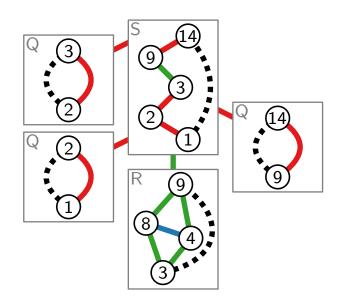


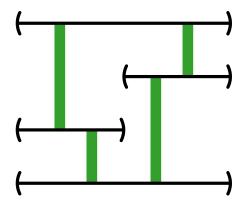
Visualization of Graphs

Lecture 10:

Partial Visibility Representation Extension



Alexander Wolff



Summer semester 2025

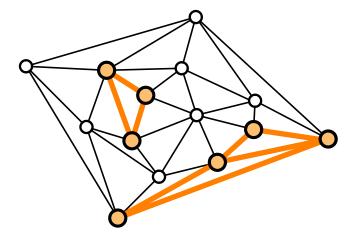
Partial Representation Extension Problem

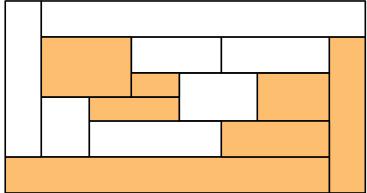
Let G be a graph.

Let $V' \subseteq V(G)$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H .



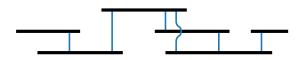


Polytime for:

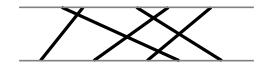
(unit) interval graphs

induced subgraph of G w.r.t. V':

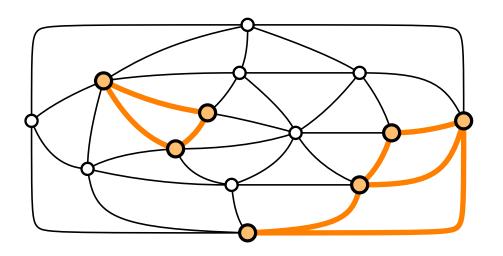
 V^\prime and all edges among V^\prime



permutation graphs

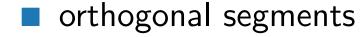


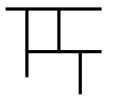
circle graphs

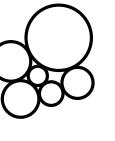


NP-hard for:

planar straight-line drawings

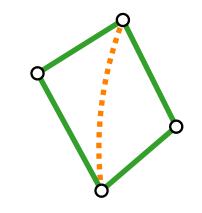


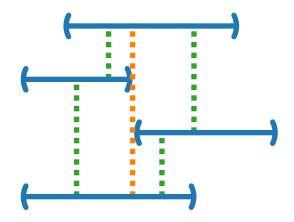




Bar Visibility Representation

- Vertices correspond to horizontal (open) line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?





Models.

Strong:

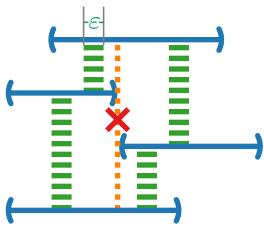
Edge $uv \Leftrightarrow \text{unobstructed } \textbf{0-width} \text{ vertical lines of sight.}$

Epsilon:

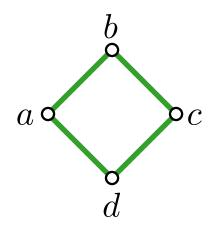
Edge $uv \Leftrightarrow \varepsilon$ -wide vertical lines of sight for some $\varepsilon > 0$.

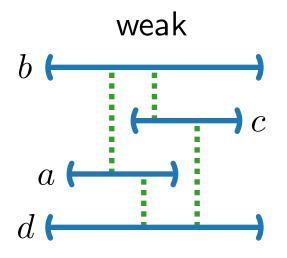
■ Weak:

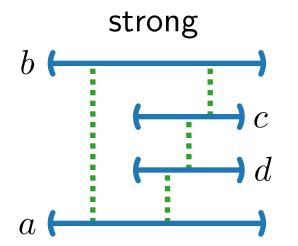
Edge $uv \Rightarrow$ unobstructed vertical lines of sight exists, i.e., any subset of *visible* pairs

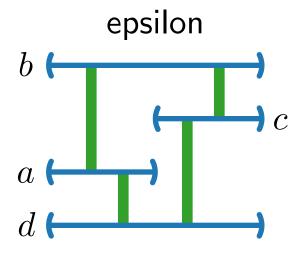


Problems









Recognition Problem.

Given a graph G, **decide** whether there exists a weak/strong/ ε -bar visibility representation ψ of G.

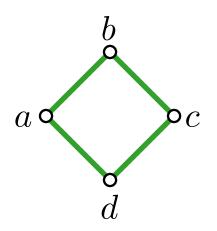
Construction Problem.

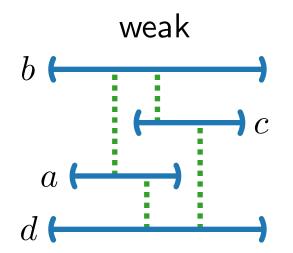
Given a graph G, **construct** a weak/strong/ ε -bar visibility representation ψ of G – if one exists.

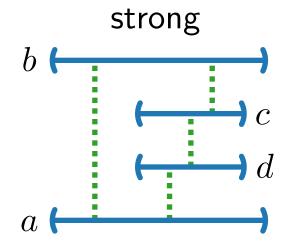
Partial Representation Extension Problem.

