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Motivation
Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981).

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

Input: directed graph G Output: layered drawing of G

Consists of five phases:

we want orthogonal edges!
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cable plan
[Zink, Walter, Baumeister, Wolff; CGTA’22]
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Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ Distinguish between left-going and right-going edges.

■ Only edges going in the same direction and overlapping partially
in x-dimension can cross twice.

⇒ They induce a vertical order for the horizontal middle segments.
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Definition – Directional Interval Graphs
Interval representation: set of intervals

a
b c

Directional interval graph:

■ vertex for each interval

a

b c

■ undirected edge if one interval contains another

■ directed edge (towards the right interval) if the intervals overlap partially

Mixed interval graph:

■ vertex for each interval

■ for each two overlapping intervals: undirected or arbitrarily directed edge
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Coloring Mixed Graphs NP
P

Given a graph G, find a coloring c : V(G) → N s.t.
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ sort by left endpoints, color greedily (in linear time given sorted intervals)

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V(G) c(v) is minimized.

1
2
3

bipartite graphs

series-parallel graphstrees
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Coloring Mixed Graphs NP
P

Given a graph G, find a coloring c : V(G) → N s.t.
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ sort by left endpoints, color greedily (in linear time given sorted intervals)

Directed acyclic graphs (only directed edges):
■ sort topologically, color greedily (in linear time)

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V(G) c(v) is minimized.

1 2 2 3 3 4 3 5

bipartite graphs

series-parallel graphstrees
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Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

1
2
3
4
5
6

a
b

c

d

e
f

g
h
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Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

v0

v1v2
v3

v4

..
.

m

coloring c

1
2

︸︷︷
︸

S0

S1 ︸︷︷︸ S2︸︷︷︸ S3

︸︷︷︸ S4

︸︷︷︸

■ Hence, for every step Si, all intervals contain vi.
(otherwise they would have a directed edge to vi)

■ Claim: for any two steps Si and Sℓ,
every pair of intervals is adjacent
in the transitive closure G+.

⇒ S =
⋃

Si is a clique in G+.

⇒ S alone requires
m colors in G. □
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Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅ i < j < ℓ
i < k < ℓw ∩ vℓ−1 ̸= ∅ u ∩ w = ∅

⇒
By definition, u ∩ vj+1 = ∅.
⇒ u and vj overlap ⇒ (vj, u) ∈ G
Similarly, (w, vk) ∈ G.

indices

If j < k, then (vk, vj) ∈ G+.
If j ≥ k, then w overlaps vj.

Transitivity ⇒ claim.
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Conclusion and Open Problems

■ We have introduced the natural concept of directional interval graphs.

■ A simple greedy algorithm colors these graphs optimally in O(n log n) time.
n := # vertices

■ In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.)

a
b c

a

b c

⇒ Combining the drawings of left-going and
right-going edges yields a 2-approximation for the
number of tracks. (bidirectional interval graphs)

■ In our paper, we present a constructive O(n2)-time algorithm for recogni-
zing directional interval graphs, which is based on PQ-trees.

■ For the more general case of mixed interval graphs, coloring is NP-hard.
(Remark: NP-hardness requires both directed and undirected edges.)

can we do better?

bidirectional?

??? Reviewer: Consider containment interval graphs!
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Some Observation about Interval Containment Graphs

1
2
3
4
5

Let I be a set of intervals.
Let M(I) be the set of inclusion-wise maximum elements in I .

Let G = C[I ] be the containment graph induced by I .

Then C[M(I)] is a proper interval graph – no interval contains another interval.

Also note that
⋃

M(I) = ⋃ I .

Let R be an inclusion-wise minimal subset of M(I) such that
⋃

R =
⋃ I .

Claim. C[R] is an undirected linear forest.
C[R] is proper ⇒ contains no inducedProof. K1,3 and no induced Cℓ for ℓ ≥ 4.
It remains to show that C[R] contains no triangle. ✓
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A 2-Approximation Algorithm for Coloring

Since C[R] is a linear forest, it admits a coloring f1 : R → {1, 2}.

If R = I , we are done (using only ω many colors), so we assume I \ R ̸= ∅.

Let G′ := C[I \ R].

Claim. ω(G′) ≤
Suppose that there is a clique S in G′ of size ω.Proof.
Helly property of intervals ⇒ ⋂

S ̸= ∅. Let p ∈ ⋂
S.

Pick an r ∈ R that contains p. ⇒ S ∪ {r} is a clique of size ω + 1 in G.

Induction ⇒ G′ admits a coloring f2 using at most 2 · ω(G′)− 1 colors.

With f1 and f2, we construct a coloring f of G using colors {1, . . . , 2ω − 1}.

ω − 1.

