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Lecture 11:
Beyond Planarity
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Planar Graphs

1 2

3

4 5

6

1 23

4 5

6

grid drawing with
bends & 3 slopes

circular-arc drawingstraight-line drawing

Planar graphs admit drawings in the plane
without crossings.

Plane graph is a planar graph with an embedding
(fixed rotation system and fixed outer face).

Different drawing styles . . .

orthogonal drawing

1

2

3

4 5

6

Planarity is recognizable in linear time.

5

6

23

4

1
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And Non-Planar Graphs?

We have seen a few drawing styles:

force-directed drawing hierarchical drawing

Maybe not all crossings are equally bad?

orthogonal layouts
(via planarization)

block crossings

1
2
3
4
5
6
7

Which crossings feel worse?
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Eye-Tracking Experiment

eye movements smooth and fast

(back-and-forth movements at crossing points)

[Eades, Hong & Huang 2008]

Input: A graph drawing and designated path.

Task: Trace path and count number of edges.

Results: no crossings

large crossing angles eye movements smooth but slightly slower

small crossing angles eye movements no longer smooth and very slow
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Some Beyond-Planar Graph Classes

k-planar (k = 1) k-quasi-planar (k = 3) fan-planar RAC

✓ ✓ ✓ ✓

We define aesthetics for edge crossings and
avoid/minimize “bad” crossing configurations.

right-angle crossing

topological graphs geometric graphs
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Some Beyond-Planar Graph Classes

k-planar (k = 1) k-quasi-planar (k = 3) fan-planar RAC

✓ ✓ ✓ ✓

fan-crossing-free skewness-k (k = 2)

We define aesthetics for edge crossings and
avoid/minimize “bad” crossing configurations.

There are many more beyond-planar graph classes. . .

IC (independent crossing)

✓ ✓ ✓
combinations, . . .

right-angle crossing

remove ≤ k edges to make it planar
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Drawing Styles for Crossings

orthogonal slanted orthogonalRAC

✓

right-angle crossing
block / bundled crossings

circular layout: 28 invididual
vs. 12 bundle crossings

cased crossings symmetric partial
edge drawing

1/4-SHPED
symmetric homogenous
partial edge drawing
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Geometric Representations

a
a b

c

d
b

c

d

K4

bar visibility
representation
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Geometric Representations

d e

a b

K5
c

a

b

c
d

e

rectangle visibility
representation

thickness-2
graph

bar 1-visibility
representation (B1VR)

■ Every 1-planar graph admits a B1VR.
[Brandenburg 2014; Evans et al. 2014;
Angelini et al. 2018]

■ Rectangle visibility graphs (RVGs) have
≤ 6n− 20 edges. [Hutchinson, Shermer, Vince 1996]

■ Recognizing thickness-2 graphs and RVGs is
NP-hard. [Mansfields 1983] [Shermer 1996]

■ RVGs can be recognized efficiently if embed-
ding is fixed. [Biedl, Liotta, Montecchiani 2018]

lines of sight through ≤ 1 bars decompose into 2 planar graphs
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GD Beyond Planarity: a Taxonomy

- out. 1-plan.
- out. fan-plan.
- opt. 1-plan.

maximal
1-plan.

GD Beyond Planarity

Density Recognition Stretchability Relationships Constraints

fixed rotation
system

many
families

NP-hard poly-time poly-time

variable
embedding

- 1-plan.
- fan-plan.

NP-hard

- RAC
- 1-plan.
- fan-plan.

- 2-layer RAC
- 2-layer fan-plan

- RAC &. 1-plan.
- fan-plan. & k-plan.
- 2-layer fan & RAC
- k-plan. & k-qu.-plan.

Aesthetics

edge-complexityarea

- RAC
- 1-plan.
- quas.-plan.

bends slopes

out. 1-plan.- k-plan.

- RAC

- circ. RAC
- out. 1-plan.
- 2-layer RAC
- 2-layer fan

- book emb.

circ. & layers

- qu.-pl.

- RAC

simult.

Eng. & Exper.

- RAC
- 2-layer RAC
- k-plan.

- book emb.

1-plan.

