Symbolisches Rechnen am
Computer

Was erwartet euch?

1. Einfache Taschenrechner-Anwendung
2. Vom Eingabestring zum Expression-Tree

3. Beliebig grof3e Zahlen

.) Anmerkungen zur
4. Eine kleine Demo-Anwendung Priasentation werden in diesen

Boxen angegeben :)

17.12.2025 2/27

Einfacher Taschenrechner

Implementierung

Console.Write("Erste Zahl: ");

double a = Double.Parse(Console.ReadlLine());
Console.Write("Operation: ");

string op = Console.ReadlLine();
Console.Write("Zweite Zahl: ");

double b = Double.Parse(Console.ReadlLine());

double result = op switch

{

© 00 N O U1 A W N =

Neuere C#-Versionen konnen
Script-artig mit sog. Top-Level-
Statements arbeiten

=
S

II+II =>
1]]

- =>
1k = k

II/ 1} => / ,
=> throw new NotImplementedException()

+

~-

=
-

=
N

’

=
w

Q9 Y
O T O T

[
S

=
(9]

}i

Console.WriteLine("Ergebnis: " + result);

=
N o

17.12.2025 4/27

Probleme

« Hoher Aufwand fiir Implementierung von Funktionen
» sin(x), |x],log, (x), zY, ...

« Kein Support fiir langere Terme
» (5+2)8—2-9

« Keine Variablen/Konstanten
» T = 3y
» 2 - 7°

= Wir implementieren Parser fiir String-Eingaben

17.12.2025

Expression Parsing

Schritte

1. Tokenization
2. Infix — Postfix
3. Expression-Tree

4. Evaluierung des Expression-Tree

17.12.2025 71727

Tokenization

Zerlegung der Eingabe in einzelne “Tokens”

Beispiel

S*Sin(x)’\Q—log(ZBQ)

& ‘{’, >
[=7 |

Zahl Wort Klammerung Trenner

17.12.2025

Tokenization

1 public class ExpressionToken

2 {

3 public ExpressionToken(TokenType type, string value, int startPos, int endPos)
o A

5 this.StartPosition = startPos;

6 this.EndPosition = endPos;

7 this.Value = value;

8 this.Type = type;

° 1}

10
11 public int Length { get => this.EndPosition - this.StartPosition + 1; }
12 public bool IsValid { get => this.Type.IsValid(); }
13 public int StartPosition { get; }
14 public int EndPosition { get; }
15 public TokenType Type { get; }
16 public string Value { get; }
17
}

17.12.2025 9/21

Tokenization

Eingabe von links nach rechts lesen und Tokens erzeugen

1 public IEnumerable<ExpressionToken> Tokenize(string input) {

2

3 List<ExpressionToken> tokens = new List<ExpressionToken>();
4 input = input.Replace(" ", "").Replace("\t", "");

5 int pos = 0;

6

7 while(pos < input.Length) {

8 if(new [1 { "(", '[', "{" }.Contains(input[pos])) {

9 tokens.Add(new ExpressionToken([...]));

10 } else if (new [] {)", 'I"', '}' }.Contains(input[pos])) {
11 tokens.Add(new ExpressionToken([...]));

12 } else if ([...]1) {

13 [...]

14 }

15 poS++;

16 }

17}

17.12.2025 10/ 27

Tokenization

Aufgepasst!

« Look-Ahead fiir mehrsymbolige Tokens (bspw. fiir “>=")

« Post-Processing fiir Funktions-Tokens

»

 Post-Processing fiir unares “—

“Post-Processing fiir”:
e “Funktionstokens”: Anzahl Parameter feststellen

« “unires —”: kann man auch im Shunting-Yard-
Algorithmus beachten, vorherige Zuordnung zu
zugehoriger Zahl ist aber einfacher :)

17.12.2025 11/ 27

Infix- — Postfix-Notation

Infix-Notation? Auch als “Reverse-Polish-
)) . . Notation” bekannt
Klassische Notation mit Operatoren zwischen Operanden

Bsp.: 3 *sin(x)” 2 — [log(z, 2)]

Postfix-Notation?

