Coloring Mixed and Directional
Interval Graphs

Grzegorz Florian Ignaz Joachim Alexander Johannes
Gutowski Mittelstadt Rutter Spoerhase Wolltt Zink

2y Krakow

W Uniwersytet Julius-Maximilla.ns-
oy Y€ I UNIVERSITAT '
‘\/* Jagielloniski WURZBURG [L)J Al‘\é |g/A|% 5 SITAT

Motivation

Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981).

Motivation

Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981).
Input: directed graph G Output: layered drawing of G

Motivation

Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981).
Input: directed graph G Output: layered drawing of G

Consists of five phases:

Motivation

Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981).
Input: directed graph G Output: layered drawing of G
Consists of five phases:

1. cycle elimination d\'

2. layer assighment 5;

3. crossing minimization %

4. node placement @:
<

5. edge routing

Motivation

Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981).
Input: directed graph G Output: layered drawing of G
Consists of five phases:

1. cycle elimination d\'

2. layer assighment 5;

3. crossing minimization %

4. node placement @:
<

5. edge routing

Motivation

Framework for layered |

Input: directed graph G

Consists of five phases:

1.

2.

cycle elimination

layer assignment

. Crossing minimiza
. node placement

. edge routing

[EE G
e S SRR

T 0 s

T R

............

A bkt

eh et cugca
Hferel 1]

cable plan

Motivation — Layered Orthogonal Edge Routing

B [t suffices to consider each pair of consecutive layers individually.

Motivation — Layered Orthogonal Edge Routing

B [t suffices to consider each pair of consecutive layers individually.

upper layer

lower layer

Motivation — Layered Orthogonal Edge Routing

B [t suffices to consider each pair of consecutive layers individually.

B Positions of vertices are fixed.

upper layer

lower layer

Motivation — Layered Orthogonal Edge Routing

B [t suffices to consider each pair of consecutive layers individually.

B Positions of vertices are fixed.

B No two edges share a common end point (vertices have distinct ports).

T

IR

upper layer

lower layer

Motivation — Layered Orthogonal Edge Routing

B Draw each edge with at most two vertical and one horizontal line segments.

T

upper layer

lower layer

Motivation — Layered Orthogonal Edge Routing

B Draw each edge with at most two vertical and one horizontal line segments.

upper layer

lower layer

Motivation — Layered Orthogonal Edge Routing

B Draw each edge with at most two vertical and one horizontal line segments.

B Avoid overlaps and double crossings between the same pair of edges.

upper layer

lower layer

Motivation — Layered Orthogonal Edge Routing
B Draw each edge with at most two vertical and one horizontal line segments.

B Avoid overlaps and double crossings between the same pair of edges.

— upper layer

- lower layer

Motivation — Layered Orthogonal Edge Routing

B Draw each edge with at most two vertical and one horizontal line segments.

B Avoid overlaps and double crossings between the same pair of edges.

upper layer

lower layer

Motivation — Layered Orthogonal Edge Routing
B Draw each edge with at most two vertical and one horizontal line segments.

B Avoid overlaps and double crossings between the same pair of edges.

=y - - — upper layer

I - - lower layer

Motivation — Layered Orthogonal Edge Routing

B Draw each edge with at most two vertical and one horizontal line segments.

B Avoid overlaps and double crossings between the same pair of edges.

S

upper layer

lower layer

Motivation — Layered Orthogonal Edge Routing

B Draw each edge with at most two vertical and one horizontal line segments.

B Avoid overlaps and double crossings between the same pair of edges.

B Use as few horizontal intermediate layers (tracks) as possible.

S

upper layer

lower layer

Motivation — Layered Orthogonal Edge Routing
B Draw each edge with at most two vertical and one horizontal line segments.

B Avoid overlaps and double crossings between the same pair of edges.

B Use as few horizontal intermediate layers (tracks) as possible.

o pa— T - - o p— upper layer

= l = - . L alRL 3 lower layer

Motivation — Layered Orthogonal Edge Routing

B Draw each edge with at most two vertical and one horizontal line segments.

B Avoid overlaps and double crossings between the same pair of edges.

B Use as few horizontal intermediate layers (tracks) as possible.

upper layer

- lower layer

Motivation — Layered Orthogonal Edge Routing

B Draw each edge with at most two vertical and one horizontal line segments.

B Avoid overlaps and double crossings between the same pair of edges.

B Use as few horizontal intermediate layers (tracks) as possible.

upper layer

- lower layer

Motivation — Layered Orthogonal Edge Routing

B Distinguish between /¢ft-00ing and right-going edges.

T T T T T - T upper layer

- l - l - - [lower layer

Motivation — Layered Orthogonal Edge Routing

B Distinguish between /¢ft-00ing and right-going edges.

B Only edges going in the same direction and overlapping partially
in x-dimension can cross twice.

upper layer

l = - . lower layer

Motivation — Layered Orthogonal Edge Routing

B Distinguish between /¢ft-00ing and right-going edges.

B Only edges going in the same direction and overlapping partially
in x-dimension can cross twice.

= They induce a vertical order for the horizontal middle segments.

upper layer

lower layer

- 18

Detinition — Directional Interval Graphs

Interval representation: set of intervals

Definition — Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

Definition — Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

B vertex for each interval

Definition — Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

B vertex for each interval

B undirected edge if one interval contains another

a b\ C

Definition — Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

B vertex for each interval

B undirected edge if one interval contains another

B directed edge (towards the right interval) if the intervals overlap partially

b C

a %

a

Definition — Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

B vertex for each interval

B undirected edge if one interval contains another
B directed edge (towards the right interval) if the intervals overlap partially

b C

a b ‘
Mixed interval graph: \ /

a

Definition — Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

B vertex for each interval

B undirected edge if one interval contains another
B directed edge (towards the right interval) if the intervals overlap partially

b C

a b ‘
Mixed interval graph: \ /

B vertex for each interval a

Definition — Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

B vertex for each interval

B undirected edge if one interval contains another

B directed edge (towards the right interval) if the intervals overlap partially

b C
a b C
Mixed interval graph: \ /
B vertex for each interval a

B for each two overlapping intervals: undirected or arbitrarily directed edge

Coloring Mixed Graphs

Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

NP
P

Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Coloring Mixed Graphs

NP bipartite graphs
P

Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Coloring Mixed Graphs

NP bipartite graphs
P trees

Coloring Mixed Graphs

Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

. . bipartite graph
Coloring Mixed Graphs NF L Dparile graphs

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),

x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

: : NP bipartite graphs
Coloring Mixed Graphs A Ll

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

Directed acyclic graphs (only directed edges):