Taken from: G. Liotta, Invited talk at SoCG 2017
”Graph Drawing Beyond Planarity: Some Results and Open Problems”, Jul. 2017
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Density of 1-Planar Graphs

Proof sketch.

⇒ m ≤ mrb +mg ≤ 6n− 12

⇒

mrb ≤ 3n− 6

mg ≤ 3n− 6

mg ≤ frb/2 ≤ (2n− 4)/2 = n− 2

m = mrb +mg ≤ 3n− 6 + n− 2 = 4n− 8

■ Let the red edges be those that do not cross.
■ Each blue edge crosses a green edge.
■ This yields a red-blue plane graph Grb with

■ and a green plane graph Gg with

Lower-bound construction:
2n− 4 edges

n− 2 faces

Edges per face: 2 edges

Total: 4n− 8 edges

Theorem. [Ringel 1965, Pach & Tóth 1997]
A 1-planar graph with n vertices has at most 4n− 8
edges, which is a tight bound.

■ Observe that each green edge joins two faces in Grb.
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Density of 1-Planar Graphs

Theorem. [Brandenburg et al. 2013]
There are maximal 1-planar graphs with n vertices
and 45/17n−O(1) ≈ 2.65n−O(1) edges.

n = 12,m = 40

n = 20,m = 48

A 1-planar graph with n vertices is called
optimal if it has exactly 4n− 8 edges.

A 1-planar graph is called maximal if adding any
edge would result in a non-1-planar graph.

Theorem. [Didimo 2013]
A 1-planar graph with n vertices that admits a
straight-line drawing has at most 4n− 9 edges.

Theorem. [Ringel 1965, Pach & Tóth 1997]
A 1-planar graph with n vertices has at most 4n− 8
edges, which is a tight bound.

Idea: in a drawing of an optimal 1-planar
graph, we cannot realize the crossing on the
outer face with two straight-line edges.
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Density of k-Planar Graphs

Theorem.
A k-planar graph with n vertices has at most:

[Pach and Tóth 1997]

3(n− 2) Euler’s formula

[Ringel 1965]

k number of edges

0

1 4(n− 2)

2 5(n− 2)
optimal 2-planar

Planar structure:
5
3
(n− 2) edges

2
3
(n− 2) faces

Edges per face: 5 edges

Total: 5(n− 2) edges

n−m+ f = 2

m = c · f ?

m = 5
2
f
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Density of k-Planar Graphs

Theorem.
A k-planar graph with n vertices has at most:

[Pach and Tóth 1997]

[Pach et al. 2006]

1 2

3 45 6

7 89

3(n− 2) Euler’s formula

[Ringel 1965]

k number of edges

0

1 4(n− 2)

2 5(n− 2)

5.5(n− 2)3

optimal 3-planar
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Density of k-Planar Graphs

Theorem.
A k-planar graph with n vertices has at most:

[Pach and Tóth 1997]

[Pach et al. 2006]

3(n− 2) Euler’s formula

[Ringel 1965]

k number of edges

0

1 4(n− 2)

2 5(n− 2)

5.5(n− 2)3

optimal 3-planar

Planar structure:
3
2
(n− 2) edges
1
2
(n− 2) faces

Edges per face: 8 edges

Total: 5.5(n− 2) edges
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Density of k-Planar Graphs

Theorem.
A k-planar graph with n vertices has at most:

[Pach and Tóth 1997]

[Pach et al. 2006]

[Ackerman 2015]

[Pach and Tóth 1997]

3(n− 2) Euler’s formula

[Ringel 1965]

k number of edges

0

1 4(n− 2)

2 5(n− 2)

5.5(n− 2)3

4 6(n− 2)

> 4 4.108
√
kn

optimal 2-planar

optimal 3-planar
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GD Beyond Planarity: a Hierarchy

4-planar
6n − 12

3-planar
5.5n − 11 5.5n± c

[Pach & Tóth 1997]

D
en
se

S
pa
rs
e

2.5n − 4
outer RAC

2.5n − 4

planar
3n − 6

bipart. 1-planar
≤ 3n − 8

RAC
4n − 10

1-planar
4n − 8

fan-planar
5n − 10

2-planar
5n − 10

(3-)quasi-planar
6.5n − 20

thickness-2
6n − 12

1-bend RAC
≤ 5.5n − 10

2.5n± c

3n± c

4n± c

5n± c

6n± c

6.5n± c

outer 1-planar

[Kaufmann & Ueckerdt 2014]