Operatoren folgen auf Operanden Prifix-Notation ist fiir unsere zwecke auch

klammerlos und kann einfach evaluiert werden,

g Evalulerung von rechts nach links Postfix-Notation ist aber der ofter verwendete

» Keine Klammerung notig Standard

Bsp.: 3 xsin 27 x z 2 log —

17.12.2025 12/ 27

Infix- — Postfix-Notation

Gleich folgt ein Beispiel fiir den Shunting-Yard-Algorithmus, Folgendes ist hierzu wichtig:
« Eingabe ist der Infix-Ausdruck des Nutzenden
« Ausgabe ist die dazurehorige Postfix-Notation
« Eingabetokens werden nacheinander aus der Input-Liste genommen
» Operanden (Zahlen, Variablen, Konstanten) werden sofort in die Output-Queue geschoben
» Operatoren werden auf den Stack gelegt, falls
— dieser leer ist
— der neue Operator schwicher bindet, als der, der oben auf dem Stack liegt

— oder Prizedenz beider Operatoren gleich und Stack-Top ist linksassoziativ (klammerung
beginnt in Ausdruck mit mehreren dieser Operatoren implizit links, bspw. 4+, —, -, /,
rechtsassoziativ sind bspw. +,-, ")

 sobald die Input-Liste und der Operator-Stack leer sind, endet der Algorithmus

« Klammern loschen sich gegenseitig aus = kein expliziter Klammerungstest notig, da bei falscher
Klammerung immer eine Klammer auf dem Stack verbleibt = Fehlerzustand leicht erkennbar

17.12.2025 13 /27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

S*Sin(:c)AQ—S

Output-Queue Input-Tokens

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

S*Sin(x)A2—3

Output-Queue Input-Tokens

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

3 *sin(x)AZ—B

Output-Queue Input-Tokens

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Geringere Prizedenz

“Geringere Prazedenz”: der
Operator am Stack-Top bindet
schwicher, als der aktuelle

% Operator in der Token-Liste

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

Output-Queue Input-Tokens

sin

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

3

Output-Queue Input-Tokens

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

Output-Queue Input-Tokens

Loschen sich aus

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

Output-Queue " Input-Tokens

“Hohere Priazedenz”: der Operator
am Stack-Top bindet stirker, als
der aktuelle Operator in der

% Token-Liste

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

3zl sin “H201—=113

Output-Queue nput-Tokens

Geringere Prizedenz

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

3 x sin

Output-Queue Input-Tokens

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

3 i SiIl 2 ot — 3
$““
o
o
Output-Queue Imput-Tokens
$““‘
“““‘
$“‘
“o“ Hohere Prazedenz
“““
“

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

3 x sin 2

Output-Queue

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

3| xisin 2| | * 1|3

Output-Queue Inpu#~ Tokens

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

3 xisin 27| % 3

Output-Queue Input-Tokens

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

3xisin 217 %13

Output-Queue Input-Tokens

Operator-Stack leeren

Operator-Stack

17.12.2025 14/ 27

Infix- — Postfix-Notation
Algorithmus: Shunting Yard

3 xisin 217

Output-Queue

1 ‘b’&‘&a

Operator-Stack

17.12.2025

Postfix-Notation — Expression-Tree

Postfix-Notation: |3 x |sin | 2| ~||* | x| 2| log | —

Baumbildungsalgorithmus:

/\
/\ /\
/\

sin
| o Implementierung zu finden in: LunarMathematics/Expressions/
Parsing/PostfixToTreeParser.cs

Notation von links nach rechts durchgehen

« Operanden werden auf Stack gepackt

Operatoren nehmen stets genau so viele Operanden vom Stack,
wie sie fiir ihre Operation benétigen

Fehlerzustand, falls Operator nicht geniigend Operanden auf
Stack hat oder, falls am Ende noch Operanden iibrig bleiben

X

17.12.2025

Was stellen wir damit an?