. . bipartite graph
Coloring Mixed Graphs NF L Dparile graphs

P trees series-parallel graphs

Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

Directed acyclic graphs (only directed edges):
B sort topologically, color greedily (in linear time)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

Directed acyclic graphs (only directed edges):
B sort topologically, color greedily (in linear time)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

1
Directed acyclic graphs (only directed edges):

B sort topologically, color greedily (in linear time)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

1 2
Directed acyclic graphs (only directed edges):

B sort topologically, color greedily (in linear time)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

Directed acyclic graphs (only directed edges):
B sort topologically, color greedily (in linear time)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

Directed acyclic graphs (only directed edges):
B sort topologically, color greedily (in linear time)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

Directed acyclic graphs (only directed edges):
B sort topologically, color greedily (in linear time)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

Directed acyclic graphs (only directed edges):
B sort topologically, color greedily (in linear time)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

Directed acyclic graphs (only directed edges):
B sort topologically, color greedily (in linear time)

: : NP bipartite graphs
Coloring Mixed Graphs A S

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

Directed acyclic graphs (only directed edges):
B sort topologically, color greedily (in linear time)

. . bipartite graph
Coloring Mixed Graphs NF L Dparile graphs

P trees series-parallel graphs

Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

Directional interval graphs:

Directed acyclic graphs (only directed edges):
B sort topologically, color greedily (in linear time)

. . bipartite graph
Coloring Mixed Graphs NF L Dparile graphs

P trees series-parallel graphs

Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

Directional interval graphs:

B recognition in O(n?) time n := # intervals

Directed acyclic graphs (only directed edges):
B sort topologically, color greedily (in linear time)

. . bipartite graph
Coloring Mixed Graphs NF L Dparile graphs

P trees series-parallel graphs

Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),
x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):
B sort by left endpoints, color greedily (in linear time given sorted intervals)

Directional interval graphs:

B recognition in O(n?) time n := # intervals

B coloring in O(nlogn) time by a greedy algorithm

Directed acyclic graphs (only directed edges):
B sort topologically, color greedily (in linear time)

. . bipartite graph
Coloring Mixed Graphs NF L Dparile graphs

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),

x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):

B sort by lett endpoints, color greedily (in linea: min. colorivals)
Directional interval graphs: ! >
B recognition in O(n?) time n := # intervals >|
1 2

B coloring in O(nlogn) time by a greedy algorithm

Directed acyclic graphs (only directed edges):
B sort topologically, color greedily (in linear time)

. . bipartite graph
Coloring Mixed Graphs NF L Dparile graphs

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),

x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):

B sort by lett endpoints, color greedily (in linea: min. colorivgls)
Directional interval graphs: ! >
B recognition in O(n?) time n := # intervals >|
1 2
B coloring in O(nlogn) time by a greedy algorithm
.............. - 3
R ——
-------- 1

Directed acyclic graphs (only directed edges):

min.-track assignment
B sort topologically, color greedily (in linear time)

. . bipartite graph
Coloring Mixed Graphs NF L Dparile graphs

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),

x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):

B sort by lett endpoints, color greedily (in linea: min. colorivgls)
Directional interval graphs: 1 s
B recognition in O(n?) time n := # intervals 1 N ,
B coloring in O(nlogn) time by a greedy algorithm
Mixed interval graphs: e -3
........ ?

Directed acyclic graphs (only directed edges):

min.-track assignment
B sort topologically, color greedily (in linear time)

. . bipartite graph
Coloring Mixed Graphs NF L Dparile graphs

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),

x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):

B sort by lett endpoints, color greedily (in linea: min. colorivals)
Directional interval graphs: 1 s
B recognition in O(n?) time n := # intervals 1 N ,
B coloring in O(nlogn) time by a greedy algorithm
Mixed interval graphs: e -3
R ——

B coloring is NP-complete

Directed acyclic graphs (only directed edges):

min.-track assignment
B sort topologically, color greedily (in linear time)

. . bipartite graph
Coloring Mixed Graphs NF L Dparile graphs

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),

x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):

B sort by lett endpoints, color greedily (in linea: min. colorivgls)
Directional interval graphs: our contribution 1 3
B recognition in O(n?) time n := # intervals 1 N ,
B coloring in O(nlogn) time by a greedy algorithm
Mixed interval graphs: e -3
R —-

B coloring is NP-complete

Directed acyclic graphs (only directed edges):

min.-track assignment
B sort topologically, color greedily (in linear time)

. . bipartite graph
Coloring Mixed Graphs NF L Dparile graphs

P trees series-parallel graphs
Given a graph G, find a coloring c¢: V(G) — IN s.t. undirected edge uv: c(u) # c(v),

x directed edge uv: c(u) < c(v),
* MaXycy(c) €(v) is minimized.

Interval graphs (no directed edges):

B sort by lett endpoints, color greedily (in linea: min. colorivgls)
Directional interval graphs: our contribution 1 3
B recognition in O(n?) time n := # intervals >|
1 2

B coloring in O(nlogn) time by a greedy algorithm

Mixed interval graphs: “~ agenda for this talk 777 -3

B coloring is NP-complete

Directed acyclic graphs (only directed edges):

min.-track assignment
B sort topologically, color greedily (in linear time)

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint

2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

|E‘

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

- 10

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

-11

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

-12

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

-13

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let G be the transitive closure of G

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let G be the transitive closure of G

B Show: the size of a largest clique in G equals the maximum color m in c.

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let G be the transitive closure of G

B Show: the size of a largest clique in G equals the maximum color m in c.

= The coloring ¢ uses the minimum number of colors.

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let vy be an interval of maximum color, i.e., c(vy) = m.

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let vy be an interval of maximum color, i.e., c(vy) = m.

coloring c
00 A

—_ NI

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let vy be an interval of maximum color, i.e., c(vy) = m.

B Among all intervals having a directed edge to vy, coloring ¢
let v1 be the one with the largest color. 00 A m

—_ NI

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let vy be an interval of maximum color, i.e., c(vy) = m.

B Among all intervals having a directed edge to vy, coloring ¢
let v1 be the one with the largest color. 00 A m

—_ NI

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let vy be an interval of maximum color, i.e., c(vy) = m.

B Among all intervals having a directed edge to vy, coloring ¢
let v1 be the one with the largest color. 00 A m

B Similarly, define v, w.r.t. v1 and so on.

—_ NI

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let vy be an interval of maximum color, i.e., c(vy) = m.

B Among all intervals having a directed edge to vy, coloring ¢
let v1 be the one with the largest color. 00 A m

B Similarly, define v, w.r.t. v1 and so on.
U1
02

—_ NI

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let vy be an interval of maximum color, i.e., c(vy) = m.

