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Crossing Number and Topological Graphs

For a graph G, the crossing number cr(G) Example.
Is the smallest number of pairwise edge cr(Ks33) =1
crossings in a drawing of G (in the plane). |

In a crossing-minimal drawing of G

B no edge is self-intersecting,

B edges with common endpoints do
not Iintersect,

-
T,
L

## crossings reduced; so, an iterative procedure terminates
Such a drawing is called a topological drawing of G.

B two edges intersect at most once, 7/

B and, w.l.o.g., at most two edges
Intersect at the same point.

b



Hanani—Tutte Theorem

Theorem. [Hanani '43, Tutte '70]
A graph is planar if and only if it has a drawing in which all
pairs of vertex-disjoint edges cross an even number of times.

Proof sketch.

Hanani showed that every drawing of K5 and K33 must have a pair of edges that crosses
an odd number of times.

Every non-planar graph has K5 or K33 as a minor, so there are two paths that cross an
odd number of times.

Hence, there must be two edges on these paths that cross an odd number of times. []



Hanani—Tutte Theorem

Theorem. IHanani ‘43, Tutte '70] The odd crossing number
A graph is planar if and only if it has a drawing in which all ocr(G) of G is the smallest
pairs of vertex-disjoint edges cross an even number of times.  number of pairs of edges that

cross oddly in a drawing of G.
socr(G) =cr(G)?  No!

Theorem. [Pelsmajer, Schaefer & Stefankovi¢ '08, Téth '08]  Is ocr(G) = per(G)?  Nol!
There is a graph G with ocr(G) < cr(G) < 10 s pcr(G) = cr(G)?  Open!

Corollary. ocr(G) =0= pcr(G) =0=cr(G) =0

; , Note that, in the resulting
Theorem. [Pach & Toth OO] drawing of G, an edge may

If " is a drawing of G and Ej is the set of edges that cross any other edge cross some edges an odd
an even number of times in I, then GG can be drawn such that no edge in number of times and some

. - : other edges an even number
Ey is involved in any crossings . .
of times. So, no implications

n ocr(G) = per(G).
The pairwise crossing number pcr(G) of GG is the smallest " o) " erte)

number of pairs of edges that cross in a drawing of G. Theorem. [Pelsmajer, S. & 5.'08, Té6th'08]

By definition OCI’(G) < pcr(G) < CI’(G) )ere exist graphs where ocr(G) < pcr(G).




Computing the Crossing Number

B Computing cr(G) is NP-hard. [Garey & Johnson '83]
... even if GG is a planar graph plus one edge! [Cabello & Mohar '08]

B cr(G) often unknown, only conjectures exist
(for K, it is only known for up to ~ 12 vertices)

B In practice, cr(G) is often not computed directly but rather
drawings of G are optimized with

B force-based methods,

For exact computations,

B multidimensional scaling, .
check out http://crossings.uos.de!

B heuristics, ...

B cr(G) is a measure of how far G is from being planar.

B For planarization, where we replace crossings with dummy vertices,
also only heuristic approaches are known.


http://crossings.uos.de

Other Crossing Numbers

Schaefer [Sch20]| has a survey on many variants of
crossing numbers (including precise definitions).

One-sided crossing minimization (see lecture 8)
Fixed linear crossing number

Book embeddings (vertices on a line, edges assig-
ned to few “pages” where edges do not cross)

Crossings of edge bundles

On other surfaces, such as donuts

Weighted crossings

Crossing minimization is NP-hard for most variants.

I
I

K7 on the torus




Rectilinear Crossing Number

Definition. Separation.
For a graph G, the rectilinear (straight-line) cr(Kg) = 18, but cr(Ksg) = 19.
crossing number Tr(G) is the smallest number of
crossings in a straight-line drawing of G.

Even more . ..

Lemma 1. [Bienstock, Dean '93]
For every k > 4, there exists a graph GG with

cr(Gyr) =4 and cr(Gy) > k. e
B Each straight-line drawing of (G; has at least
one crossing of the following types: :><: o :><:

B From G1 to Gy do e > ee—>e



Bounds for Complete Graphs

Theorem. Conjecture. [Guy '60]

lmy|in—1||n—2||n—-3 3/(n
<1y 5(0) oo
)25 5] 1| [ [ =5 (0) <o
Bound is tight for n < 12. complete bipartite graph with m X n edges
Theorem. Conjecture./ [Zarankiewicz '54, Urbanik '55]
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Bounds for Complete Graphs

Theorem. [Guy '60]
oy 21151 252 [257] - 3(0) oo
Bound is tight for n < 12. complete bipartite graph with m x n edges
Theorem. / [Zarankiewicz '54, Urbanik '55]
(i) £ 1 [2] e

’ 412 2 2 2
Theorem. [Lovész et al. '04, Aichholzer et al. '06]

(g + s> (Z) + O(n®) < er(K,,) < 0.3807 (Z’) + O(n’)

Exact numbers are known for n < 27.

Check out http://www.ist.tugraz.at/staff/aichholzer/crossings.html



http://www.ist.tugraz.at/staff/aichholzer/crossings.html

First Lower Bounds on cr(G)

Lemma 2. Consider this
For a graph G with n vertices and m edges, bound for graphs
with ©(n) and
cr(G) > m — 3n + 6. ©(n?) many edges.
Proof.
B Consider a drawing of G with cr(G) crossings. Qé
B Obtain a graph H by turning crossings into dummy ¢
vertices.