[Bodendiek et al. 1983]

[Pach & Tóth 1997]

[Didimo et al. 2011]

[Cheong et al. 2013]

[Dehkordi et al. 2013]
[Auer et al. 2016]

[Bekos et al. 2017]

[Agarwal et al. 1997]

[Ackerman 2015]

[Binucci et al. 2015]

[Bekos et al. 2018]

bipartite RAC
3n − 7

bipart. fan-planar
≤ 4n − 12

[Angelini et al. 2018]

≤ 3.5n − 7 3.5n± cbipart. 2-planar [Dehkordi et al. 2013]
[Auer et al. 2016]

outer fan-planar
3n − 5

outerplanar
2n − 3 2n± c
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Crossing Numbers

The k-planar crossing number crk-pl(G) of a k-planar graph G
is the number of crossings required in any k-planar drawing of G.

Theorem. [Chimani, Kindermann, Montecchiani & Valtr 2019]

For every ℓ ≥ 7, there is a 1-planar graph G with n = 11ℓ+ 2
vertices such that cr(G) = 2 and cr1-pl(G) = n− 2.

■ cr1-pl(G) ≤ n− 2 (there are at most n− 2 green edges in the coloring of Theorem 1)

■ cr(G) = 1 ⇒ cr1-pl(G) = 1

cr1-pl(G) = n− 2 cr(G) = 2

Crossing ratio
ρ1-pl(n) = (n− 2)/2
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Crossing Ratios
Family Forbidden Configurations Lower Upper

k-planar An edge crossed more than k times Ω(n/k) O(k
√

kn)

k-quasi-planar k pairwise crossing edges Ω(n/k3) f(k)n2 log2 n

Fan-planar
Two independent edges crossing a third or two
adjacent edges crossing another edge from

different “side”
Ω(n) O(n2)

(k, l)-grid-free
Set of k edges such that each edge crosses each

edge from a set of l edges.
Ω
( n

kl(k + l)

)
g(k, l)n2

k-gap-planar
More than k crossings mapped to an edge in an

optimal mapping Ω(n/k3) O(k
√

kn)

Skewness-k Set of crossings not covered by at most k edges Ω(n/k) O(kn + k2)

k-apex Set of crossings not covered by at most k vertices Ω(n/k) O(k2n2 + k4)

Planarly connected
Two crossing edges that do not have two of their

endpoint connected by a crossing-free edge Ω(n2) O(n2)

k-fan-crossing-free An edge that crosses k adjacent edges Ω(n2/k3) O(k2n2)

Straight-line RAC Two edges crossing at an angle < π
2 Ω(n2) O(n2)

k, l = 2

k = 2

k = 3

k = 1

k = 1

k = 1

k = 2

Table from “Crossing Numbers of Beyond-Planar Graphs Revisited”
[van Beusekom, Parada & Speckmann 2021]
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GD Beyond Planarity: a Taxonomy

- out. 1-plan.
- out. fan-plan.
- opt. 1-plan.

maximal
1-plan.

GD Beyond Planarity

Density Recognition Stretchability Relationships Constraints

fixed rot.
system

many
families

NP-hard poly-time poly-time

variable
embedding

- 1-plan.
- fan-plan.

NP-hard

- RAC
- 1-plan.
- fan-plan.

- 2-layer RAC
- 2-layer fan-plan

- RAC &. 1-plan.
- fan-plan. & k-plan.
- 2-layer fan & RAC
- k-plan. & k-qu.-plan.

Aesthetics

edge-complexityarea

- RAC
- 1-plan.
- quas.-plan.

bends slopes

out. 1-plan.- k-plan.

- RAC

- circ. RAC
- out. 1-plan.
- 2-layer RAC
- 2-layer fan

- book emb.

circ. & layers

- qu.-pl.

- RAC

simult.

Eng. & Exper.

- RAC
- 2-layer RAC
- k-plan.

- book emb.

1-plan.