B Among all intervals having a directed edge to vy, coloring ¢
let v1 be the one with the largest color. 00 A m
B Similarly, define v, w.r.t. v1 and so on.
(%) 91
U3

—_ NI

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let vy be an interval of maximum color, i.e., c(vy) = m.

B Among all intervals having a directed edge to vy, coloring ¢
let v1 be the one with the largest color. 00 A m

B Similarly, define v, w.r.t. v1 and so on.
U1
02

B By the greedy strategy, the colors 04

between c(v;) and ¢(v;,1) are
occupied by intervals containing Y4
the left endpoint of v;.

—_ NI

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let vy be an interval of maximum color, i.e., c(vy) = m.

B Among all intervals having a directed edge to vy, coloring ¢
let v1 be the one with the largest color. e A m

B Similarly, define v, w.r.t. v1 and so on.

B By the greedy strategy, the colors
between c(v;) and ¢(v;,1) are _
occupied by intervals containing U4 ===
the left endpoint of v;. '

—_ NI

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let vy be an interval of maximum color, i.e., c(vy) = m.

B Among all intervals having a directed edge to vy, coloring ¢
let v1 be the one with the largest color. V() v A m

B Similarly, define v, w.r.t. v1 and so on.

B By the greedy strategy, the colors —
between c(vl) and c(v;11) are —

the left endpoint of v;.

—_ NI

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Let vy be an interval of maximum color, i.e., c(vy) = m.

B Among all intervals having a directed edge to vy, coloring ¢
let v1 be the one with the largest color. V() v } A m
L
S ——
B Similarly, define v, w.r.t. v1 and so on. S S—)

B By the greedy strategy, the colors — ——
between c(vl) and c(v;41) are —— >S3

the left endpoint of v;.

—_ NI

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Hence, for every step S;, all intervals contain v;.

(otherwise they would have a directed edge to v;) ,
coloring c

—_ NI

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Hence, for every step S;, all intervals contain v;.

(otherwise they would have a directed edge to v;) ,
coloring c

. Claim: fOI‘ any tWO Steps Sl and Sf[UO. ‘ m
every pair of intervals is adjacent S0
in the transitive closure G . D e—" i N)

—_ NI

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Hence, for every step S;, all intervals contain v;.

(otherwise they would have a directed edge to v;) ,
coloring c

] Claim: fOI. any tWO StepS SZ and Sf/ 'UO. ‘ m
every pair of intervals is adjacent 50
in the transitive closure G . D s— N)

= S=JS;isacliquein G". U3
e } 53

—_ NI

Coloring Directional Interval Graphs

Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Hence, for every step S;, all intervals contain v;.
(otherwise they would have a directed edge to v;)

coloring c
B Claim: for any two steps S; and S, V) gresseeseemsemsensensnens A
every pair of intervals is adjacent —— 50
in the transitive closure G . 01 po— 351
()
= §=US;is a clique in G T—}; 52
B — 3
= S alone requires V4 swmwwani
. — T S, 2
m colors in G. 5 } .

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof of the Claim

Claim: Any two intervals 1 € S; and w € S, are adjacent in G™.
Proof. Wlo.g, uNw = and i < /.

indices

=S
N——
g

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof. Wlo.g, uNw = and i < /.
Let j be the largest index s.t. v; Nu # @.

indices

=S
N——
e

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof. Wlo.g, uNw = and i < /.

Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.

indices

=S
N——
e

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof. Wlo.g, uNw = and i < /.

Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.

uNovip #90

indices

=S
N——
e

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof. Wlo.g, uNw = and i < /.
Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.
uNovip #90
wNvy_1 # D indices

=S
N——
e

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof. Wlo.g, uNw = and i < /.

Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.

uNovip #90 —
WNU_1 D ,Aw—o indices

=S
N——
e

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof. Wlo.g, uNw = and i < /.
Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.
UNv1 =D — 1< j</
wWNUy_1#D Jawer L<k</{ indices

=S
N——
e

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof.

Wlog, uNw=Yandi < {.

Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.

UNv1 =D — 1< j</
WwNUy_1#0 rwee L<k</?

By definition, uNv; 1 = @.

indices

N——
e

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof.

Wlog, uNw=Yandi < {.

Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.
UNv1 =D — 1< j</
WwNUy_1#0 rwee L<k</?

By definition, uNv; 1 = @.

= u and v; overlap

indices

N——
e

- 10

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof.

Wlog, uNw=Yandi < {.
Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.
UNv1 =D — 1< j</
WNU_1 D Awee L<k</
By definition, uNv; 1 = @.

= u and v; overlap = (v;,u) € G

indices

-11

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof. Wlo.g, uNw = and i < /.

Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.

UNv1 =D — 1< j</
wWNUy_1#D Jawer L<k</{ indices
By deflnltlon, 4O 'U]-_|_1 _ @ 0, }

U - S;
= u and v; overlap = (vj,u) € G T)
Similarly, (w,vy) € G. R ¥ -

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof. Wlo.g, uNw = and i < /.

Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.

UNv1 =D — 1< j</
WNU_1 D Awee L<k</ indices
By deflnltlon, 4O 'U]-_|_1 _ @ 0, }

U = S;
= u and v; overlap = (vj,u) € G T)
Similarly, (w,vy) € G. R s: -

If j <k, then (vy,v;) € G™.

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof. Wlo.g, uNw = and i < /.

Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.

UNv1 #=O — 1< j</
wNoy_1 #D unw=0p I <k<{ indices
V) seeseneeseneenensesenses
By definition, u N v = @. ul }S
= u and v; overlap = (vj,u) € G = i
)

Similarly, (w,vy) € G.

If j <k, then (vy,v;) € G™.

e . : S
Transitivity = claim. e — } ¢ \/

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof. Wlo.g, uNw = and i < /.

Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.

UNv1 =D — 1< j</
WNU_1 D Awee L<k</ indices
By deflnltlon, 4O 'U]-_|_1 _ @ 0, }

U = S;
= u and v; overlap = (vj,u) € G T)
Similarly, (w,vy) € G. R ¥ -

If j <k, then (vy,v;) € G™.

It j > k, then w overlaps v;.

Transitivity = claim.

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof. Wlo.g, uNw = and i < /.

Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.

UNv1 =D — 1< j</
WNU_1 D Awee L<k</ indices
By deflnltlon, 4O 'U]-_|_1 _ @ 0, }

U = S;
= u and v; overlap = (vj,u) € G T)
Similarly, (w,vy) € G. R ¥ -

If j <k, then (vy,v;) € G™.

It j > k, then w overlaps v;.

Transitivity = claim.

Proof of the Claim

Claim: Any two intervals 1z € S; and w € Sy are adjacent in G™.

