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Motivation

Framework for layered |

Input: directed graph G

Consists of five phases:

1.

2.

cycle elimination

layer assignment

. Crossing minimiza
. node placement

. edge routing
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Motivation — Layered Orthogonal Edge Routing

B Distinguish between /¢ft-00ing and right-going edges.

B Only edges going in the same direction and overlapping partially
in x-dimension can cross twice.

= They induce a vertical order for the horizontal middle segments.

upper layer

lower layer
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Definition — Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

B vertex for each interval

B undirected edge if one interval contains another

B directed edge (towards the right interval) if the intervals overlap partially

b C
a b C
Mixed interval graph: \ /
B vertex for each interval a

B for each two overlapping intervals: undirected or arbitrarily directed edge



: : NP  bipartite graphs
Coloring Mixed Graphs A S

P trees  series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t.  undirected edge uv: c(u) # c(v),
x directed edge uv:  c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)



: : NP  bipartite graphs
Coloring Mixed Graphs A S

P trees  series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t.  undirected edge uv: c(u) # c(v),
x directed edge uv:  c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

Directed acyclic graphs (only directed edges):
B sort topologically, color greedily (in linear time)



Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges
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Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Hence, for every step S;, all intervals contain v;.
(otherwise they would have a directed edge to v;)

coloring c
B Claim: for any two steps S; and S, V) gresseeseemsemsensensnens A
every pair of intervals is adjacent —— 50
in the transitive closure G . 01 po— 351
()
= §=US;is a clique in G T—}; 52
B — 3
= S alone requires V4 swmwwani
. — T S, 2
m colors in G. 5 } .



Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof. Wlo.g, uNw = and i < /.

Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.

UNv1 #=O — 1< j</
wNoy_1 #D unw=0p I <k<{ indices
V) seeseneeseneenensesenses
By definition, u N v = @. ul }S
= u and v; overlap = (vj,u) € G = i
)

Similarly, (w,vy) € G.

If j <k, then (vy,v;) € G™.

It j > k, then w overlaps v;.

e . : S
Transitivity = claim. e — } ¢ \/



Conclusion and|Open Problems| =~ °— ¢ b N { ol

We have introduced theconcept of directional interval graphs.
27? Reviewer: Consider containment interval graphs!
A simple greedy algorithm colors these graphs optimally in O(nlogn) time.

In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks.

right-going edges yields af2-a rox1mat1on or the ¥ (RSSO P | ------
al-g0INg €dg pproximatonyor the - |
number of tracks/|(bidirectional interval graphs) ------ ‘ ----- T — e

can we do better?

In our paper, we present a Constructwealgonthm for recogni-

zing(directional interval graphs,)which is based on PQ-trees.

bidirectional?
For the more general case of mixed interval graphs, coloring is NP-hard.
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Some Observation about Interval Containment Graphs

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C|M(Z)] is a proper interval graph — no interval contains another interval.
Also note that UM(Z) = UZ.
Let R be an inclusion-wise minimal subset of M(Z) such that YR = |JZ.

Claim. C[R] is an undirected linear forest.
Proof.  C|R] is proper = contains no induced K; 3 and no induced C, for ¢ > 4.

[t remains to show that C[R] contains no triangle. ./
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A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.
If R =7, we are done (using only w many colors), so we assume Z \ R # @.
Let G' :=C|Z \ R].
Claim. w(G") <w —1.
Proof.  Suppose that there is a clique S in G’ of size w.

Helly property of intervals = (S #=®. Letp € NS.

Pick an r € R that contains p. = SU {r} is a clique of size w + 1 in G.ﬁ

Induction = G’ admits a coloring f, using at most 2 - w(G’) — 1 colors.

With f; and f,, we construct a coloring f of G using colors {1,...,2w — 1}.
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An Inductive Coloring

* *
- .>->. _ '|'—|''>»>-»-» = > -
(fl(x) if x € R,

Let f(x) = <

| fo(x) +2  else.

This defines a coloring of G:

1.If xNy # @, then f(x) # f(y). Check: x,y € R; x,y # R; x € Rand y # R.

2.1f x Cy, then f(x) > f(y). Observe that x # R = f(x) >3
Suppose f(y) > f(x) =y # R, but f2(x) > fa(y). 4

Corollary. There is a 2-approximation for coloring interval containment graphs.
Given 7 intervals, the algorithm runs in O(nlogn) time.



A Lower Bound Example

Proposition. There is an infinite family (Z, ), > of sets of intervals with
Z,| =3-2"1 -2, x(C|Z,]) =2n — 1, and w(C[Z,]) = n.

This yields lim x(Z,)/w(Z,) = 2.

n—oo
L L L L L L L L
L L L L
L L L L
- -
- -
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Computational Complexity

Theorem. Given a set Z of intervals and a positive integer k,
it is NP-hard to decide whether x(C[Z]) < k.

Proof. By reduction from (exact) 3-SAT, where each clause has exactly 3 literals.

x talse x true
Let 9 = C; ACy A--- ACyy be an instance of 3-SAT with variables {x1,x2,...,x,},

and let H = 5m + 1. We construct a set I(p of intervals.



Clause Gadget

xq1 false xp false x3 true x4 false x5 false

Example for (ﬂXZ V xg V x5) A (x1 V x3 V X4) A (—lx1 V XV X3).

The graph C|Z,] admits a coloring with H colors < ¢ is satisfiable.
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Bidirectional Intervals

N e’

mixed intersection graph of bidirectional intervals
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X1 true X> true x3 true X4 true
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Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly x(G) > w(G).

Let A(G) denote the length of a longest directed path in G.
Then clearly x(G) > A(G) +1. Hence, x(G) > max{w(G),A(G) 4+ 1}.

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Our constructive proof yields a min{w(G), A(G) + 1}-approximation algorithm.
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A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.

If {x,y} is an edge of G, then ¢(x) # c(y) and hence, f(x) # f(y).
If (x,y) is an arc of G, then /(x) < £(y) and hence, f(x) < f(y).
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A Lower Bound Example

Proposition. There is an infinite family (Gg)x>1 of mixed interval graphs with
V(Gi)| = 2k?, A(Gy) = k—1, w(Gy) = 2k, and
X(G) = (k+1) -k = (A(G) +2) - w(Gy) /2.

That is, our upper bound for x(G), (A(G) + 1) - w(G), is asymptotically tight.
Proof.
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Summary

Mixed interval Coloring Recognition
graph class complexity lower bound upper bound approximation

containment NP-hard 2w—1 2w—1 2 O(nm)
directional O(nlogn) 1 O(n?)
bidirectional NP-hard 2 open
general NP-hard (A4+2)w/2 (A+1)w min{w,A+1} O(n+m) [LB79]

Follow-up Work

B Given a mixed graph G with an orientation ¢, we can decide in linear time
whether G admits an oriented interval representation that complies with ¢.

B In particular, we can recognize directional interval graphs in linear time.
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