Ergebnis per Rekursion ermitteln

« Nach Variablen auflosen / \
Seri he bastel It u
o Scriptsprache basteln / \ / \
e UV ... 2 L /A\ 3
Scriptsprache bitte sinnvoll d.h. nicht so, wie 2 sin

Stand 17.12.2025 bei der Prisentation gezeigt, I
implementieren :)

Achtung! Paremeterreihenfolge bei Operationen/Funktionen beachten!

17.12.2025 16 / 27

Zahlendarstellung

Ziel

Moglichst grof3e Zahlen darstellen kénnen

Beliebige Anzahl an Nachkommastellen

Geringer Implementierungsaufwand

- Effiziente Rechenoperationen

Motivation ist, dass double (bzw. in C#
auch “decimal”) einen zu kleinen
Wertebereich fiir bspw. 100! besitzen;

... es folgen einige Schnapsideen :)

17.12.2025

Idee 1: String-Basiert

public class Number {
private string decimalRepresentation = [...];

[...]

Probleme

o Arith. Algorithmen miissen vollstindig selbst implementiert werden
« Division/Modulo kann unendlich lang dauern

o Laufzeit der arith. Algorithmen recht hoch

 Sehr grofler RAM-Fuflabdruck

17.12.2025 19/ 27

Idee 2: Zwei Byte-Arrays

public class Number {
private byte[] fractionPart = [...];
private byte[] wholePart = [...];
private byte sign;

[...]

Probleme

o Arith. Algorithmen miissen vollstdndig selbst implementiert werden
« Division/Modulo kann unendlich lang dauern

« Manuelles Management der Array-Langen noétig

17.12.2025 20/ 27

Idee 3: Byte-Array mit Komma-Indikator

public class Number {
private int commaPosition = [...];
private byte[] digits = [...];
private byte sign;

[...]

Probleme

o Arith. Algorithmen miissen vollstdndig selbst implementiert werden
« Division/Modulo kann unendlich lang dauern

« Operationen mit verschiedenen Komma-Positionen aufwandig

17.12.2025 21/27

Idee 4: Floatingpoint-Math

Single Precision nach IEEE 754

- 32Bits >
Sign Exponent Mantisse

4= | Bit =—— e 8 Bits > < 23 Bits >
1 public class Number { . .
, private BigInteger mantissa = [...]: Erste sinnvolle Idee, aber 'frade-oﬂ' bei
- orivate int exponent = [...]: Prézision, da Fracions, wie 3 zu endlicher
4 Abfolge von 0.333... wird, statt als Fracion
8 . [...] beibehalten zu werden
6

Verwende Biglnteger-Implementierung der jeweiligen Sprache

17.12.2025 22727

Exponentenverschiebung

Warum? Wichtig fiir richtige
Rechenergebnisse
Anwendung der Potenzgesetze:

3,1234 - 103 + 5,01 - 10° = 3,1234 - 103 + 501 - 103 = (3, 1234 + 501) - 103

private static Tuple<Number, Number> WithAlignedExponents(Number a, Number b)

: int d = Math.Abs(a.exponent - b.exponent);
if (a.exponent > b.exponent)
: a = new Number(a.mantissa * BigInteger.Pow(Number.Base, d), b.exponent);
lee if (a.exponent < b.exponent)
: b = new Number(b.mantissa * BigInteger.Pow(Number.Base, d), a.exponent);
ieturn new Tuple<Number, Number>(a, b);

}

17.12.2025 23/27

Rechenoperationen

public static Number operator +(Number first, Number second)

{
(first, second) = Number.wWithAlignedExponents(first, second);
return new Number(first.mantissa + second.mantissa, first.exponent);
}
public static Number operator -(Number first, Number second)
{
(first, second) = Number.wWithAlignedExponents(first, second);
return new Number(first.mantissa - second.mantissa, first.exponent);
}
public static Number operator *(Number first, Number second)
{
int exp = first.exponent + second.exponent;
return new Number(first.mantissa * second.mantissa, exp);
}

Implementierung der Operationen zu sehen in: LunarMathematics/Numbers/Number.cs

17.12.2025 24/27

Rechenoperationen

1 public static Number operator /(Number first, Number second)

