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B [t suffices to consider each pair of consecutive layers individually.

B Positions of vertices are fixed.

B No two edges share a common end point (vertices have distinct ports).
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Motivation — Layered Orthogonal Edge Routing

B Distinguish between /¢ft-00ing and right-going edges.

B Only edges going in the same direction and overlapping partially
in x-dimension can cross twice.

= They induce a vertical order for the horizontal middle segments.

upper layer

lower layer
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Definition — Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

B vertex for each interval

B undirected edge if one interval contains another

B directed edge (towards the right interval) if the intervals overlap partially

b C
a b C
Mixed interval graph: \ /
B vertex for each interval a

B for each two overlapping intervals: undirected or arbitrarily directed edge
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Theorem 1:

A coloring ¢ computed by GreedyColoring has the minimum number of colors.

Proof sketch:

B Hence, for every step S;, all intervals contain v;.
(otherwise they would have a directed edge to v;)

coloring c
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Wlog, uNw=Yandi < {.
Let j be the largest index s.t. v; Nu # @.
Let k be the smallest index s.t. v, Nw # @.
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Theorem. For any set Z of intervals, w = clique number

~

the graph C|Z]| admits a coloring with at most 2 - ZU(C Z]) — 1 colors.

Since C|R] is a linear forest, it admits a coloring f1: R — {1,2}.
If R =7, we are done (using only w many colors), so we assume Z \ R # @.
Let G' :=C|Z \ R].
Claim. w(G") <w —1.
Proof.  Suppose that there is a clique S in G’ of size w.

Helly property of intervals = (S #=®. Letp € NS.

Pick an r € R that contains p. = SU {r} is a clique of size w + 1 in G.ﬁ

Induction = G’ admits a coloring f, using at most 2 - w(G’) — 1 colors.

With f; and f,, we construct a coloring f of G using colors {1,...,2w — 1}.
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13-10

An Inductive Coloring

* *
- .>->. _ '|'—|''>»>-»-» = > -
(fl(x) if x € R,

Let f(x) = <

fo(x) +2 else.

This defines a coloring of G:

1.If xNy # @, then f(x) # f(y). Check: x,y € R; x,y # R; x € Rand y # R.

2. 1If x Cy, then f(x) > f(y). Observe that x # R = f(x) >3
Suppose f(y) > f(x) =y # R, but f2(x) > fa(y). 4



13-11

An Inductive Coloring

* *
- .>->. _ '|'—|''>»>-»-» = > -
(fl(x) if x € R,

Let f(x) = <

| fo(x) +2  else.

This defines a coloring of G:

1.If xNy # @, then f(x) # f(y). Check: x,y € R; x,y # R; x € Rand y # R.

2.1f x Cy, then f(x) > f(y). Observe that x # R = f(x) >3
Suppose f(y) > f(x) =y # R, but f2(x) > fa(y). 4

Corollary. There is a 2-approximation for coloring interval containment graphs.
Given 7 intervals, the algorithm runs in O(nlogn) time.
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Computational Complexity

Theorem. Given a set Z of intervals and a positive integer k,
it is NP-hard to decide whether x(C[Z]) < k.

Proof. By reduction from (exact) 3-SAT, where each clause has exactly 3 literals.

x talse x true
Let 9 = C; ACy A--- ACyy be an instance of 3-SAT with variables {x1,x2,...,x,},

and let H = 5m + 1. We construct a set I(p of intervals.
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Clause Gadget

xq1 false xp false x3 true x4 false x5 false

Example for (ﬂXZ V xg V x5) A (x1 V x3 V X4) A (—lx1 V XV X3).

The graph C|Z,] admits a coloring with H colors < ¢ is satisfiable.
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Bidirectional Intervals

Theorem. Given a set Z of intervals, ¢: Z — {left, right}, and k € IN,
it is NP-hard to decide whether x(B|Z, ¢]) < k.

mixed intersection graph of bidirectional intervals

17 -



17 -

Bidirectional Intervals

N e’

mixed intersection graph of bidirectional intervals

T
=
3
n
Pl
N
~
)
-

AN

xq true x» false x3 true x4 true



17 -

Bidirectional Intervals

N e’

mixed intersection graph of bidirectional intervals

T
=
3
n
Pl
N
~
)
-

AN

X1 true X> true x3 true X4 true



Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

18 -



Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly x(G) > w(G).

18 -



Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly x(G) > w(G).

Let A(G) denote the length of a longest directed path in G.



Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly x(G) > w(G).

Let A(G) denote the length of a longest directed path in G.
Then clearly x(G) > A(G) + 1.



18 - ¢

Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly x(G) > w(G).

Let A(G) denote the length of a longest directed path in G.
Then clearly x(G) > A(G) +1. Hence, x(G) > max{w(G),A(G) 4+ 1}.



18 -

Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly x(G) > w(G).