Proof. Wlo.g, uNw = and i < /.

Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.

UNv1 #=O — 1< j</
wNoy_1 #D unw=0p I <k<{ indices
V) seeseneeseneenensesenses
By definition, u N v = @. ul }S
= u and v; overlap = (vj,u) € G = i
)

Similarly, (w,vy) € G.

If j <k, then (vy,v;) € G™.

It j > k, then w overlaps v;.

e . : S
Transitivity = claim. e — } ¢ \/

Conclusion and Open Problems | 7~ ¢ b \/

4 a

B We have introduced the natural concept of directional interval graphs.

Conclusion and Open Problems | 7~ ¢ b \/

a a
B We have introduced the natural concept of directional interval graphs.

B A simple greedy algorithm colors these graphs optimally in O(nlogn) time.

Conclusion and Open Problems | 7~ ¢ b \/

a
B We have introduced the natural concept of directional interval graphs.
B A simple greedy algorithm colors these graphs optimally in O(n logn) time.

B In layered graph drawing, this corresponds to routing “lett-going” edges
orthogonally to the fewest horizontal tracks.

Conclusion and Open Problems | 7~ ¢ b \/

a a
B We have introduced the natural concept of directional interval graphs.

B A simple greedy algorithm colors these graphs optimally in O(nlogn) time.

B In layered graph drawing, this corresponds to routing “lett-going” edges
orthogonally to the fewest horizontal tracks.

= Combining the drawings of left-going and mmar = ma

right-going edges yields a 2-approximation for the - I [

number of tracks. (bidirectional interval graphs) - ‘ ----- o — T

Conclusion and Open Problems | 7~ ¢ b \/

a

B We have introduced the natural concept of directional interval graphs.
B A simple greedy algorithm colors these graphs optimally in O(n logn) time.

B In layered graph drawing, this corresponds to routing “lett-going” edges
orthogonally to the fewest horizontal tracks.

= Combining the drawings of left-going and mmar = ma

right-going edges yields a 2-approximation for the - Lo [

number of tracks. (bidirectional interval graphs) - ‘ ----- o — T

® In our paper, we present a constructive O(n?)-time algorithm for recogni-
zing directional interval graphs, which is based on PQ-trees.

Conclusion and Open Problems | 7~ ¢ b \/

a a
B We have introduced the natural concept of directional interval graphs.

B A simple greedy algorithm colors these graphs optimally in O(nlogn) time.

B In layered graph drawing, this corresponds to routing “lett-going” edges
orthogonally to the fewest horizontal tracks.

= Combining the drawings of left-going and mmar = ma

right-going edges yields a 2-approximation for the - Lo [

number of tracks. (bidirectional interval graphs) - ‘ ----- o — T

® In our paper, we present a constructive O(n?)-time algorithm for recogni-
zing directional interval graphs, which is based on PQ-trees.

B For the more general case of mixed interval graphs, coloring is NP-hard.

Conclusion and|Open Problems| =~ °— ¢ b \/ ol

B We have introduced the natural concept of directional interval graphs.

B A simple greedy algorithm colors these graphs optimally in O(nlogn) time.

B In layered graph drawing, this corresponds to routing “lett-going” edges
orthogonally to the fewest horizontal tracks.

= Combining the drawings of left-going and mmar = ma

right-going edges yields a 2-approximation for the - I [

number of tracks. (bidirectional interval graphs) - ‘ ----- o — T

® In our paper, we present a constructive O(n?)-time algorithm for recogni-
zing directional interval graphs, which is based on PQ-trees.

B For the more general case of mixed interval graphs, coloring is NP-hard.

Conclusion and|Open Problems| =~ °— ¢ b \/ ol

We have introduced the natural concept of directional interval graphs.

A simple greedy algorithm colors these graphs optimally in O(nlogn) time.

In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks.

right-going edges yields & 2-approx1mat1on or the { (ARSI |; -
number of tracks((bidirectional interval graphs)) ‘ ----- T T

can we do better?

In our paper, we present a constructive(O(n?)-time)algorithm for recogni-
zing directional interval graphs, which is based on PQ-trees.

For the more general case of mixed interval graphs, coloring is NP-hard.

Conclusion and|Open Problems| =~ °— ¢ b N { ‘

We have introduced the natural concept of directional interval graphs.

A simple greedy algorithm colors these graphs optimally in O(nlogn) time.

In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks.

right-going edges yields af2-a rox1mat1on or the ¥ (RSSO P | ------
al-g0INg €dg pproximatonyor the - |
number of tracks/|(bidirectional interval graphs) ------ ‘ ----- T — e

can we do better?

In our paper, we present a Constructwealgonthm for recogni-

zing(directional interval graphs,)which is based on PQ-trees.

bidirectional?
For the more general case of mixed interval graphs, coloring is NP-hard.

Conclusion and|Open Problems| =~ °— ¢ b \/ ol

We have introduced theconcept of directional interval graphs.
222

A simple greedy algorithm colors these graphs optimally in O(nlogn) time.

In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks.

right-going edges yields af2-a rox1mat1on or the ¥ (RSSO P | ------
al-g0INg €dg pproximatonyor the - |
number of tracks/|(bidirectional interval graphs) ------ ‘ ----- T — e

can we do better?

In our paper, we present a Constructwealgonthm for recogni-

zing(directional interval graphs,)which is based on PQ-trees.

bidirectional?
For the more general case of mixed interval graphs, coloring is NP-hard.

Conclusion and|Open Problems| =~ °— ¢ b \/ ol

We have introduced theconcept of directional interval graphs.
27? Reviewer: Consider containment interval graphs!
A simple greedy algorithm colors these graphs optimally in O(nlogn) time.

In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks.

right-going edges yields af2-a rox1mat1on or the ¥ (RSSO P | ------
al-g0INg €dg pproximatonyor the - |
number of tracks/|(bidirectional interval graphs) ------ ‘ ----- T — e

can we do better?

In our paper, we present a Constructwealgonthm for recogni-

zing(directional interval graphs,)which is based on PQ-trees.

bidirectional?
For the more general case of mixed interval graphs, coloring is NP-hard.

Conclusion and|Open Problems| =~ °— ¢ b N { ol

We have introduced theconcept of directional interval graphs.
27? Reviewer: Consider containment interval graphs!
A simple greedy algorithm colors these graphs optimally in O(nlogn) time.

In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks.

right-going edges yields af2-a rox1mat1on or the ¥ (RSSO P | ------
al-g0INg €dg pproximatonyor the - |
number of tracks/|(bidirectional interval graphs) ------ ‘ ----- T — e

can we do better?