Taken from: G. Liotta, Invited talk at SoCG 2017
”Graph Drawing Beyond Planarity: Some Results and Open Problems”, Jul. 2017
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Minors of 1-Planar Graphs
For every graph
there is a 1-planar
subdivision.

n× n× 2 grid

Kn,n

Theorem. [Kuratowski 1930]
G planar ⇔ neither K5 nor K3,3 minor of G

Theorem. [Chen & Kouno 2005]
The class of 1-planar graphs is not closed under edge contraction.

Theorem. [Korzhik & Mohar 2013]
For any n, there exist Ω(2n) distinct n-vertex graphs that are not
1-planar but all their proper subgraphs are 1-planar.
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Recognition of 1-Planar Graphs

Reduction from 3-Partition.

The only 1-planar embedding of K6:

(cannot be crossed)

A = {1, 3, 2, 4, 1, 1}
︷ ︸︸ ︷ ︷ ︸︸ ︷

Proof Idea.

Theorem. [Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

6 6

Given a multiset A = {a1, a2, . . . , a3t} of 3t numbers,
partition the numbers into t triplets such that
the sum of every triplet is the same.

3t pockets

∑
A pockets

t “big” faces
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Recognition of 1-Planar Graphs

Theorem. [Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

Theorem. [Cabello & Mohar 2013]
Testing 1-planarity is NP-complete –
even for almost planar graphs, i.e., planar graphs plus one edge.

Theorem. [Bannister, Cabello & Eppstein 2018]
Testing 1-planarity is NP-complete –
even for graphs of bounded bandwidth (pathwidth, treewidth).

Theorem. [Auer, Brandenburg, Gleißner & Reislhuber 2015]
Testing 1-planarity is NP-complete –
even for 3-connected graphs with a fixed rotation system.
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Recognition of IC-Planar Graphs

Reduction from 1-planarity testing.

v
u

Proof.

✓

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.
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Recognition of IC-Planar Graphs

Reduction from 1-planarity testing.

u
v

u

Proof.

✓

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.
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Recognition of IC-Planar Graphs

Reduction from 1-planarity testing.

u
v

u

Proof.

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete,
even if the rotation system is given.

✓

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.
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GD Beyond Planarity: a Taxonomy

- out. 1-plan.
- out. fan-plan.
- opt. 1-plan.

maximal
1-plan.

GD Beyond Planarity

Density Recognition Stretchability Relationships Constraints

fixed rotation
system

many
families

NP-hard poly-time poly-time

variable
embedding

- 1-plan.
- fan-plan.

NP-hard

- RAC
- 1-plan.
- fan-plan.

- 2-layer RAC
- 2-layer fan-plan

- RAC &. 1-plan.
- fan-plan. & k-plan.
- 2-layer fan & RAC
- k-plan. & k-qu.-plan.

Aesthetics

edge-complexityarea

- RAC
- 1-plan.
- quas.-plan.

bends slopes

out. 1-plan.- k-plan.

- RAC

- circ. RAC
- out. 1-plan.
- 2-layer RAC
- 2-layer fan

- book emb.

circ. & layers

- qu.-pl.

- RAC

simult.

Eng. & Exper.

- RAC
- 2-layer RAC
- k-plan.

- book emb.

1-plan.

Taken from: G. Liotta, Invited talk at SoCG 2017
”Graph Drawing Beyond Planarity: Some Results and Open Problems”, Jul. 2017
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Area of Straight-Line RAC Drawings

✓

✓

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Every IC-planar graph has an IC-planar straight-line RAC drawing,
and such a drawing can be found in polynomial time.

non-RAC

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Some IC-planar straight-line RAC drawings require exponential area.

In constrast:
not every 1-planar graph
admits a straight-line
RAC drawing
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RAC Drawings With Enough Bends

✓

Every graph admits a RAC drawing . . .
. . . if we use enough bends.

How many do we need – in total or per edge?
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3-Bend RAC Drawings

Theorem. [Didimo, Eades & Liotta 2017]
Every graph admits a 3-bend RAC drawing, that is, a RAC
drawing where every edge has at most three bends.
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Kite Triangulations

Theorem. [Angelini et al. 2011]
Every kite-triangulation G admits a
1-planar 1-bend RAC drawing,
which can be constructed in linear
time.

