ 𝑥 = 3𝑦

‣ 2 ⋅ 𝜋𝑒

⇒ Wir implementieren Parser für String-Eingaben

17.12.2025 5 / 27

Expression Parsing

Schritte Expression Parsing

1. Tokenization

2. Infix → Postfix

3. Expression-Tree

4. Evaluierung des Expression-Tree

17.12.2025 7 / 27

Tokenization Expression Parsing

Zerlegung der Eingabe in einzelne “Tokens”

Beispiel

3 ∗ sin (𝑥) ^ 2 − [log (𝑥 , 2)]

Zahl Operation Wort Klammerung Trenner

17.12.2025 8 / 27

Tokenization Expression Parsing

1 public class ExpressionToken
2 {
3 public ExpressionToken(TokenType type, string value, int startPos, int endPos)
4 {
5 this.StartPosition = startPos;
6 this.EndPosition = endPos;
7 this.Value = value;
8 this.Type = type;
9 }

10
11 public int Length { get => this.EndPosition - this.StartPosition + 1; }
12 public bool IsValid { get => this.Type.IsValid(); }
13 public int StartPosition { get; }
14 public int EndPosition { get; }
15 public TokenType Type { get; }
16 public string Value { get; }
17 }

17.12.2025 9 / 27

Tokenization Expression Parsing

Eingabe von links nach rechts lesen und Tokens erzeugen

1 public IEnumerable<ExpressionToken> Tokenize(string input) {
2

3 List<ExpressionToken> tokens = new List<ExpressionToken>();
4 input = input.Replace(" ", "").Replace("\t", "");
5 int pos = 0;
6
7 while(pos < input.Length) {
8 if(new [] { '(', '[', '{' }.Contains(input[pos])) {
9 tokens.Add(new ExpressionToken([...]));

10 } else if (new [] { ')', ']', '}' }.Contains(input[pos])) {
11 tokens.Add(new ExpressionToken([...]));
12 } else if ([...]) {
13 [...]
14 }
15 pos++;
16 }
17 }

17.12.2025 10 / 27

Tokenization Expression Parsing

Aufgepasst!

• Look-Ahead für mehrsymbolige Tokens (bspw. für “>=”)

• Post-Processing für Funktions-Tokens

• Post-Processing für unäres “−”

“Post-Processing für”:

• “Funktionstokens”: Anzahl Parameter feststellen

• “unäres −”: kann man auch im Shunting-Yard-

Algorithmus beachten, vorherige Zuordnung zu

zugehöriger Zahl ist aber einfacher :)

17.12.2025 11 / 27

Infix- → Postfix-Notation Expression Parsing

Infix-Notation?

Klassische Notation mit Operatoren zwischen Operanden

Bsp.: 3 ∗ sin(𝑥)^2 − [log(𝑥, 2)]

Postfix-Notation?

Operatoren folgen auf Operanden

‣ Evaluierung von rechts nach links

‣ Keine Klammerung nötig

Bsp.: 3 𝑥 sin 2 ^ ∗ 𝑥 2 log −

Präfix-Notation ist für unsere zwecke auch

klammerlos und kann einfach evaluiert werden,

Postfix-Notation ist aber der öfter verwendete

Standard

Auch als “Reverse-Polish-

Notation” bekannt

17.12.2025 12 / 27

Infix- → Postfix-Notation Expression Parsing

Gleich folgt ein Beispiel für den Shunting-Yard-Algorithmus, Folgendes ist hierzu wichtig:

• Eingabe ist der Infix-Ausdruck des Nutzenden

• Ausgabe ist die dazurehörige Postfix-Notation

• Eingabetokens werden nacheinander aus der Input-Liste genommen

‣ Operanden (Zahlen, Variablen, Konstanten) werden sofort in die Output-Queue geschoben

