
Lehrstuhl für Informatik I
Algorithmen und Komplexität

Universität Würzburg

Würzburg, den 15. Januar 2026

Prof. Dr. Alexander Wolff
Samuel Wolf, M. Sc.

9. Übungsblatt zur Vorlesung
Algorithmen und Datenstrukturen (Winter 2025/26)

Aufgabe 1 – Tiefensuche

Geben Sie für jedes der geforderten Beispiele den Graphen und das Ergebnis einer Tie-
fensuche in Form der resultierenden Bäume sowie der Entdeckungs- und Abschluss-
zeiten an. In dieser Aufgabe sind keine Selbst- oder Mehrfachkanten erlaubt.

a) Geben Sie ein Beispiel an, das folgende Behauptung widerlegt:

Sei G ein gerichteter Graph, der einen Pfad von u nach v enthält, und sei u.d <

v.d das Resultat einer Tiefensuche in G. Dann folgt, dass v im Tiefensuchbaum ein
Nachkomme von u ist (d.h. es gibt in diesem Baum einen u-v-Pfad). 2 Punkte

b) Geben Sie ein Beispiel an, das folgende Behauptung widerlegt:

Sei G ein gerichteter Graph, der einen Pfad von u nach v enthält. Für die
Entdeckungs- und Abschlusszeiten jeder Tiefensuche in G gilt dann v.d < u.f.

1 Punkt

c) Geben Sie ein Beispiel für eine Tiefensuche in einem gerichteten Graphen G an, in
der ein Baum mit einem einzelnen Knoten u gebildet wird, obwohl u sowohl einge-
hende als auch ausgehende Kanten hat. 2 Punkte

Aufgabe 2 – Wandern im Gebirge

Sie planen eine gefährliche Wanderung in einem gebirgigen Terrain, bei der Sie immer
wieder über tiefe Schluchten springen müssen. Ihnen steht eine Wanderkarte zur Ver-
fügung, auf der Berggipfel und Wegabschnitte eingezeichnet sind. Ein Wegabschnitt
verbindet immer zwei Berggipfel und enthält genau eine Schlucht, die man auf dem
Wegabschnitt überwinden muss. Zu jedem Wegabschnitt ist zusätzlich die Breite der zu
überwindenden Schlucht in Zentimetern angegeben. Einige Wegabschnitte kann man
nur in eine Richtung gehen, weil man z.B. hinunterspringen muss.

Sie starten Ihre Wanderung auf einem Berggipfel s und möchten herausfinden, wie weit
man springen können muss, um jeden Berggipfel von s aus zu erreichen. (Ein Berggip-
fel t ist für Sie von s aus erreichbar, wenn es einen Weg von s nach t gibt, bei der Sie
jede Schlucht überspringen können.)

1

a) Noch aus dem Sportunterricht in der Schule wissen Sie, dass Sie lediglich ℓ Zenti-
meter weit springen können. Sie können also über Schluchten, die breiter als ℓ sind,
nicht springen.

Sie möchten herausfinden, welche Berggipfel Sie von s aus erreichen können. Mo-
dellieren Sie zunächst das Problem als ein Graphenproblem. 3 Punkte

b) Sie möchten vor Ihrer Wanderung trainieren und Ihre Sprungweite verbessern. Hier-
zu möchten Sie für jeden Berggipfel t herausfinden, wie weit Sie springen können
müssen, um t von s aus zu erreichen.

Geben Sie in Worten einen Algorithmus an, der dieses Problem möglichst effizient
löst. Geben Sie seine Worst-Case-Laufzeit in Abhängigkeit von der Anzahl der Berg-
gipfel und der Anzahl der Wegabschnitte an. 4 Punkte

Aufgabe 3 – Pfade in kreisfreien Graphen

Gegeben sei ein gerichteter kreisfreier Graph G = (V, E), zwei Knoten s, t ∈ V und
eine Menge W ⊂ V von k Knoten, wobei s, t ̸∈ W. Wir bezeichnen einen s-t-Pfad P als
zulässig, wenn er durch alle Knoten in W geht. Dabei ist es egal, in welcher Reihenfolge
die Knoten in W durchlaufen werden.

a) Seien P1 und P2 zwei zulässige s-t-Pfade. Zeigen Sie, dass P1 und P2 die Knoten in
W in derselben Reihenfolge durchlaufen. 1 Punkt

b) Ergänzen Sie den folgenden Algorithmus, so dass er einen zulässigen s-t-Pfad als
Liste von Knoten zurückgibt, falls es solch einen Pfad gibt. Falls es keinen zulässi-
gen s-t-Pfad gibt, soll der Algorithmus nil zurückgeben. Begründen Sie, warum der
Algorithmus korrekt ist. 3 Punkte

getPath(DirectedAcyclicGraph G, Vertex s, Vertex t, Array of Vertices W)
P = new List()
A = getVertexOrder(G, s, t, W) // Liefert ein Feld mit s, mit den Knoten in W in

der richtigen Reihenfolge, wenn es eine solche gibt, und mit t.
for i = A.length downto 2 do

// Ergänze Pfad P um Knoten zwischen A[i− 1] und A[i]
// (ohne A[i− 1] aber einschließlich A[i]).
// Gib nil zurück, wenn es von A[i− 1] nach A[i] keinen Pfad gibt.

P.Insert(A[1])
return P

c) Hat Ihr Algorithmus aus Aufgabenteil b) die Laufzeit O(|V | + |E|)? Falls nicht, be-
schreiben Sie in Worten, wie man diese Laufzeit durch Verbesserung Ihres Algorith-
mus erreichen kann. 2 Punkte

2

d) Gegeben sei ein gerichteter Graph G = (V, E), der nicht notwendigerweise kreisfrei
ist, zwei Knoten s, t ∈ V und eine Folge von Knoten W = (w1, w2, . . . , wn). Zeigen
Sie, dass im schlechtesten Fall jeder s-t-Pfad, der die Knoten in W durchläuft und
dabei die gegebene Reihenfolge einhält, Länge Ω(|V |2) hat. Beachten Sie, dass ein
Pfad einen Knoten mehrfach durchlaufen kann. 2 Punkte

Bitte geben Sie Ihre Lösungen bis Donnerstag, 22. Januar 2026, 14:00 Uhr einmal pro
Gruppe über Wuecampus als pdf-Datei ab. Vermerken Sie dabei stets die Namen und
Übungsgruppen aller BearbeiterInnen auf der Abgabe.

Grundsätzlich sind stets alle Ihrer Aussagen zu begründen und Ihr Pseudocode ist stets
zu kommentieren.

Die Lösungen zu den mit PABS gekennzeichneten Aufgaben, geben Sie bitte nur über
das PABS-System ab. Vermerken Sie auf Ihrem Übungsblatt, in welchem Repository
(sXXXXXX-Nummer) die Abgabe zu finden ist. Geben Sie Ihre Namen hier als Kom-
mentare in den Quelltextdateien an.

3