This is a kite:

u
v

w

z

Let G′ be a plane triangulation.

u
v

w

z

u and v are opposite
w.r.t. {z, w}

Let S ⊆ E(G′) s.t. no two
edges in S lie on the same face

. . . and their opposite vertices do
not have an edge in E(G′).

Add set T of edges
connecting

opposite vertices.

The resulting graph G is a kite-triangulation.

Proof.
Let G′ be the underlying plane trian-
gulation of G. Let G′′ = G′ − S.
Construct straight-line drawing of G′′.

u

vw

z
strictly convex face otherwise

z vu

w

Fill faces as follows:

Note: optimal 1-planar graphs ⊊ kite-triangulations.
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1-Planar 1-Bend RAC Drawings

Observation.
In a triangulated 1-plane graph (not necessarily simple),
each pair of crossing edges of G forms an empty kite,
except for at most one pair if their crossing point is on
the outer face of G.

Theorem. [Bekos, Didimo, Liotta, Mehrabi & Montecchiani 2017]

Every 1-planar graph G admits a 1-planar 1-bend RAC drawing.

If a 1-planar embedding of G is given as part of the input,
such a drawing can be computed in linear time.

Theorem. [Chiba, Yamanouchi & Nishizeki 1984]
For every 2-connected plane graph G with outer face Ck and every convex
k-gon P , there is a strictly convex planar straight-line drawing of G whose
outer face coincides with P . Such a drawing can be computed in linear time.
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Algorithm Outline

input

output

G+

G⋆

Γ+Γ
1-bend 1-planar RAC

drawing of G+
1-bend 1-planar RAC

drawing of G

triangulated 1-plane
(multi-edges)

augmentation
(the embedding
may change)G

simple 1-plane

hierarchical
contraction of G+

recursive
procedure

recursive
procedure

removal of
dummy elements
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Algorithm Step 1: Augmentation

G: simple 1-plane graph
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Algorithm Step 1: Augmentation

G: simple 1-plane graph1. For each pair of
crossing edges add an
enclosing 4-cycle.

2. Remove those
multiple edges that
belong to G.

3. Remove one
(multiple) edge from
each face of degree
two (if any).

4. Triangulate faces
of degree > 3 by
inserting a star
inside them.

G+: triangulated 1-plane
(possibly with
multi-edges)

Note that we can still have parallel (orange) edges
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Algorithm Outline

input

output

G+

G⋆

Γ+Γ
1-bend 1-planar RAC

drawing of G+
1-bend 1-planar RAC

drawing of G

triangulated 1-plane
(multi-edges)

augmentation
(the embedding
may change)G

simple 1-plane

hierarchical
contraction of G+

recursive
procedure

recursive
procedure

removal of
dummy elements
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Algoritm Step 2: Hierarchical Contractions

G+

triangulated 1-plane
(multi-edges)

■ triangular faces

■ multiple edges
never crossed

■ only empty kites

⇒

structure of each
separation pair
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Algoritm Step 2: Hierarchical Contractions

G+

triangulated 1-plane
(multi-edges)

■ triangular faces

■ multiple edges
never crossed

■ only empty kites

⇒

structure of each
separation pair

Contract all inner
components of each
separation pair into
a thick edge.
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Algoritm Step 2: Hierarchical Contractions

G+

triangulated 1-plane
(multi-edges)

■ triangular faces

■ multiple edges
never crossed

■ only empty kites

⇒

structure of each
separation pair

Contract all inner
components of each
separation pair into
a thick edge.
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Algoritm Step 2: Hierarchical Contractions

G+

triangulated 1-plane
(multi-edges)

■ triangular faces

■ multiple edges
never crossed

■ only empty kites

⇒

structure of each
separation pair

Contract all inner
components of each
separation pair into
a thick edge.
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Algoritm Step 2: Hierarchical Contractions

G⋆

hierarchical
contraction of G+

G+

simple 3-connected
triangulated
1-plane graph
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Algorithm Outline

input

output

G+

G⋆

Γ+Γ
1-bend 1-planar RAC

drawing of G+
1-bend 1-planar RAC

drawing of G

triangulated 1-plane
(multi-edges)

augmentation
(the embedding
may change)G

simple 1-plane

hierarchical
contraction of G+

recursive
procedure

recursive
procedure

removal of
dummy elements
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Algorithm Step 3: Drawing Procedure

remove crossing
edges

apply Chiba et al.