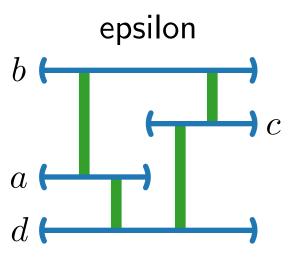
Given a graph G and a set of bars ψ' of $V' \subseteq V(G)$, decide whether there exists a weak/strong/ ε -bar visibility representation ψ of G where $\psi|_{V'} = \psi'$ (and construct ψ if a representation exists).

Background









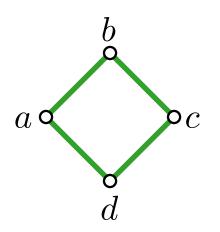
Weak Bar Visibility.

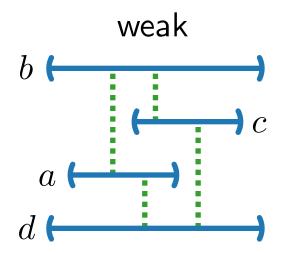
- Exactly all planar graphs [Tamassia & Tollis '86; Wismath '85]
- Linear-time recognition and construction [T&T '86]
- Representation extension is NP-complete [Chaplick et al. '14]

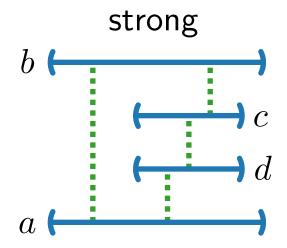
Strong Bar Visibility.

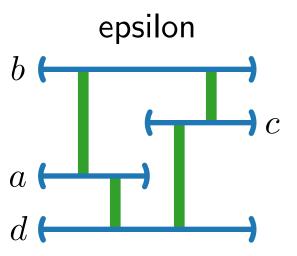
NP-complete to recognize [Andreae '92]

Background







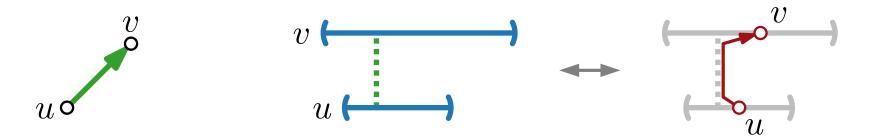


ε -Bar Visibility.

- Exactly all planar graphs that can be embedded with all cut vertices on the outerface [T&T '86, Wismath '85]
- Linear-time recognition and construction [T&T '86]
- Representation extension? This Lecture!

Bar Visibility Representation of Digraphs

- \blacksquare Instead of an undirected graph, we are given a directed graph G.
- The task is to construct a weak/strong/ ε -bar visibility representation of G such that . . .
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.



Weak Bar Visibility.

- NP-complete for directed (acyclic planar) graphs!
- This is because upward planarity testing is NP-complete. [Garg & Tamassia '01]

Strong/ ε -Bar Visibility.

Open for directed graphs!

Next, we consider ε -bar visibility representations of specific directed graphs (\rightarrow st-graphs)

ε -Bar Visibility and st-Graphs

Recall that an **st-graph** is a planar acylic digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

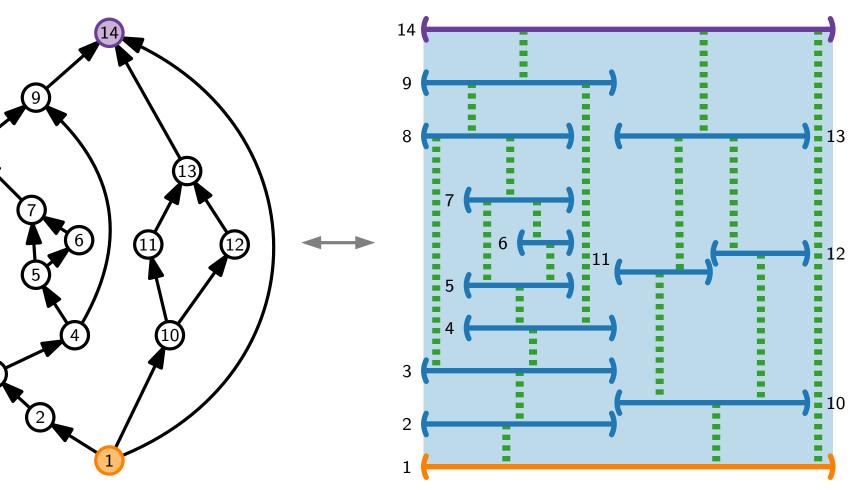
 ε -bar visibility testing is easily done via st-graph recognition.

Strong bar visibility recognition...open!

In a **rectangular** bar visibility representation $\psi(s)$ and $\psi(t)$ span an enclosing rectangle.

Observation.

st-orientations correspond to ε -bar visibility representations.



Theorem 1.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

- Dynamic program via SPQR-trees
- Easier version: $\mathcal{O}(n^2)$

Theorem 2.

 ε -bar visibility representation extension is NP-complete.

■ Reduction from Planar Monotone 3-SAT

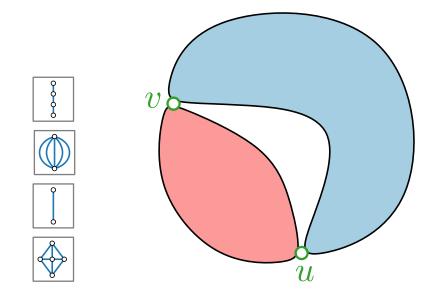
Theorem 3.