Let A(G) denote the length of a longest directed path in G.
Then clearly x(G) > A(G) +1. Hence, x(G) > max{w(G),A(G) 4+ 1}.

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).



18 -

Mixed Interval Graphs

Recall that a mixed interval graph is an interval graph where two intersecting
intervals are connected by an edge or an arc in either direction.

If G is a mixed interval graph, then clearly x(G) > w(G).

Let A(G) denote the length of a longest directed path in G.
Then clearly x(G) > A(G) +1. Hence, x(G) > max{w(G),A(G) 4+ 1}.

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Our constructive proof yields a min{w(G), A(G) + 1}-approximation algorithm.
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Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Let G be the graph obtained from G by removing all edges.
Clearly G is a DAG. Partition V(G) into layers Ly, Ly, ... as follows.
Let Lo be the set of sources in G, i.e., the vertices without incoming arcs.
Fori=1,2,..., let L; be the set of sources in G \ U;;(l) L;.
Note that A(G) = max{i: L; # @}.
For x € V(G), let £(x) € {0,...,A(G)} be the layer of x.
Let U(G) be the underlying undirected graph of G.
U(G) is an interval graph, hence x (U(G)) = w(U(G)) = w(G).
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A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).

U(G) is an interval graph, hence x (U(G)) = w(U(G)) = w(G).
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Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
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A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (AM(G) + 1) - w(G).
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Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.
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Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.

If {x,y} is an edge of G, then
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A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.
If {x,y} is an edge of G, then c(x) # c(y)
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A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.
If {x,y} is an edge of G, then ¢(x) # c(y) and hence, f(x) # f(y).
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A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.

If {x,y} is an edge of G, then ¢(x) # c(y) and hence, f(x) # f(y).
If (x,vy) is an arc of G, then
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A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.

If {x,y} is an edge of G, then ¢(x) # c(y) and hence, f(x) # f(y).
If (x,y) is an arc of G, then {(x) < /(y)



19 -22

A Constructive Proof

Theorem. Let G be a mixed interval graph without directed cycles.
Then x(G) < (A(G) +1) - w(G).

Proof. Letc:V —{1,2,...,w(U(G))} be an optimal coloring of U(G).
Define a mapping f. For a vertex x of G, let f(x) = ¢(x) - w(G) + c(x).
Note that 1 < f(x) < (A(G) +1) - w(G). We claim that f colors G.

If {x,y} is an edge of G, then ¢(x) # c(y) and hence, f(x) # f(y).
If (x,y) is an arc of G, then /(x) < £(y) and hence, f(x) < f(y).
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A Lower Bound Example

Proposition. There is an infinite family (Gg)x>1 of mixed interval graphs with
V(Gi)| = 2k?, A(Gy) = k—1, w(Gy) = 2k, and
X(G) = (k+1) -k = (A(G) +2) - w(Gy) /2.

That is, our upper bound for x(G), (A(G) + 1) - w(G), is asymptotically tight.
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That is, our upper bound for x(G), (A(G) + 1) - w(G), is asymptotically tight.
Proof.
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Proposition. There is an infinite family (Gg)x>1 of mixed interval graphs with
V(Gi)| = 2k?, A(Gy) = k—1, w(Gy) = 2k, and
X(G) = (k+1) -k = (A(G) +2) - w(Gy) /2.

That is, our upper bound for x(G), (A(G) + 1) - w(G), is asymptotically tight.
Proof.
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Summary

Mixed interval Coloring Recognition
graph class complexity lower bound upper bound approximation

containment NP-hard 2w—1 2w—1 2 O(nm)
directional O(nlogn) 1 O(n?)
bidirectional NP-hard 2 open

general NP-hard (A+2)w/2 (A4+1)w min{w,A+1} O(n+m) [LB79]
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Mixed interval Coloring Recognition
graph class complexity lower bound upper bound approximation

containment NP-hard 2w—1 2w—1 2 O(nm)
directional O(nlogn) 1 O(n?)
bidirectional NP-hard 2 open
general NP-hard (A4+2)w/2 (A+1)w min{w,A+1} O(n+m) [LB79]

Follow-up Work

B Given a mixed graph G with an orientation ¢, we can decide in linear time
whether G admits an oriented interval representation that complies with ¢.
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Summary

Mixed interval Coloring Recognition
graph class complexity lower bound upper bound approximation

containment NP-hard 2w—1 2w—1 2 O(nm)
directional O(nlogn) 1 O(n?)
bidirectional NP-hard 2 open
general NP-hard (A4+2)w/2 (A+1)w min{w,A+1} O(n+m) [LB79]

Follow-up Work

B Given a mixed graph G with an orientation ¢, we can decide in linear time
whether G admits an oriented interval representation that complies with ¢.

B In particular, we can recognize directional interval graphs in linear time.
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