

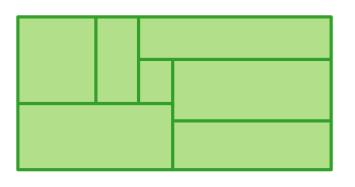
Visualization of Graphs

Lecture 7:

Contact Representations of Planar Graphs: Triangle Contacts and Rectangular Duals



Alexander Wolff



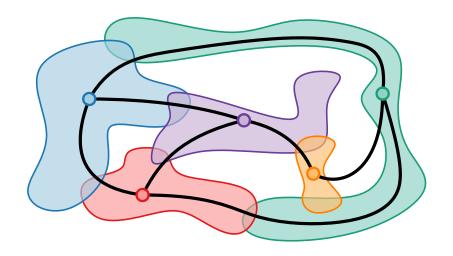
Summer term 2025

Intersection Representation of Graphs

In an intersection representation of a graph,

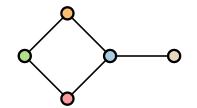
- each vertex is represented by a set
- such that two sets intersect ⇔
 the corresponding vertices are adjacent.

For a collection \mathcal{S} of sets, the **intersection graph** $G(\mathcal{S})$ of \mathcal{S} has vertex set \mathcal{S} and edge set $\{\{S,S'\}:S,S'\in\mathcal{S},S\neq S',\text{ and }S\cap S'\neq\emptyset\}.$



Contact Representation of Graphs

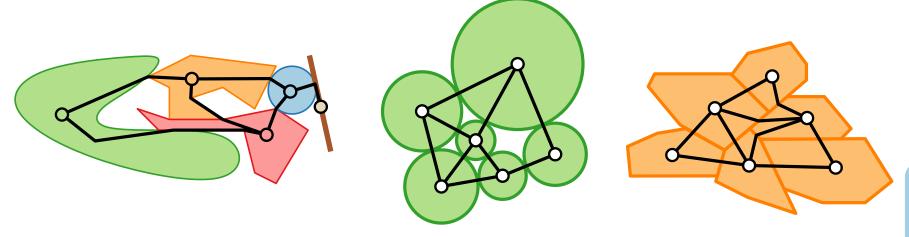
Let G be a graph.



Let S be a family of geometric objects (e.g., disks).

Represent each vertex v by a geometric object $S(v) \in \mathcal{S}$

In an S-contact representation of G, S(u) and S(v) touch iff $uv \in E(G)$.



G is planar $\frac{}{[\text{Koebe 1936}]}$ disks — polygons

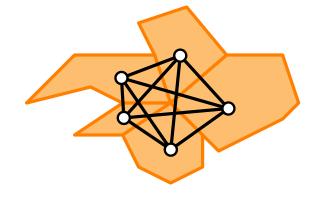
A contact representation is an intersection representation with interior-disjoint sets.

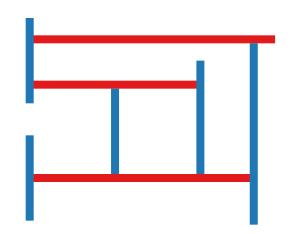
Contact Representation of Planar Graphs

Is the intersection graph of a contact representation always planar?

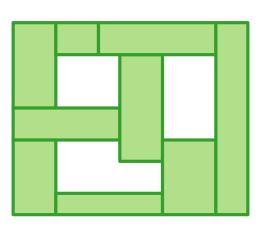
■ No, not even for connected object types in the plane.

Some object types imply restrictions to special classes of planar graphs:

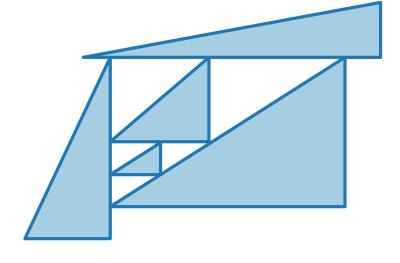




bipartite planar graphs



max. triangle-free planar graphs

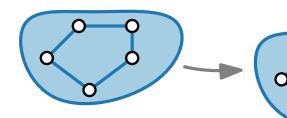


planar triangulations

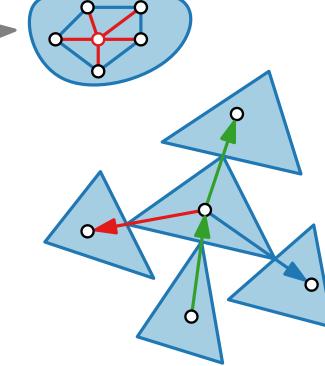
General Approach

How to compute a contact representation of a given graph G?

- Consider only inner triangulations (or maximal bipartite graphs, etc.)
 - Triangulate by adding vertices, not by adding edges



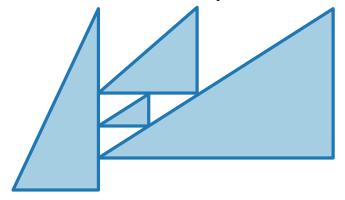
- Which objects touch each other in which way?
- Compute combinatorial description.
- Show that combinatorial description can be used to construct drawing.



This Lecture

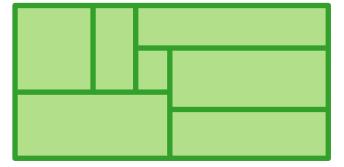
Representation with right-angled triangles and corner contact:

- Use Schnyder realizer to describe contacts between triangles.
- Use canonical order to compute drawing.