 ε -bar visibility representation extension is NP-complete even for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon > 0$ is specified).

Reduction from 3-Partition

SPQR-Tree

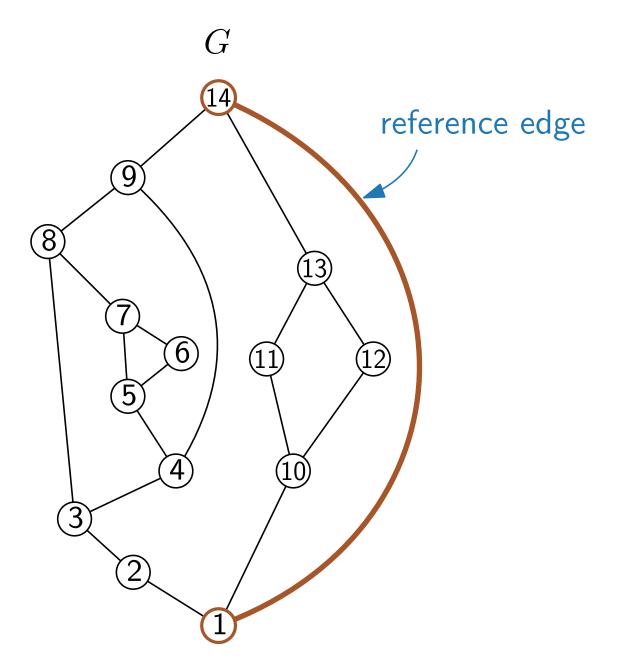
- lacktriangle An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- \blacksquare The nodes of T are of four types:
 - S-nodes represent a series composition
 - P-nodes represent a parallel composition
 - Q-nodes represent a single edge
 - R-nodes represent 3-connected (*rigid*) subgraphs

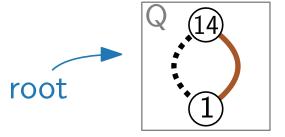


- A decomposition tree of a series-parallel graph is an SPQR-tree without R-nodes.
- lacksquare T represents all planar embeddings of G.
- lacksquare T can be computed in time linear in the size of G.

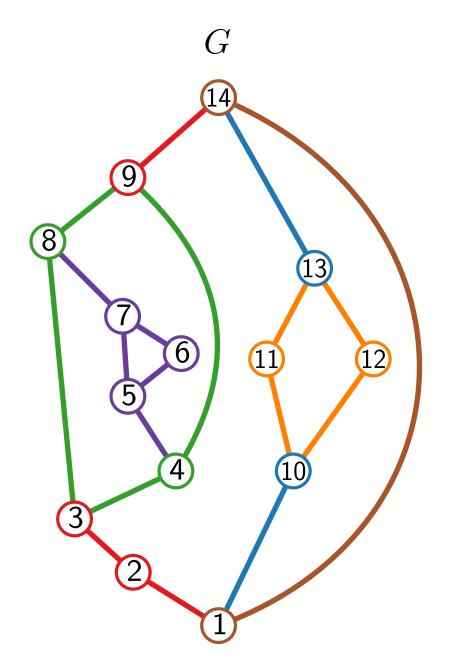
[Gutwenger, Mutzel '01]