In our paper, we present a Constructwealgonthm for recogni-

zing(directional interval graphs,)which is based on PQ-trees.

bidirectional?
For the more general case of mixed interval graphs, coloring is NP-hard.

Coloring and Recognizing
Mixed Interval Graphs

Grzegorz Konstanty Felix Pawet Alexander Johannes

Gutowski Szaniawski Klesen Rzazewski Wolltt Zink
|

. Julius-Maximilians-
Un%vﬁrsiyfft UNIVERSITAT \Varsaw University
v 25 oS WURZBURG of Technology
e Krakow

11-1

Some Observation about Interval Containment Graphs

Let 7 be a set of intervals.

11-2

Some Observation about Interval Containment Graphs

Let 7 be a set of intervals. Let G = C|Z]| be the containment graph induced by 7.

11-3

Some Observation about Interval Containment Graphs

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

11-4

Some Observation about Interval Containment Graphs

I _+
* *

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

11-5

Some Observation about Interval Containment Graphs

I _+
* *

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C[M(Z)] is a proper interval graph

11 -

Some Observation about Interval Containment Graphs

I _*
* *

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C|M(Z)] is a proper interval graph — no interval contains another interval.

11-7

Some Observation about Interval Containment Graphs

I _*
* *

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C|M(Z)] is a proper interval graph — no interval contains another interval.
Also note that |JM(Z) =

11-8

Some Observation about Interval Containment Graphs

I _*
* *

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C|M(Z)] is a proper interval graph — no interval contains another interval.
Also note that UM(Z) = UZ.

11-9

Some Observation about Interval Containment Graphs

I _*
* *

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C|M(Z)] is a proper interval graph — no interval contains another interval.

Also note that UM(Z) = UZ.
Let R be an inclusion-wise minimal subset of M(Z) such that YR = |JZ.

11-10

Some Observation about Interval Containment Graphs

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C|M(Z)] is a proper interval graph — no interval contains another interval.

Also note that UM(Z) = UZ.
Let R be an inclusion-wise minimal subset of M(Z) such that YR = |JZ.

11-11

Some Observation about Interval Containment Graphs

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C|M(Z)] is a proper interval graph — no interval contains another interval.
Also note that UM(Z) = UZ.

Let R be an inclusion-wise minimal subset of M(Z) such that JR = |JZ.
Claim. C[R] is

11-12

Some Observation about Interval Containment Graphs

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C|M(Z)] is a proper interval graph — no interval contains another interval.

Also note that UM(Z) = UZ.
Let R be an inclusion-wise minimal subset of M(Z) such that YR = |JZ.

Claim. C[R] is an undirected linear forest.

11-13

Some Observation about Interval Containment Graphs

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C|M(Z)] is a proper interval graph — no interval contains another interval.
Also note that UM(Z) = UZ.
Let R be an inclusion-wise minimal subset of M(Z) such that YR = |JZ.

Claim. C[R] is an undirected linear forest.
Proof. C|R] is proper =

11-14

Some Observation about Interval Containment Graphs

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C|M(Z)] is a proper interval graph — no interval contains another interval.
Also note that UM(Z) = UZ.
Let R be an inclusion-wise minimal subset of M(Z) such that YR = |JZ.

Claim. C[R] is an undirected linear forest.

Proof. C|R] is proper = contains no induced

11-15

Some Observation about Interval Containment Graphs

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C|M(Z)] is a proper interval graph — no interval contains another interval.
Also note that UM(Z) = UZ.
Let R be an inclusion-wise minimal subset of M(Z) such that YR = |JZ.

Claim. C[R] is an undirected linear forest.
Proof. C|R] is proper = contains no induced K; 3 and no induced C, for ¢ > 4.

11-16

Some Observation about Interval Containment Graphs

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C|M(Z)] is a proper interval graph — no interval contains another interval.
Also note that UM(Z) = UZ.
Let R be an inclusion-wise minimal subset of M(Z) such that YR = |JZ.

Claim. C[R] is an undirected linear forest.
Proof. C|R] is proper = contains no induced K; 3 and no induced C, for ¢ > 4.

[t remains to show that C|R] contains no triangle.

11-17

Some Observation about Interval Containment Graphs

Let 7 be a set of intervals. Let G = C|Z] be the containment graph induced by 7.
Let M(Z) be the set of inclusion-wise maximum elements in 7.

Then C|M(Z)] is a proper interval graph — no interval contains another interval.
Also note that UM(Z) = UZ.
Let R be an inclusion-wise minimal subset of M(Z) such that YR = |JZ.

Claim. C[R] is an undirected linear forest.
Proof. C|R] is proper = contains no induced K; 3 and no induced C, for ¢ > 4.

[t remains to show that C[R] contains no triangle. ./

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals,
the graph C|Z] admits a coloring with at most 2 - w(C[Z]) — 1 colors.

12 -

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

12 -

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.

12 -

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.

If R =7, we are done (using only w many colors), so we assume Z \ R # @.

12 - -

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.

If R =7, we are done (using only w many colors), so we assume Z \ R # @.
Let G' :=C|Z \ R].

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.

If R =7, we are done (using only w many colors), so we assume Z \ R # @.
Let G' :=C|Z \ R].
Claim. w(G") <

12 -

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.

If R =7, we are done (using only w many colors), so we assume Z \ R # @.
Let G' :=C|Z \ R].
Claim. w(G') <w —1.

12 -

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.

If R =7, we are done (using only w many colors), so we assume Z \ R # @.
Let G' :=C|Z \ R].
Claim. w(G") <w —1.

Proof. Suppose that there is a clique S in G’ of size w.

12 -

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.

If R =7, we are done (using only w many colors), so we assume Z \ R # @.

Let G' :=C|Z \ R].

Claim. w(G") <w —1.

Proof. Suppose that there is a clique S in G’ of size w.
Helly property of intervals = (S # @.

12 -10

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.

If R =7, we are done (using only w many colors), so we assume Z \ R # @.

Let G' :=C|Z \ R].

Claim. w(G") <w —1.

Proof. Suppose that there is a clique S in G’ of size w.
Helly property of intervals = (S #=®. Letp € NS.

12 -11

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.

If R =7, we are done (using only w many colors), so we assume Z \ R # @.

Let G' :=C|Z \ R].

Claim. w(G") <w —1.

Proof. Suppose that there is a clique S in G’ of size w.
Helly property of intervals = (S #=®. Letp € NS.

Pick an r € R that contains p.

12-12

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.

If R =7, we are done (using only w many colors), so we assume Z \ R # @.

Let G' :=C|Z \ R].

Claim. w(G") <w —1.

Proof. Suppose that there is a clique S in G’ of size w.
Helly property of intervals = (S #=®. Letp € NS.