B H has n + cr(G) vertices and m + 2cr(G) edges. Q@

m H is planar, so

m + 2cr(G) < 3(n +cr(G)) — 6. O



First Lower Bounds on cr(G)

Lemma 3.

For a non-planar graph G with n vertices and m edges, | |
Consider this

|m /7| m?2 bound for graphs
cr(G) 2 7 ( 2 € . with ©(n) and
©(n?) many edges.
where r < 3n — 6 is the maximum number of edges in

a planar subgraph of G.

Proof sketch.
B Take |m/r| edge-disjoint subgraphs G1,G>, ..., G|,/ of G with (at least) r edges.
B In the best case, they are all planar.

B For every i < j, any edge of GG; induces at least one crossings with GG;. (Otherwise,
we could add an edge to GG; and obtain a planar subgraph of G with r + 1 edges.)

B So, for each of the (Lm2/TJ) pairs of subgraphs, there are at least r crossings.
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The Crossing Lemma

In 1973 Erdés and Guy conjectured that cr(G) € Q(m?>/n?).

In 1982 Leighton and, independently, Ajtai, Chavtal, Newborn, and Szemerédi showed that

1 m3 Consider this bound for

64 n? graphs with ©(n) and
©(n?) many edges.

cr(G) >

Bound is asymptotically tight.

Result stayed hardly known until Székely demonstrated its usefulness (in 1997).

We go through the proof of Chazelle, Sharir, and Welzl (see “THE BOOK").

Factor

1
64 Was

later (with intermediate steps) improved to = by Ackerman
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The Crossing Lemma

Crossing Lemma.

For a graph G with n vertices and m edges, m > 4n,
3

cr(G) > & -

n2
Proof.
m Consider a crossing-minimal drawing of G. ™ E[n,] = pn and E[m,] = p°m
B Let p be a number in (0,1]. B E[X,] = p*cr(G)
O K.eehp evebryb\./l_ertex of G independently m 0 < E[X,] — E[my,] + 3E[n,]
with probability p. _ p4cr(G) B pzm 4 3pn
B G, = remaining graph (with drawing I',). )
b > P moor(Q) > Emeten — mo_ 3n
m Let ny,,m,, X, be the random variables p p p
cour.ltlng the numbers o_f B Setp=
vertices / edges / crossings of I, resp.
m> 3m?> 1 m’
m By Le/@ma 2, cr(Gp) — my + 3n, > 6. Bcr(G)> 57— i = Gaor ]

cr(G)>m—-3n+6 = E[Xp —mp—|—3np] > 0.
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Application 1: Point—Line Incidences

For a set /7 ¢ 2% of points and a set £ of lines, Theorem 1.
let I(P, £) = # point-line incidences in (P, £).  [Szemerédi, Trotter ‘83, Székely 07
I(n, k) < 2.7n%/3k%/3 + 6n + 2k.

= I(P,L£) = 10

B Define I(n, k)= max I(P L)
| P|=n,|L|=k

B For example: I(4,4) = 9

I T s

(08
®




Application 1: Point—Line Incidences

For a set of points and a set L of lines, 'Theorem 1.
let I(P, £) = # point-line incidences in (P, £).  [Szemerédi, Trotter ‘83, Székely 07
I(n, k) < c(n®PE*3 +n+Ek).

>P \ay - Proof <\/ B cr(G) < k2/2

3/\\ ] #(pomts on a line /) — 1 = #(edges c.)n 0)

11 - 27

= I(P,£) = 10 = I(n,k) —k=m (sum up over L in an
“optimal” instance)
B Define I(n, k)= max I(P L) B If m <4n, then I(n, k) — k =m < 4n.
|[P|=n,|L|=k 2/31.2/3
= I(n,k) <4n+k < c(n+k+n/>k/>)
m For example: I(4,4) = 9 B Otherwise, employ the Crossing Lemma:
3 \/ _i 8 i_ \:\/ 6qu2 = <k/2 = (I(néf%;k)g < k?/2
/\ T T /:/9\ < I(n, k) < C(n2/3k2/3 + k)

< c(n?/3k?/3 + k +n).

[]



Application 2: Unit Distances

For a set P C R? of points, define
B U(P) = number of pairs in P at unit distance and

] U(n) = max|p|:n U(P)

Theorem 2.
[Spencer, Szemerédi, Trotter '84, Székely '97]

U(n) < 6.7n*/3

Proof sketch.

12 -
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Application 2: Unit Distances

For a set P C R? of points, define
B U(P) = number of pairs in P at unit distance and

] U(n) = max|p|:n U(P)

Theorem 2.
[Spencer, Szemerédi, Trotter '84, Székely '97]
U(n) < 6.7n*/3

Proof sketch '/\some constant
. U(P) < ld'"m <_/—number of edges in G

B cr(G) <2(}) <n? (Circles intersect each other at most twice.)

’ > by the Crossing Lemma.

m
64n2

o cr(G) >




Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) — \ =
what is the average number of crossings in a perfect matching? o—__ >

<|
\'S
Point set spans drawing [ of K,,. o/ l v

We will analyze the number of crossings in a random perfect matching in I'!

Number of crossings in I' > €r(K,,) > 2(7)
Number of edges in K,,: (3)
Number of potential crossings (all pairs of edges): pot(K,,) = ((3)) ~ 3(2)

Pick two random edges e; and e».
Prle; and e cross] > ¢r(K,)/pot(K,) > 3.

Pick random perfect matching M; it has n/2 edges, so (”éz) = =n(n — 2) pairs of edges.

By linearity of expectation,
the expected number of crossings in M is > %(”2/2) = =n(n—2) € Q(n?).

13- 24
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