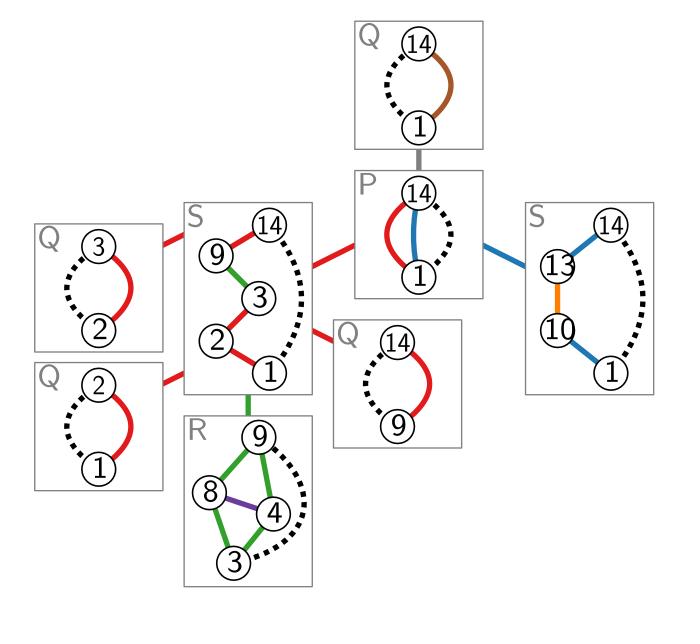
SPQR-Tree – Example

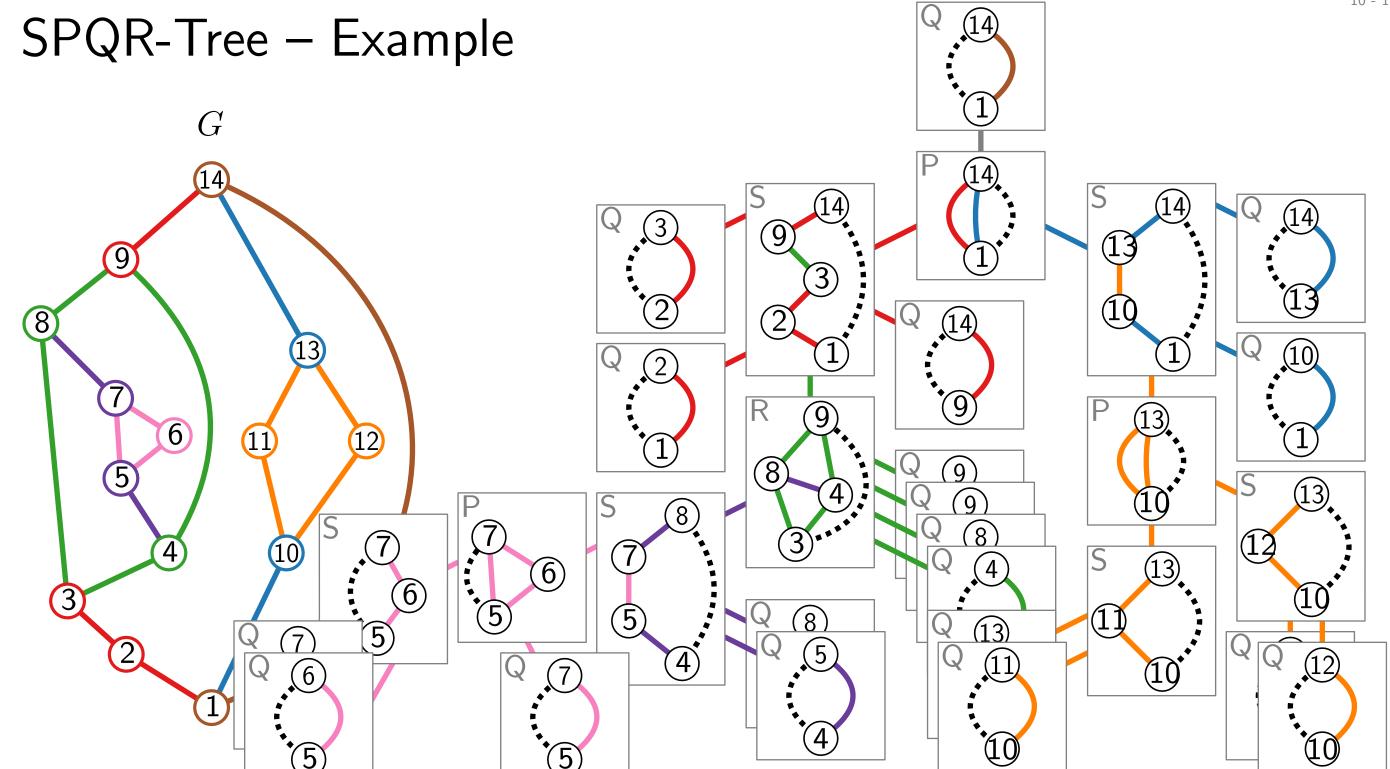




SPQR-Tree – Example



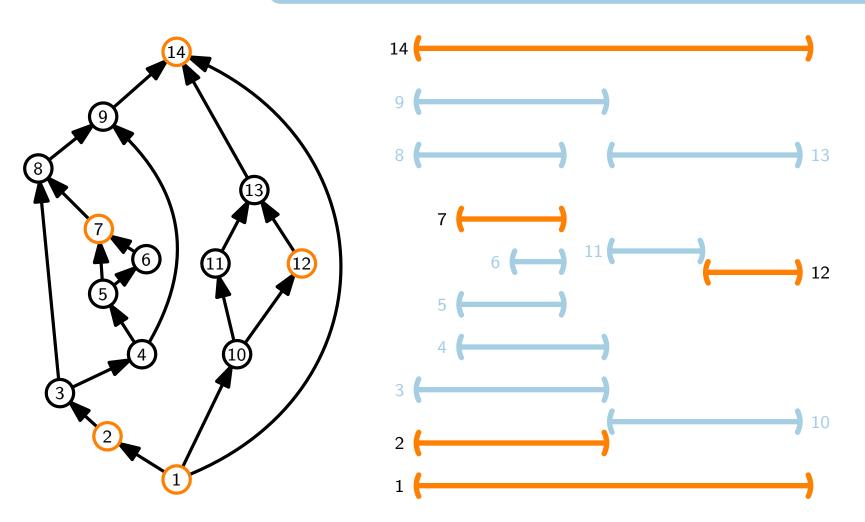




Representation Extension for st-Graphs

Theorem 1'.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n^2)$ time for st-graphs.



- Simplify problem via assumption regarding y-coordinates
- Exploit connection between SPQR-trees and rectangle tiling
- Solve problems for S-, P-, and R-nodes
- Dynamic program via structure of SPQR-tree

y-Coordinate Invariant

- Let G be an st-graph, and let ψ' be a representation of $V' \subseteq V(G)$.
- Let $y \colon V(G) \to \mathbb{R}$ such that
 - for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.
 - for each edge (u, v), y(u) < y(v).

Lemma 1.

G has a representation extending $\psi' \Leftrightarrow$ G has a representation extending ψ' where the y-coordinates of the bars are as in y.

Proof idea. The relative positions of **adjacent** bars must match the order given by y.