‣ Operatoren werden auf den Stack gelegt, falls

– dieser leer ist

– der neue Operator schwächer bindet, als der, der oben auf dem Stack liegt

– oder Präzedenz beider Operatoren gleich und Stack-Top ist linksassoziativ (klammerung

beginnt in Ausdruck mit mehreren dieser Operatoren implizit links, bspw. +, −, ⋅, /,

rechtsassoziativ sind bspw. +, ⋅, ^)

• sobald die Input-Liste und der Operator-Stack leer sind, endet der Algorithmus

• Klammern löschen sich gegenseitig aus ⇒ kein expliziter Klammerungstest nötig, da bei falscher

Klammerung immer eine Klammer auf dem Stack verbleibt ⇒ Fehlerzustand leicht erkennbar

17.12.2025 13 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3−2^)𝑥(sin∗3

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3−2^)𝑥(sin∗3

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3−2^)𝑥(sin∗3

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3−2^)𝑥(sin3

∗

Geringere Präzedenz

“Geringere Präzedenz”: der

Operator am Stack-Top bindet

schwächer, als der aktuelle

Operator in der Token-Liste

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3−2^)𝑥(3

sin

∗

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3−2^)𝑥3

(

sin

∗

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3−2^)3 𝑥

(

sin

∗

Löschen sich aus

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3−2^3 𝑥

sin

∗

Höhere Präzedenz

“Höhere Präzedenz”: der Operator

am Stack-Top bindet stärker, als

der aktuelle Operator in der

Token-Liste

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3−2^3 𝑥 sin

∗

Geringere Präzedenz

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3−23 𝑥 sin

^

∗

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3−3 𝑥 sin 2

^

∗

Höhere Präzedenz

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3−3 𝑥 sin 2 ^

∗

Höhere Präzedenz

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3−3 𝑥 sin 2 ^ ∗

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

33 𝑥 sin 2 ^ ∗

−

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3 𝑥 sin 2 ^ ∗ 3

−

Operator-Stack leeren

17.12.2025 14 / 27

Infix- → Postfix-Notation Expression Parsing

Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Operator-Stack

3 𝑥 sin 2 ^ ∗ 3 −

Tada, w
ir sind fertig

!

17.12.2025 14 / 27

Postfix-Notation → Expression-Tree Expression Parsing

Postfix-Notation: 3 𝑥 sin 2 ^ ∗ 𝑥 2 log −

−

log ∗

2 𝑥 ^ 3

2 sin

𝑥

Baumbildungsalgorithmus:

• Notation von links nach rechts durchgehen

• Operanden werden auf Stack gepackt

• Operatoren nehmen stets genau so viele Operanden vom Stack,

wie sie für ihre Operation benötigen

• Fehlerzustand, falls Operator nicht genügend Operanden auf

Stack hat oder, falls am Ende noch Operanden übrig bleiben

• Implementierung zu finden in: LunarMathematics/Expressions/

Parsing/PostfixToTreeParser.cs

17.12.2025 15 / 27

Was stellen wir damit an? Expression Parsing

• Ergebnis per Rekursion ermitteln

• Nach Variablen auflösen

• Scriptsprache basteln

• uvm. …

Scriptsprache bitte sinnvoll d.h. nicht so, wie

Stand 17.12.2025 bei der Präsentation gezeigt,

implementieren :)

−

log ∗

2 𝑥 ^ 3

2 sin

𝑥

Achtung! Paremeterreihenfolge bei Operationen/Funktionen beachten!