Theorem. For any set I of intervals,
the graph C[I ] admits a coloring with at most 2 · ω(C[I ])− 1 colors.

︷ ︸︸ ︷ω = clique number
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An Inductive Coloring

Let f (x) =

{
f1(x) if x ∈ R,
f2(x) + 2 else.

1
2
3
4
5

This defines a coloring of G:

1. If x ∩ y ̸= ∅, then f (x) ̸= f (y). Check: x, y ∈ R; x, y ̸= R; x ∈ R and y ̸= R.

2. If x ⊆ y, then f (x) > f (y). Observe that x ̸= R ⇒ f (x) ≥ 3
Suppose f (y) > f (x) ⇒ y ̸= R, but f2(x) > f2(y).

Corollary. There is a 2-approximation for coloring interval containment graphs.
Given n intervals, the algorithm runs in O(n log n) time.
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A Lower Bound Example
Proposition. There is an infinite family (In)n≥1 of sets of intervals with

|In| = 3 · 2n−1 − 2, χ(C[In]) = 2n − 1, and ω(C[In]) = n.

This yields lim
n→∞

χ(In)/ω(In) = 2.

1
2
3
4
5

7
6
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Computational Complexity
Theorem. Given a set I of intervals and a positive integer k,

it is NP-hard to decide whether χ(C[I ]) ≤ k.

Proof. By reduction from (exact) 3-Sat, where each clause has exactly 3 literals.

Let φ = C1 ∧ C2 ∧ · · · ∧ Cm be an instance of 3-Sat with variables {x1, x2, . . . , xn},
and let H = 5m + 1.

1

H

5i
5i+3

x false
1

H

5i
5i+3

x true

We construct a set Iφ of intervals.
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Clause Gadget

1

H

x1 false x2 false x3 true x5 false

5i

x4 false

Example for (¬x2 ∨ ¬x4 ∨ x5) ∧ (x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3).

The graph C[Iφ] admits a coloring with H colors ⇔ φ is satisfiable. □
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Bidirectional Intervals

x4 true
1

H

x1 true x3 true

5i

x2 true

Theorem. Given a set I of intervals, φ : I → {left, right}, and k ∈ N,
it is NP-hard to decide whether χ(B[I , φ]) ≤ k.

Proof sketch.

︸ ︷︷ ︸
mixed intersection graph of bidirectional intervals
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Mixed Interval Graphs
Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly χ(G) ≥ ω(G).

Let λ(G) denote the length of a longest directed path in G.

Then clearly χ(G) ≥ λ(G) + 1. Hence, χ(G) ≥ max{ω(G), λ(G) + 1}.

Theorem. Let G be a mixed interval graph without directed cycles.
Then χ(G) ≤ (λ(G) + 1) · ω(G).

Our constructive proof yields a min{ω(G), λ(G) + 1}-approximation algorithm.
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A Constructive Proof
Theorem. Let G be a mixed interval graph without directed cycles.

Then χ(G) ≤ (λ(G) + 1) · ω(G).

Proof. Let c : V → {1, 2, . . . , ω(U(G))} be an optimal coloring of U(G).

Define a mapping f . For a vertex x of G, let f (x) = ℓ(x) · ω(G) + c(x).

Note that 1 ≤ f (x) ≤ (λ(G) + 1) · ω(G). We claim that f colors G.

If {x, y} is an edge of G, then c(x) ̸= c(y) and hence, f (x) ̸= f (y).
If (x, y) is an arc of G, then ℓ(x) < ℓ(y) and hence, f (x) < f (y). □
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A Lower Bound Example
Proposition. There is an infinite family (Gk)k≥1 of mixed interval graphs with

|V(Gk)| = 2k2, λ(Gk) = k − 1, ω(Gk) = 2k, and
χ(Gk) = (k + 1) · k = (λ(Gk) + 2) · ω(Gk)/2.

That is, our upper bound for χ(G), (λ(G) + 1) · ω(G), is asymptotically tight.

Proof.

Ik,1 {

I ′
k,k}

Ik,k

I ′
k,1}

︷ ︸︸ ︷︷ ︸︸ ︷Ik I ′
k

{

x6 12 6k 12k 12k + 8
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Summary

Mixed interval Coloring Recognition
graph class complexity lower bound upper bound approximation

containment NP-hard 2ω−1 2ω−1 2 O(nm)
directional O(n log n) 1 O(n2)
bidirectional NP-hard 2 open
general NP-hard (λ+2)ω/2 (λ+1)ω min{ω, λ+1} O(n+m) [LB79]

Follow-up Work

■ In particular, we can recognize directional interval graphs in linear time.

■ Given a mixed graph G with an orientation φ, we can decide in linear time
whether G admits an oriented interval representation that complies with φ.
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