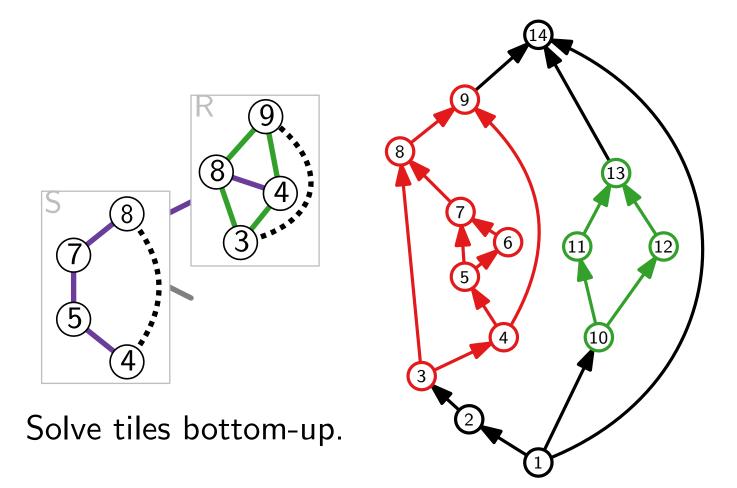
So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom to top.

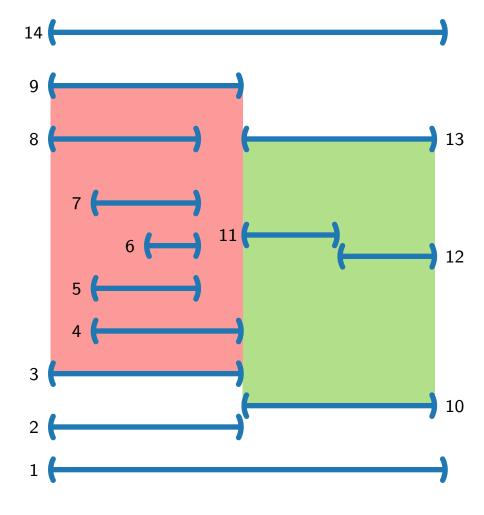
We can now assume that all y-coordinates are given!

But Why Do SPQR-Trees Help?

Lemma 2.

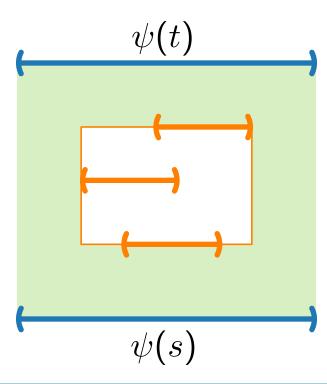
The SPQR-tree of an st-graph G induces a recursive tiling of any ε -bar visibility representation of G.





Tiles

Convention. Orange bars are from the given partial representation.

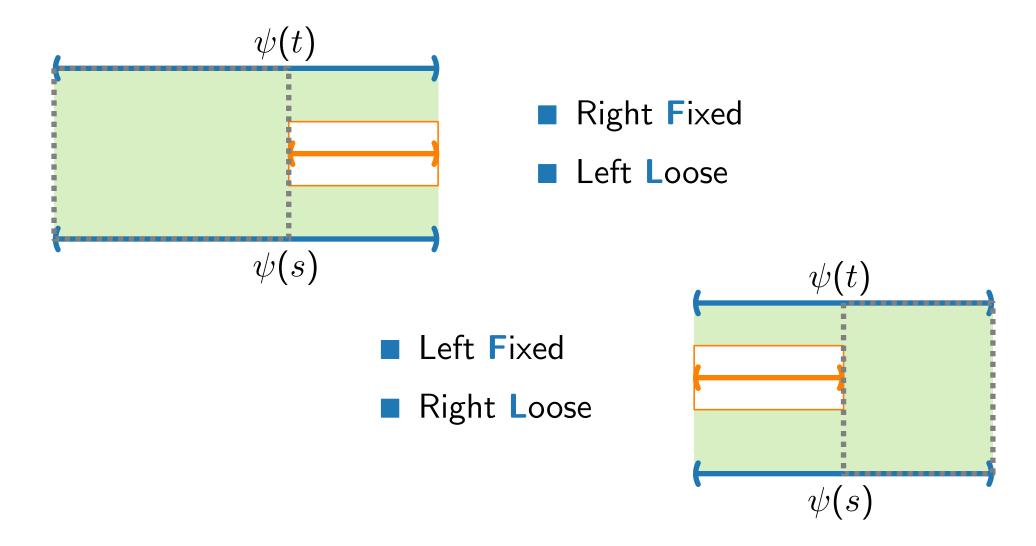


Observation.

The bounding box (tile) of any solution ψ contains the bounding box of the partial representation.

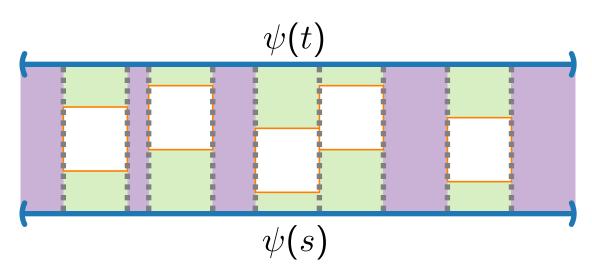
How many different types of tiles are there?