Pick an r € R that contains p. = SU {r} is a clique of size w + 1 in G.

12-13

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.
If R =7, we are done (using only w many colors), so we assume Z \ R # @.
Let G' :=C|Z \ R].
Claim. w(G") <w —1.
Proof. Suppose that there is a clique S in G’ of size w.

Helly property of intervals = (S #=®. Letp € NS.

Pick an r € R that contains p. = SU {r} is a clique of size w + 1 in G.ﬁ

12-14

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.
If R =7, we are done (using only w many colors), so we assume Z \ R # @.
Let G' :=C|Z \ R].
Claim. w(G") <w —1.
Proof. Suppose that there is a clique S in G’ of size w.

Helly property of intervals = (S #=®. Letp € NS.

Pick an r € R that contains p. = SU {r} is a clique of size w + 1 in G.ﬁ

Induction = G’ admits a coloring f, using at most 2 - w(G’) — 1 colors.

12 -15

A 2-Approximation Algorithm for Coloring

Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.
If R =7, we are done (using only w many colors), so we assume Z \ R # @.
Let G' :=C|Z \ R].
Claim. w(G") <w —1.
Proof. Suppose that there is a clique S in G’ of size w.

Helly property of intervals = (S #=®. Letp € NS.

Pick an r € R that contains p. = SU {r} is a clique of size w + 1 in G.ﬁ

Induction = G’ admits a coloring f, using at most 2 - w(G’) — 1 colors.

With f; and f,, we construct a coloring f of G using colors {1,...,2w — 1}.

An Inductive Coloring

= N QW = O1

fl (X) if x € R,

Let f(x) = <\ fx) 12 clse.

An Inductive Coloring

— —— —— ——
[£1(x) if x € R,
fa(x) +2 else.

This defines a coloring of G:

Let f(x) = <

An Inductive Coloring

—_— —_——
—_— e — —— - ——
[£1(x) if x € R,
fa(x) +2 else.

This defines a coloring of G:

1.If xNy # @, then f(x) # f(y).
2. 1If x Cy, then f(x) > f(y).

Let f(x) = <

An Inductive Coloring

—_— —_——
—_— e — —— - ——
[£1(x) if x € R,
fa(x) +2 else.

This defines a coloring of G:

1.If xNy # @, then f(x) # f(y). Check: x,y € R; x,y # R; x € Rand y # R.
2. 1If x Cy, then f(x) > f(y).

Let f(x) = <

An Inductive Coloring

—_— e — —— - ——
[£1(x) if x € R,
fa(x) +2 else.

This defines a coloring of G:

1.If xNy # @, then f(x) # f(y). Check: x,y € R; x,y # R; x € Rand y # R.
2. 1If x Cy, then f(x) > f(y). Observe that x # R

Let f(x) = <

An Inductive Coloring

* *
- .>->. _ '|'—|''>»>-»-» = > -
(fl(x) if x € R,

Let f(x) = <

fo(x) +2 else.
This defines a coloring of G:

1.If xNy # @, then f(x) # f(y). Check: x,y € R; x,y # R; x € Rand y # R.
2.1f x Cy, then f(x) > f(y). Observe that x # R = f(x) >3

An Inductive Coloring

* *
- .>->. _ '|'—|''>»>-»-» = > -
(fl(x) if x € R,

Let f(x) = <

fo(x) +2 else.

This defines a coloring of G:

1.If xNy # @, then f(x) # f(y). Check: x,y € R; x,y # R; x € Rand y # R.
2.1f x Cy, then f(x) > f(y). Observe that x # R = f(x) >3
Suppose f(y) > f(x)

An Inductive Coloring

* *
- .>->. _ '|'—|''>»>-»-» = > -
(fl(x) if x € R,

Let f(x) = <

fo(x) +2 else.

This defines a coloring of G:

1.If xNy # @, then f(x) # f(y). Check: x,y € R; x,y # R; x € Rand y # R.
2.1f x Cy, then f(x) > f(y). Observe that x # R = f(x) >3
Suppose f(y) > f(x) =y # R

An Inductive Coloring

* *
- .>->. _ '|'—|''>»>-»-» = > -
(fl(x) if x € R,

Let f(x) = <

fo(x) +2 else.

This defines a coloring of G:

1.If xNy # @, then f(x) # f(y). Check: x,y € R; x,y # R; x € Rand y # R.
2.1f x Cy, then f(x) > f(y). Observe that x # R = f(x) >3
Suppose f(y) > f(x) =y # R, but fo(x) > fo(y).

13-10

An Inductive Coloring

* *
- .>->. _ '|'—|''>»>-»-» = > -
(fl(x) if x € R,

Let f(x) = <

fo(x) +2 else.

This defines a coloring of G:

1.If xNy # @, then f(x) # f(y). Check: x,y € R; x,y # R; x € Rand y # R.

2. 1If x Cy, then f(x) > f(y). Observe that x # R = f(x) >3
Suppose f(y) > f(x) =y # R, but f2(x) > fa(y). 4

13-11

An Inductive Coloring

* *
- .>->. _ '|'—|''>»>-»-» = > -
(fl(x) if x € R,

Let f(x) = <

| fo(x) +2 else.

This defines a coloring of G:

1.If xNy # @, then f(x) # f(y). Check: x,y € R; x,y # R; x € Rand y # R.

2.1f x Cy, then f(x) > f(y). Observe that x # R = f(x) >3
Suppose f(y) > f(x) =y # R, but f2(x) > fa(y). 4

Corollary. There is a 2-approximation for coloring interval containment graphs.
Given 7 intervals, the algorithm runs in O(nlogn) time.

A Lower Bound Example

A Lower Bound Example

Proposition. There is an infinite family (Z,), > of sets of intervals with
Z,| =3-2"1 -2, x(C|Z,]) =2n — 1, and w(C[Z,]) = n.

This yields lim x(Z,)/w(Z,) = 2.

n—oo

14 -

A Lower Bound Example

Proposition. There is an infinite family (Z,), > of sets of intervals with
Z,| =3-2"1 -2, x(C|Z,]) =2n — 1, and w(C[Z,]) = n.

This yields lim x(Z,)/w(Z,) = 2.

n—oo

14 -

A Lower Bound Example

Proposition. There is an infinite family (Z,), > of sets of intervals with
Z,| =3-2"1 -2, x(C|Z,]) =2n — 1, and w(C[Z,]) = n.

This yields lim x(Z,)/w(Z,) = 2.

n—oo

14 -

A Lower Bound Example

Proposition. There is an infinite family (Z,), > of sets of intervals with
Z,| =3-2"1 -2, x(C|Z,]) =2n — 1, and w(C[Z,]) = n.