17.12.2025 16 / 27

Zahlendarstellung

Ziel Zahlendarstellung

• Möglichst große Zahlen darstellen können

• Beliebige Anzahl an Nachkommastellen

• Geringer Implementierungsaufwand

• Effiziente Rechenoperationen

Motivation ist, dass double (bzw. in C#

auch “decimal”) einen zu kleinen

Wertebereich für bspw. 100! besitzen;

… es folgen einige Schnapsideen :)

17.12.2025 18 / 27

Idee 1: String-Basiert Zahlendarstellung

1 public class Number {
2 private string decimalRepresentation = [...];
3

4 [...]
5 }

Probleme

• Arith. Algorithmen müssen vollständig selbst implementiert werden

• Division/Modulo kann unendlich lang dauern

• Laufzeit der arith. Algorithmen recht hoch

• Sehr großer RAM-Fußabdruck

17.12.2025 19 / 27

Idee 2: Zwei Byte-Arrays Zahlendarstellung

1 public class Number {
2 private byte[] fractionPart = [...];
3 private byte[] wholePart = [...];
4 private byte sign;
5

6 [...]
7 }

Probleme

• Arith. Algorithmen müssen vollständig selbst implementiert werden

• Division/Modulo kann unendlich lang dauern

• Manuelles Management der Array-Längen nötig

17.12.2025 20 / 27

Idee 3: Byte-Array mit Komma-Indikator Zahlendarstellung

1 public class Number {
2 private int commaPosition = [...];
3 private byte[] digits = [...];
4 private byte sign;
5

6 [...]
7 }

Probleme

• Arith. Algorithmen müssen vollständig selbst implementiert werden

• Division/Modulo kann unendlich lang dauern

• Operationen mit verschiedenen Komma-Positionen aufwändig

17.12.2025 21 / 27

Idee 4: Floatingpoint-Math Zahlendarstellung

Single Precision nach IEEE 754

Sign Exponent Mantisse

32Bits

1 Bit 8 Bits 23 Bits

1 public class Number {
2 private BigInteger mantissa = [...];
3 private int exponent = [...];
4

5 [...]
6 }

Verwende BigInteger-Implementierung der jeweiligen Sprache

Erste sinnvolle Idee, aber Trade-off bei

Präzision, da Fracions, wie 1
3 zu endlicher

Abfolge von 0.333… wird, statt als Fracion

beibehalten zu werden

17.12.2025 22 / 27

Exponentenverschiebung Zahlendarstellung

Warum?

Anwendung der Potenzgesetze:

3, 1234 ⋅ 103 + 5, 01 ⋅ 105 = 3, 1234 ⋅ 103 + 501 ⋅ 103 = (3, 1234 + 501) ⋅ 103

1 private static Tuple<Number, Number> WithAlignedExponents(Number a, Number b)
2 {
3 int d = Math.Abs(a.exponent - b.exponent);
4 if (a.exponent > b.exponent)
5 {
6 a = new Number(a.mantissa * BigInteger.Pow(Number.Base, d), b.exponent);
7 }
8 else if (a.exponent < b.exponent)
9 {

10 b = new Number(b.mantissa * BigInteger.Pow(Number.Base, d), a.exponent);
11 }
12 return new Tuple<Number, Number>(a, b);
13 }

Wichtig für richtige

Rechenergebnisse

17.12.2025 23 / 27

Rechenoperationen Zahlendarstellung

1 public static Number operator +(Number first, Number second)
2 {
3 (first, second) = Number.WithAlignedExponents(first, second);
4 return new Number(first.mantissa + second.mantissa, first.exponent);
5 }
6

7 public static Number operator -(Number first, Number second)
8 {
9 (first, second) = Number.WithAlignedExponents(first, second);

10 return new Number(first.mantissa - second.mantissa, first.exponent);
11 }
12

13 public static Number operator *(Number first, Number second)
14 {
15 int exp = first.exponent + second.exponent;
16 return new Number(first.mantissa * second.mantissa, exp);
17 }

Implementierung der Operationen zu sehen in: LunarMathematics/Numbers/Number.cs

17.12.2025 24 / 27

Rechenoperationen Zahlendarstellung

1 public static Number operator /(Number first, Number second)
2 {
3 if (second.mantissa.IsZero)
4 throw new DivideByZeroException();
5