Types of Tiles



Four different types: FF, FL, LF, LL

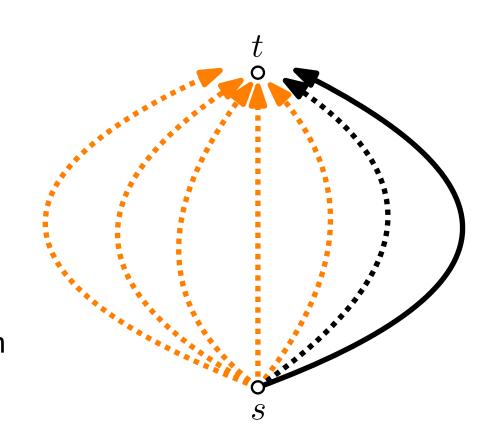
P-Nodes



- Children of P-node with prescribed bars occur in given left-to-right order
- But there might be some gaps...

Idea.

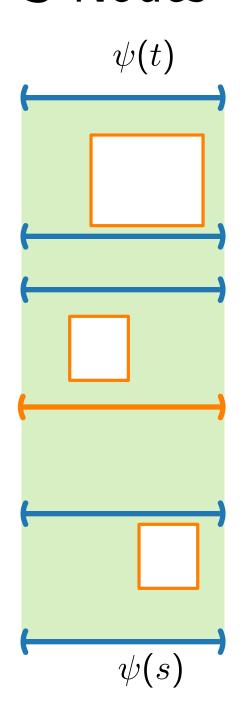
Greedily *fill* the gaps by preferring to "stretch" the children with prescribed bars.



Outcome.

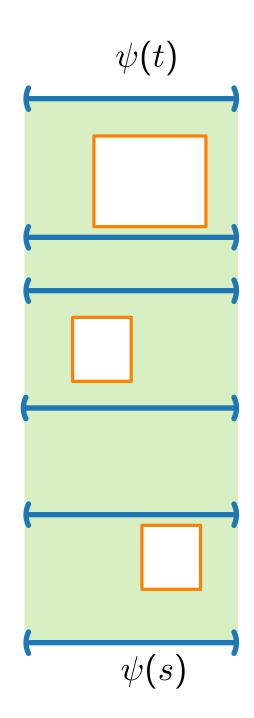
After processing, we must know the valid types for the corresponding subgraphs.

S-Nodes



Here we have a chance to make all (LL, FL, LF, FF) types.

This fixed vertex means we can only make a Fixed-Fixed representation!



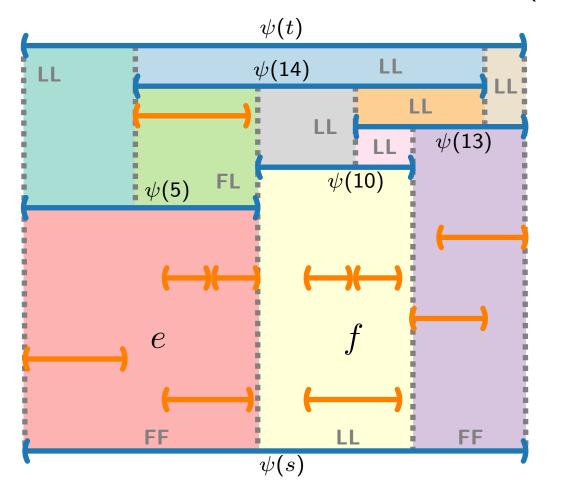
R-Nodes with 2-SAT Formulation

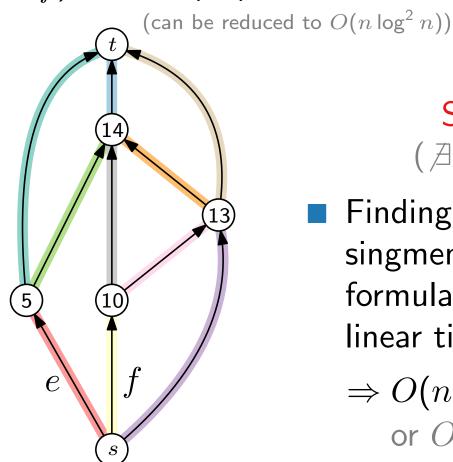
■ For each child (edge) e:

■ Find all types of {FF, FL, LF, LL} that admit a drawing.

■ Use two variables (l_e and r_e) to encode the type of its tile (F = 0).

■ Add consistency clauses: e.g., $\neg(\neg r_e \land \neg l_f) \rightarrow O(n^2)$ many.





Separation pair!
(∄ in R-component.)

Finding a satisfying assingment of a 2-SAT formula can be done in linear time!

 $\Rightarrow O(n^2)$ time in total or $O(n \log^2 n)$

Results and Outline

[Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]

Theorem 1.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

- Dynamic program via SPQR-trees
- Easier version: $\mathcal{O}(n^2)$

Theorem 2.

 ε -bar visibility representation extension is NP-complete.

■ Reduction from Planar Monotone 3-SAT

Theorem 3.

 ε -bar visibility representation extension is NP-complete even for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon > 0$ is specified).