2 {

3 if (second.mantissa.IsZero)

4 throw new DivideByZeroException();

5

6 const int scale = 100;

7 BigInteger scaled = first.mantissa * BigInteger.Pow(Number.Base, scale);
8 BigInteger quotient = scaled / second.mantissa;

9 int exponent = first.exponent - second.exponent - scale;

10

11 return new Number(quotient, exponent);

12 }

13

14 public static Number operator S%(Number first, Number second)

15 {

16 (first, second) = Number.wWithAlignedExponents(first, second);

17 return new Number(first.mantissa % second.mantissa, first.exponent);
18}

Implementierung der Operationen zu sehen in: LunarMathematics/Numbers/Number.cs

17.12.2025 25/27

Finale Anmerkungen

» Dieses Projekt ist aus reinem Interesse entstanden, in der heutigen Zeit wiirde man das Parsing
eher iiber spezialisierte Libraries abwickeln

« Richtige CAS-Systeme implementieren Zahlendatentypen, die periodische Briiche oder Vielfache
von Konstanten nicht auflésen miissen und daher bei langen Rechnungen bessere Ergebnisse
liefern

« Der Stand 17.12.2025 implementierte Math-Interpreter ist aus zeitlichen Griinden nicht gut
designed; ihm fehlt u.a. die Moglichkeit, mehrzeilige Skripte nativ zu parsen, sowie ein Stack,
sodass es zu keinen StackOverflow-Exceptions der CLR kommt

« StackOverflow-Exceptions der CLR sind non-recoverable, weshalb die Anwendung in jedem Fall
ohne Fehlerbehandlung abstiirzt, falls eine solche Exception auftritt

« Mit einem eigenen Zahlendatentyp wird auch die erneute Implementierung oft genutzter
Funktionen (bspw. sin, cos, tan, v/, ...) nétig. Fiir bspw. die trigonometrischen Funktionen
existieren Polynomapproximationen

o Fiir manche Funktionen ist es auflerdem sinnvoll bekannte Rechenregeln (bspw. Logarithmus-
Basiswechsel oder cos(xz) = sin(x + %)) anzuwenden, um Implementierungsaufwand zu sparen

o Neuimplementierungen der Funktionen zu finden in: LunarMathematics/Numbers/NMath.cs

17.12.2025 26 /27

Projekt zu finden unter:

Info-Gitlab GitHub

https://gitlab2.informatik.uni-wuerzburg.de/s457701/mathparser https://github.com/lunardoggo/LunarMathematics

Side-Note: Das Projekt kann sich seit der Prasentation weiterentwickelt haben :)

17.12.2025

https://gitlab2.informatik.uni-wuerzburg.de/s457701/mathparser
https://github.com/lunardoggo/LunarMathematics

	Symbolisches Rechnen am Computer
	Was erwartet euch?

	Einfacher Taschenrechner
	Implementierung
	Probleme

	Expression Parsing
	Schritte
	1. Tokenization
	2. Infix → Postfix
	3. Expression-Tree
	4. Evaluierung des Expression-Tree

	Tokenization
	Beispiel

	Tokenization
	Tokenization
	Eingabe von links nach rechts lesen und Tokens erzeugen

	Tokenization
	Aufgepasst!

	Infix- → Postfix-Notation
	Infix-Notation?
	Postfix-Notation?

	Infix- → Postfix-Notation
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard
	Algorithmus: Shunting Yard

	Postfix-Notation → Expression-Tree
	Was stellen wir damit an?

	Zahlendarstellung
	Ziel
	Idee 1: String-Basiert
	Probleme

	Idee 2: Zwei Byte-Arrays
	Probleme

	Idee 3: Byte-Array mit Komma-Indikator
	Probleme

	Idee 4: Floatingpoint-Math
	Exponentenverschiebung
	Warum?

	Rechenoperationen
	Rechenoperationen
	Finale Anmerkungen
	Projekt zu finden unter:
	Info-Gitlab
	GitHub