6 const int scale = 100;
7 BigInteger scaled = first.mantissa * BigInteger.Pow(Number.Base, scale);
8 BigInteger quotient = scaled / second.mantissa;
9 int exponent = first.exponent - second.exponent - scale;

10

11 return new Number(quotient, exponent);
12 }
13

14 public static Number operator %(Number first, Number second)
15 {
16 (first, second) = Number.WithAlignedExponents(first, second);
17 return new Number(first.mantissa % second.mantissa, first.exponent);
18 }

Implementierung der Operationen zu sehen in: LunarMathematics/Numbers/Number.cs

17.12.2025 25 / 27

Finale Anmerkungen Zahlendarstellung

• Dieses Projekt ist aus reinem Interesse entstanden, in der heutigen Zeit würde man das Parsing

eher über spezialisierte Libraries abwickeln

• Richtige CAS-Systeme implementieren Zahlendatentypen, die periodische Brüche oder Vielfache

von Konstanten nicht auflösen müssen und daher bei langen Rechnungen bessere Ergebnisse

liefern

• Der Stand 17.12.2025 implementierte Math-Interpreter ist aus zeitlichen Gründen nicht gut

designed; ihm fehlt u.a. die Möglichkeit, mehrzeilige Skripte nativ zu parsen, sowie ein Stack,

sodass es zu keinen StackOverflow-Exceptions der CLR kommt

• StackOverflow-Exceptions der CLR sind non-recoverable, weshalb die Anwendung in jedem Fall

ohne Fehlerbehandlung abstürzt, falls eine solche Exception auftritt

• Mit einem eigenen Zahlendatentyp wird auch die erneute Implementierung oft genutzter

Funktionen (bspw. sin, cos, tan,
√

𝑥, …) nötig. Für bspw. die trigonometrischen Funktionen

existieren Polynomapproximationen

• Für manche Funktionen ist es außerdem sinnvoll bekannte Rechenregeln (bspw. Logarithmus-

Basiswechsel oder cos(𝑥) = sin(𝑥 + 𝜋
2)) anzuwenden, um Implementierungsaufwand zu sparen

• Neuimplementierungen der Funktionen zu finden in: LunarMathematics/Numbers/NMath.cs

17.12.2025 26 / 27

Projekt zu finden unter: Zahlendarstellung

Info-Gitlab

https://gitlab2.informatik.uni-wuerzburg.de/s457701/mathparser

GitHub

https://github.com/lunardoggo/LunarMathematics

Side-Note: Das Projekt kann sich seit der Präsentation weiterentwickelt haben :)

17.12.2025 27 / 27

https://gitlab2.informatik.uni-wuerzburg.de/s457701/mathparser
https://github.com/lunardoggo/LunarMathematics

	Symbolisches Rechnen am Computer
	Was erwartet euch?

	Einfacher Taschenrechner
	Implementierung
	Probleme

	Expression Parsing
	Schritte
	1. Tokenization
	2. Infix → Postfix
	3. Expression-Tree
	4. Evaluierung des Expression-Tree

	Tokenization
	Beispiel

	Tokenization
	Tokenization
	Eingabe von links nach rechts lesen und Tokens erzeugen

	Tokenization
	Aufgepasst!

	Infix- → Postfix-Notation
	Infix-Notation?
	Postfix-Notation?

	Infix- → Postfix-Notation
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard

	Postfix-Notation → Expression-Tree
	Was stellen wir damit an?

	Zahlendarstellung
	Ziel
	Idee 1: String-Basiert
	Probleme

	Idee 2: Zwei Byte-Arrays
	Probleme

	Idee 3: Byte-Array mit Komma-Indikator
	Probleme

	Idee 4: Floatingpoint-Math
	Exponentenverschiebung
	Warum?

	Rechenoperationen
	Rechenoperationen
	Finale Anmerkungen
	Projekt zu finden unter:
	Info-Gitlab
	GitHub