■ Reduction from 3-PARTITION

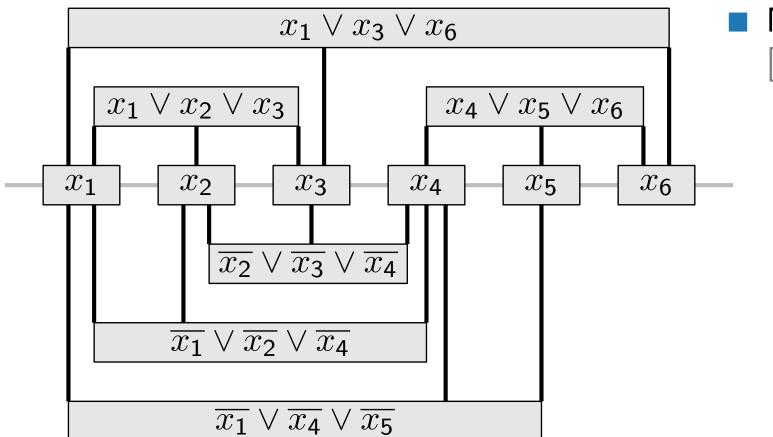
NP-Hardness of RepExt in the General Case

Theorem 2.

 ε -Bar visibility representation extension is NP-complete.

Membership in NP?

NP-hard: Reduction from Planar Monotone 3-SAT



■ NP-complete
[de Berg & Khosravi '10]

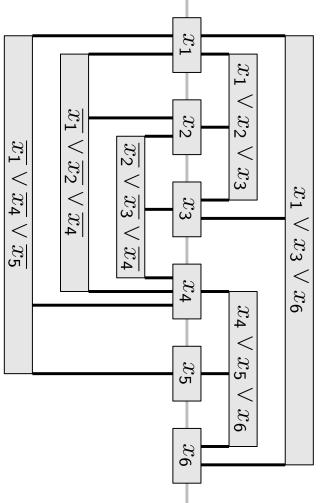
NP-Hardness of RepExt in the General Case

Theorem 2.

 ε -Bar visibility representation extension is NP-complete.

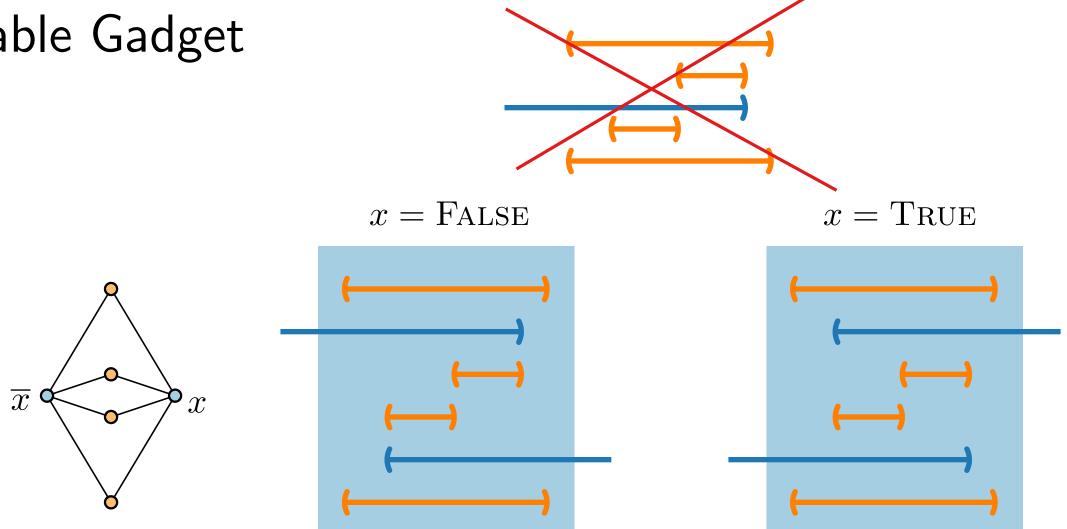
Membership in NP?

NP-hard: Reduction from Planar Monotone 3-SAT



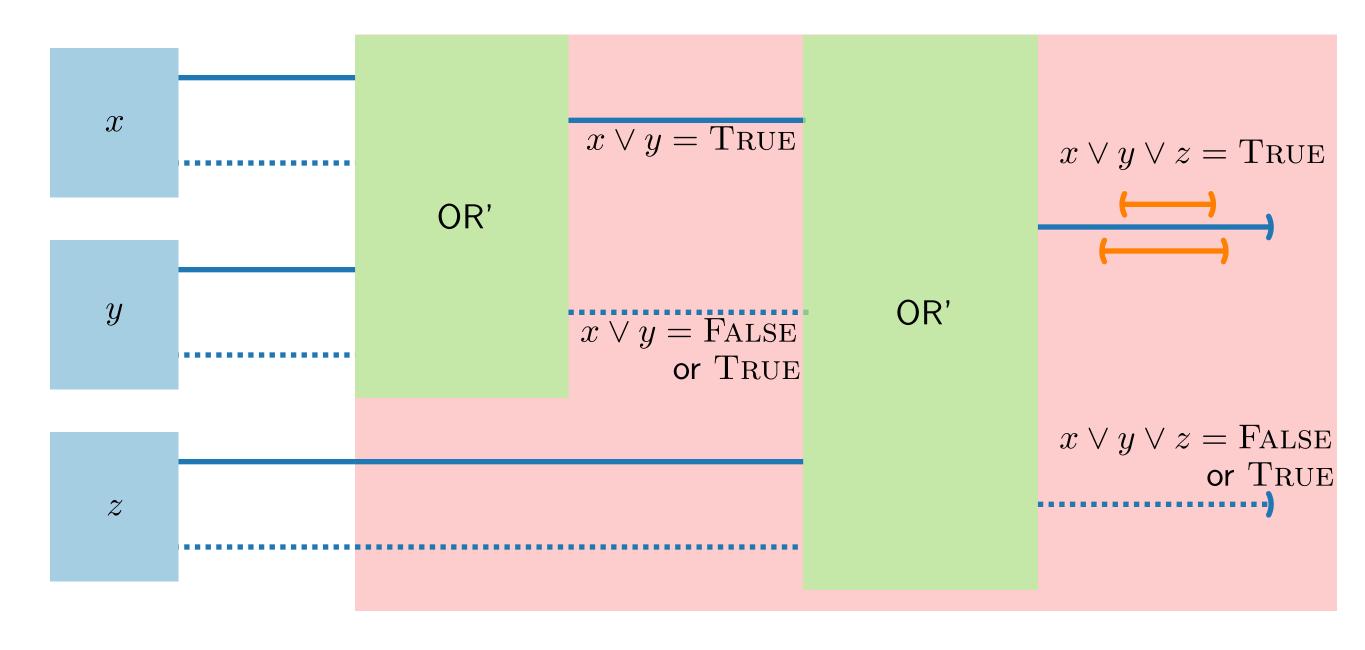
■ NP-complete
[de Berg & Khosravi '10]