3-connected
plane graph

convex faces &
prescribed outer

face

reinsert
crossing

edges

partial drawing
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Algorithm Step 3: Drawing Procedure

remove
crossing
edges



32 - 15

Algorithm Step 3: Drawing Procedure

apply Chiba et al.
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Algorithm Step 3: Drawing Procedure

reinsert
crossing
edges
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Algorithm Step 3: Drawing Procedure

remove
crossing
edges
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Algorithm Step 3: Drawing Procedure

apply Chiba et al.
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Algorithm Step 3: Drawing Procedure

reinsert
crossing
edges

This kite edge, which is a multi-edge, is not drawn.
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Algorithm Step 3: Drawing Procedure
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Algorithm Step 3: Drawing Procedure
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Algorithm Step 3: Drawing Procedure

Γ+: 1-bend 1-planar RAC drawing of G+
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Algorithm Outline

input

output

G+

G⋆

Γ+Γ
1-bend 1-planar RAC

drawing of G+
1-bend 1-planar RAC

drawing of G

triangulated 1-plane
(multi-edges)

augmentation
(the embedding
may change)G

simple 1-plane

hierarchical
contraction of G+

recursive
procedure

recursive
procedure

removal of
dummy elements
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Algorithm Step 4: Removal of Dummy Vertices
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Algorithm Step 4: Removal of Dummy Vertices

G: simple 1-plane graph Γ: 1-bend 1-planar RAC drawing of G

Remark.

By modifying the algorithm slightly, the given input embedding can be preserved.
[Chaplick, Lipp, Wolff, Zink 2019]

(embedding may differ)
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GD Beyond Planarity: a Taxonomy

- out. 1-plan.
- out. fan-plan.
- opt. 1-plan.

maximal
1-plan.

GD Beyond Planarity

Density Recognition Stretchability Relationships Constraints

fixed rotation
system

many
families

NP-hard poly-time poly-time

variable
embedding

- 1-plan.
- fan-plan.

NP-hard

- RAC
- 1-plan.
- fan-plan.

- 2-layer RAC
- 2-layer fan-plan

- RAC &. 1-plan.
- fan-plan. & k-plan.
- 2-layer fan & RAC
- k-plan. & k-qu.-plan.

Aesthetics

edge-complexityarea

- RAC
- 1-plan.
- quas.-plan.

bends slopes

out. 1-plan.- k-plan.

- RAC

- circ. RAC
- out. 1-plan.
- 2-layer RAC
- 2-layer fan

- book emb.

circ. & layers

- qu.-pl.

- RAC

simult.

Eng. & Exper.

- RAC
- 2-layer RAC
- k-plan.

- book emb.

1-plan.

Taken from: G. Liotta, Invited talk at SoCG 2017
”Graph Drawing Beyond Planarity: Some Results and Open Problems”, Jul. 2017

[Didimo, Liotta & Montecchiani, ACM Comput. Surv. 2019]
A Survey on Graph Drawing Beyond Planarity.

[Kobourov, Liotta & Montecchiani, Compu. Sci. Review 2017]
An Annotated Bibliography on 1-Planarity.
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Literature

Books and surveys:

■ [Didimo, Liotta & Montecchiani 2019] A Survey on Graph Drawing Beyond Planarity

■ [Kobourov, Liotta & Montecchiani ’17] An Annotated Bibliography on 1-Planarity

■ [Hong and Tokuyama, editors ’20] Beyond Planar Graphs

Some references for proofs:

■ [Eades, Huang, Hong ’08] Effects of Crossing Angles

■ [Brandenburg et al. ’13] On the density of maximal 1-planar graphs

■ [Chimani, Kindermann, Montecchani, Valtr ’19] Crossing Numbers of Beyond-Planar Graphs

■ [Grigoriev and Bodlaender ’07] Algorithms for graphs embeddable with few crossings per edge

■ [Angelini et al. ’11] On the Perspectives Opened by Right Angle Crossing Drawings
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