This yields lim x(Z,)/w(Z,) = 2.

n—oo

A Lower Bound Example

Proposition. There is an infinite family (Z,), > of sets of intervals with
Z,| =3-2"1 -2, x(C|Z,]) =2n — 1, and w(C[Z,]) = n.

This yields lim x(Z,)/w(Z,) = 2.

n—oo

A Lower Bound Example

Proposition. There is an infinite family (Z,), > of sets of intervals with
Z,| =3-2"1 -2, x(C|Z,]) =2n — 1, and w(C[Z,]) = n.

This yields lim x(Z,)/w(Z,) = 2.

n—oo

A Lower Bound Example

Proposition. There is an infinite family (Z,), > of sets of intervals with
Z,| =3-2"1 -2, x(C|Z,]) =2n — 1, and w(C[Z,]) = n.

This yields lim x(Z,)/w(Z,) = 2.

n—oo
L L L L L L L L
L L L L
L L L L
- -
- -

Computational Complexity

Computational Complexity

Theorem. Given a set Z of intervals and a positive integer k,
it is NP-hard to decide whether x(C[Z]) < k.

Proof. By reduction from (exact) 3-SAT, where each clause has exactly 3 literals.

15 -

15 -

Computational Complexity

Theorem. Given a set Z of intervals and a positive integer k,
it is NP-hard to decide whether x(C[Z]) < k.

Proof. By reduction from (exact) 3-SAT, where each clause has exactly 3 literals.

Let 9 = C; ACy A--- ACyy be an instance of 3-SAT with variables {x1,x2,...,x,},
and let H = 5m + 1.

15 -

Computational Complexity

Theorem. Given a set Z of intervals and a positive integer k,
it is NP-hard to decide whether x(C[Z]) < k.

Proof. By reduction from (exact) 3-SAT, where each clause has exactly 3 literals.

x true x false
Let 9 = C; ACy A--- ACyy be an instance of 3-SAT with variables {x1,x2,...,x,},
and let H = 5m + 1.

15 -

Computational Complexity

Theorem. Given a set Z of intervals and a positive integer k,
it is NP-hard to decide whether x(C[Z]) < k.

Proof. By reduction from (exact) 3-SAT, where each clause has exactly 3 literals.

x talse x true
Let 9 = C; ACy A--- ACyy be an instance of 3-SAT with variables {x1,x2,...,x,},
and let H = 5m + 1.

15 -

Computational Complexity

Theorem. Given a set Z of intervals and a positive integer k,
it is NP-hard to decide whether x(C[Z]) < k.

Proof. By reduction from (exact) 3-SAT, where each clause has exactly 3 literals.

x talse x true
Let 9 = C; ACy A--- ACyy be an instance of 3-SAT with variables {x1,x2,...,x,},

and let H = 5m + 1. We construct a set I(p of intervals.

Clause Gadget

--m— A

l

x1 false x, false

X3 true

X4 true

x5 false

Example for (—lx2 V xg V .‘XI5) A (x1 V x3 V X4) N (—Ix1 V XV .‘XT3).

16 -

54

Clause Gadget

A

l

x1 false x, false x3 true x4 false x5 false

Example for (—lx2 V xg V .‘XI5) A (x1 V x3 V X4) N (—Ix1 V XV .‘XT3).

16 -

54

Clause Gadget

xq1 false xp false x3 true x4 false x5 false

Example for (ﬂXZ V xg V x5) A (x1 V x3 V X4) A (—lx1 V XV X3).

The graph C|Z,] admits a coloring with H colors < ¢ is satisfiable.

17 -

Bidirectional Intervals

Bidirectional Intervals

Theorem. Given a set Z of intervals, ¢: Z — {left, right}, and k € IN,
it is NP-hard to decide whether x(B|Z, ¢]) < k.

mixed intersection graph of bidirectional intervals

17 -

17 -

Bidirectional Intervals

N e’

mixed intersection graph of bidirectional intervals

T
=
3
n
Pl
N
~
)
-

AN

xq true x» false x3 true x4 true

17 -

Bidirectional Intervals

N e’

mixed intersection graph of bidirectional intervals

T
=
3
n
Pl
N
~
)
-

AN

X1 true X> true x3 true X4 true

Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

18 -

Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly x(G) > w(G).

18 -

Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly x(G) > w(G).

Let A(G) denote the length of a longest directed path in G.

Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly x(G) > w(G).

Let A(G) denote the length of a longest directed path in G.
Then clearly x(G) > A(G) + 1.

18 - ¢

Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly x(G) > w(G).

Let A(G) denote the length of a longest directed path in G.
Then clearly x(G) > A(G) +1. Hence, x(G) > max{w(G),A(G) 4+ 1}.

18 -

Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly x(G) > w(G).

Let A(G) denote the length of a longest directed path in G.
Then clearly x(G) > A(G) +1. Hence, x(G) > max{w(G),A(G) 4+ 1}.

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

18 -

Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly x(G) > w(G).

Let A(G) denote the length of a longest directed path in G.
Then clearly x(G) > A(G) +1. Hence, x(G) > max{w(G),A(G) 4+ 1}.

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Our constructive proof yields a min{w(G), A(G) + 1}-approximation algorithm.

A Constructive Proof

19 -

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Let G be the graph obtained from G by removing all edges.

19 -

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Let G be the graph obtained from G by removing all edges.
Clearly G is a DAG.

19 -

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Let G be the graph obtained from G by removing all edges.
Clearly G is a DAG. Partition V(G) into layers Ly, Ly, ... as follows.

19 - ¢

19 - -

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Let G be the graph obtained from G by removing all edges.
Clearly G is a DAG. Partition V(G) into layers Ly, Ly, ... as follows.

Let Lo be the set of sources in G, i.e., the vertices without incoming arcs.

19 -

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Let G be the graph obtained from G by removing all edges.
Clearly G is a DAG. Partition V(G) into layers Ly, Ly, ... as follows.

Let Lo be the set of sources in G, i.e., the vertices without incoming arcs.

Fori=1,2,..., let L; be the set of sources in G \ U;;(l) L;.

19 -

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).
Proof. Let G be the graph obtained from G by removing all edges.
Clearly G is a DAG. Partition V(G) into layers Ly, Ly, ... as follows.
Let Lo be the set of sources in G, i.e., the vertices without incoming arcs.
Fori=1,2,..., let L; be the set of sources in G \ U;;(l) L;.

Note that A(G) = max{i: L; # @}.