Variable Gadget

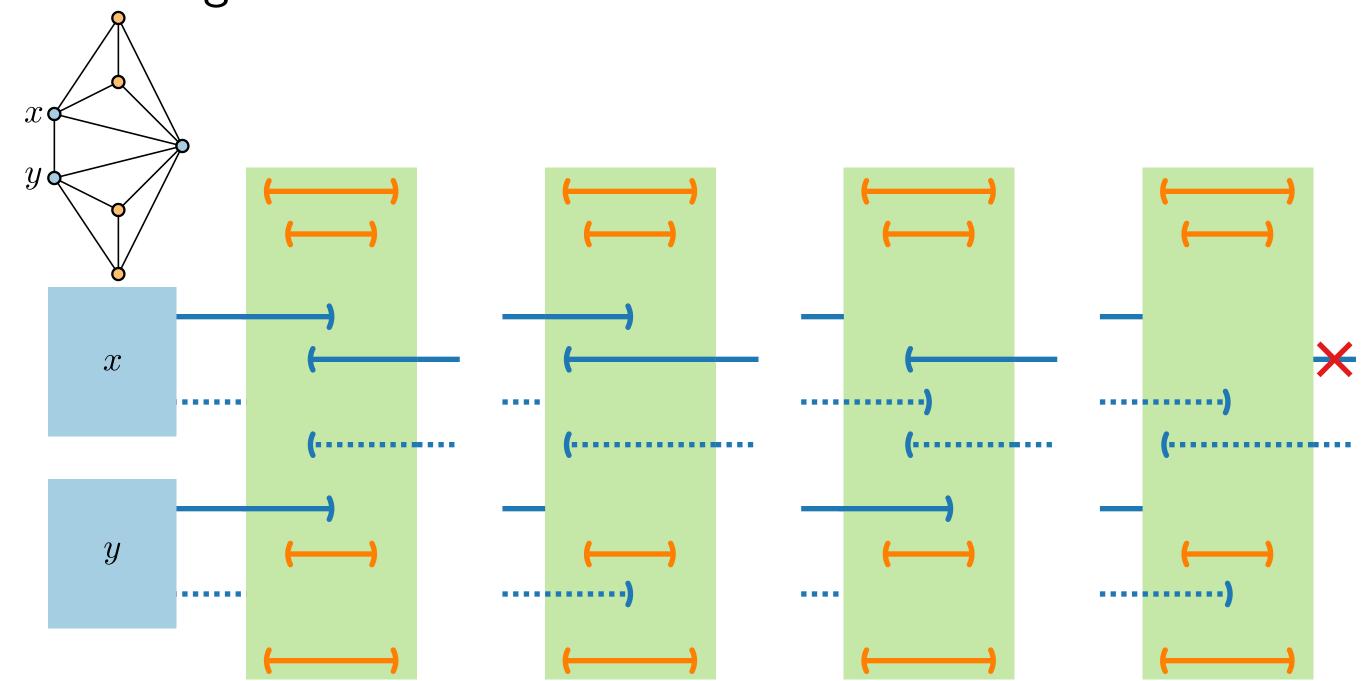


Clause Gadget

$$x \lor y \lor z$$



OR' Gadget



Discussion

- Rectangular ε -bar visibility representation extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- \blacksquare ε -bar visibility representation extension is NP-complete.
- ε -bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed $\varepsilon > 0$ is specified).

Open Problems:

- Can rectangular ε -bar visibility representation extension be solved in polynomial time for st-graphs? For DAGs?
- Can *strong* bar visibility recognition / representation extension be solved in polynomial time for st-graphs?

Literature

Main source:

■ [Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]
The Partial Visibility Representation Extension Problem

Referenced papers:

- [Tamassia, Tollis '86] Algorithms for visibility representations of planar graphs
- [Wismath '85] Characterizing bar line-of-sight graphs
- [Chaplick, Dorbec, Kratochvíl, Montassier, Stacho '14] Contact representations of planar graphs: Extending a partial representation is hard
- [Andreae '92] Some results on visibility graphs
- [Garg, Tamassia '01]
 On the Computational Complexity of Upward and Rectilinear Planarity Testing
- [Gutwenger, Mutzel '01] A Linear Time Implementation of SPQR-Trees
- [de Berg, Khosravi '10] Optimal Binary Space Partitions in the Plane