19 -8

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).
Proof. Let G be the graph obtained from G by removing all edges.
Clearly G is a DAG. Partition V(G) into layers Ly, Ly, ... as follows.
Let Lo be the set of sources in G, i.e., the vertices without incoming arcs.
Fori=1,2,..., let L; be the set of sources in G \ U;;(l) L;.
Note that A(G) = max{i: L; # @}.
For x € V(G), let £(x) € {0,...,A(G)} be the layer of x.

19 -

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Let G be the graph obtained from G by removing all edges.
Clearly G is a DAG. Partition V(G) into layers Ly, Ly, ... as follows.
Let Lo be the set of sources in G, i.e., the vertices without incoming arcs.
Fori=1,2,..., let L; be the set of sources in G \ U;;(l) L;.
Note that A(G) = max{i: L; # @}.
For x € V(G), let £(x) € {0,...,A(G)} be the layer of x.
Let U(G) be the underlying undirected graph of G.

19-10

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Let G be the graph obtained from G by removing all edges.
Clearly G is a DAG. Partition V(G) into layers Ly, Ly, ... as follows.
Let Lo be the set of sources in G, i.e., the vertices without incoming arcs.
Fori=1,2,..., let L; be the set of sources in G \ U;;(l) L;.
Note that A(G) = max{i: L; # @}.
For x € V(G), let £(x) € {0,...,A(G)} be the layer of x.
Let U(G) be the underlying undirected graph of G.
U(G) is an interval graph,

19-11

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Let G be the graph obtained from G by removing all edges.
Clearly G is a DAG. Partition V(G) into layers Ly, Ly, ... as follows.
Let Lo be the set of sources in G, i.e., the vertices without incoming arcs.
Fori=1,2,..., let L; be the set of sources in G \ U;;(l) L;.
Note that A(G) = max{i: L; # @}.
For x € V(G), let £(x) € {0,...,A(G)} be the layer of x.
Let U(G) be the underlying undirected graph of G.
U(G) is an interval graph, hence x (U(G)) = w(U(G)) = w(G).

19 -12

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).

U(G) is an interval graph, hence x (U(G)) = w(U(G)) = w(G).

19-13

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) =

19-14

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).

19-15

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (AM(G) + 1) - w(G).

19 - 16

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.

19-17

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.

If {x,y} is an edge of G, then

19 - 18

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.
If {x,y} is an edge of G, then c(x) # c(y)

19-19

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.
If {x,y} is an edge of G, then ¢(x) # c(y) and hence, f(x) # f(y).

19 - 20

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.

If {x,y} is an edge of G, then ¢(x) # c(y) and hence, f(x) # f(y).
If (x,vy) is an arc of G, then

19 -21

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.

If {x,y} is an edge of G, then ¢(x) # c(y) and hence, f(x) # f(y).
If (x,y) is an arc of G, then {(x) < /(y)

19 -22

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.

If {x,y} is an edge of G, then ¢(x) # c(y) and hence, f(x) # f(y).
If (x,y) is an arc of G, then /(x) < £(y) and hence, f(x) < f(y).

A Lower Bound Example

A Lower Bound Example

Proposition. There is an infinite family (Gg)x>1 of mixed interval graphs with
V(Gi)| = 2k?, A(Gy) = k—1, w(Gy) = 2k, and
X(G) = (k+1) -k = (A(G) +2) - w(Gy) /2.

That is, our upper bound for x(G), (A(G) + 1) - w(G), is asymptotically tight.

20-3

A Lower Bound Example

Proposition. There is an infinite family (Gg)x>1 of mixed interval graphs with
V(Gi)| = 2k?, A(Gy) = k—1, w(Gy) = 2k, and
X(G) = (k+1) -k = (A(G) +2) - w(Gy) /2.

That is, our upper bound for x(G), (A(G) + 1) - w(G), is asymptotically tight.
Proof.

it

Tre1 4 Y2y

20-4

A Lower Bound Example

Proposition. There is an infinite family (Gg)x>1 of mixed interval graphs with
V(Gi)| = 2k?, A(Gy) = k—1, w(Gy) = 2k, and
X(G) = (k+1) -k = (A(G) +2) - w(Gy) /2.

That is, our upper bound for x(G), (A(G) + 1) - w(G), is asymptotically tight.
Proof.

21 -1

Summary

Mixed interval Coloring Recognition
graph class complexity lower bound upper bound approximation

containment NP-hard 2w—1 2w—1 2 O(nm)
directional O(nlogn) 1 O(n?)
bidirectional NP-hard 2 open

general NP-hard (A+2)w/2 (A4+1)w min{w,A+1} O(n+m) [LB79]

21 -2

Summary

Mixed interval Coloring Recognition
graph class complexity lower bound upper bound approximation

containment NP-hard 2w—1 2w—1 2 O(nm)
directional O(nlogn) 1 O(n?)
bidirectional NP-hard 2 open

general NP-hard (A4+2)w/2 (A+1)w min{w,A+1} O(n+m) [LB79]

21 -3

Summary

Mixed interval Coloring Recognition
graph class complexity lower bound upper bound approximation

containment NP-hard 2w—1 2w—1 2 O(nm)
directional O(nlogn) 1 O(n?)
bidirectional NP-hard 2 open

general NP-hard (A4+2)w/2 (A+1)w min{w,A+1} O(n+m) [LB79]

21 -4

Summary

Mixed interval Coloring Recognition
graph class complexity lower bound upper bound approximation

containment NP-hard 2w—1 2w—1 2 O(nm)
directional O(nlogn) 1 O(n?)
bidirectional NP-hard 2 open
general NP-hard (A4+2)w/2 (A+1)w min{w,A+1} O(n+m) [LB79]

Follow-up Work

B Given a mixed graph G with an orientation ¢, we can decide in linear time
whether G admits an oriented interval representation that complies with ¢.

21 -5

Summary

Mixed interval Coloring Recognition
graph class complexity lower bound upper bound approximation

containment NP-hard 2w—1 2w—1 2 O(nm)
directional O(nlogn) 1 O(n?)
bidirectional NP-hard 2 open
general NP-hard (A4+2)w/2 (A+1)w min{w,A+1} O(n+m) [LB79]

Follow-up Work

B Given a mixed graph G with an orientation ¢, we can decide in linear time
whether G admits an oriented interval representation that complies with ¢.

B In particular, we can recognize directional interval graphs in linear time.

	Title page
	Proof of the Claim
	Title page
	Some Observation about Interval Containment Graphs
	A 2-Approximation Algorithm for Coloring
	An Inductive Coloring
	A Lower Bound Example
	Computational Complexity
	Clause Gadget
	Bidirectional Intervals
	Mixed Interval Graphs
	A Constructive Proof
	A Lower Bound Example
	Summary