Representation with dissection of a rectangle, called rectangular dual:

- Find a description similar to a Schnyder realizer for rectangles.
- Construct drawing via st-digraphs, duals, and topological sorting.



Triangle Corner Contact Representation

Main Idea.

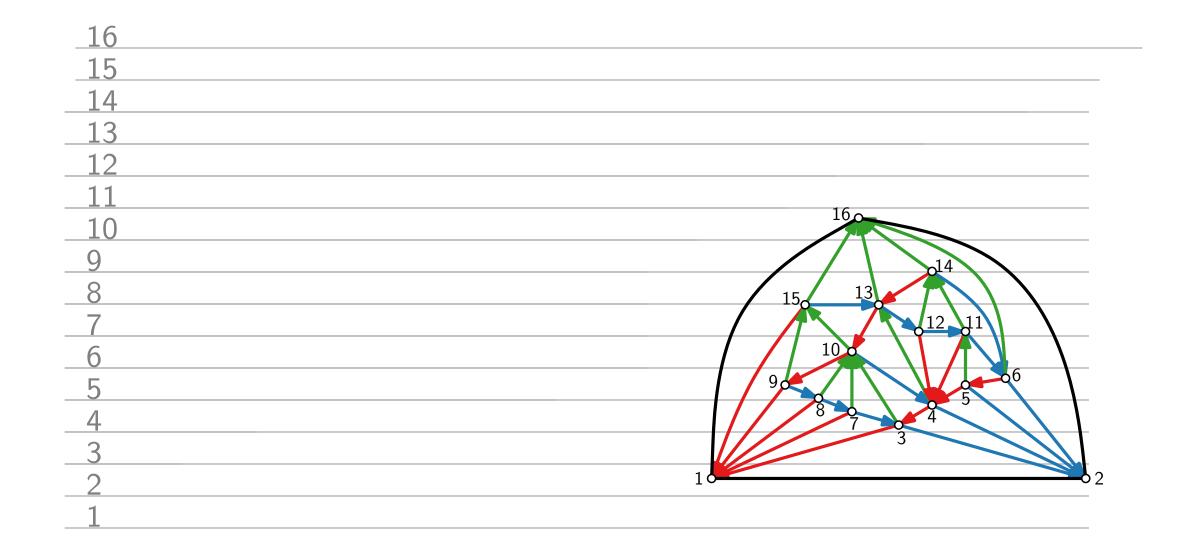
Use canonical order and Schnyder realizer to find coordinates for triangles.



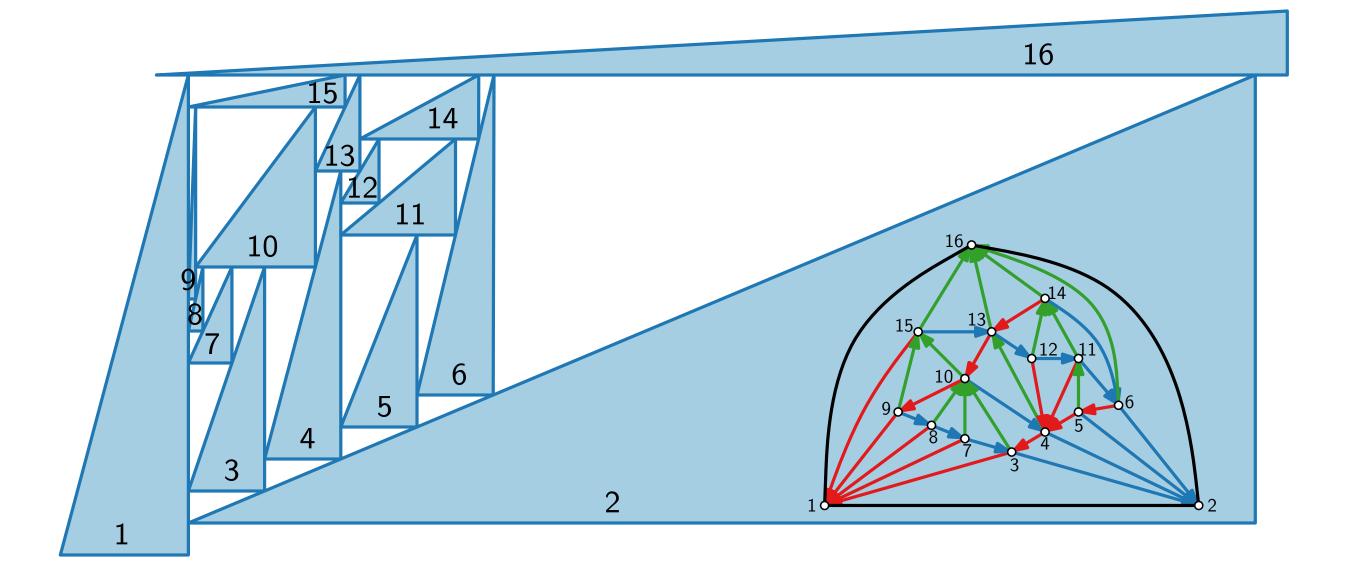
Detailed Idea.

- Place base of triangle at height equal to position in canonical order.
- Triangle tip is precisely at base of triangle corresponding to cover neighbor.
- Outgoing edges in Schnyder forest indicate corner contacts.

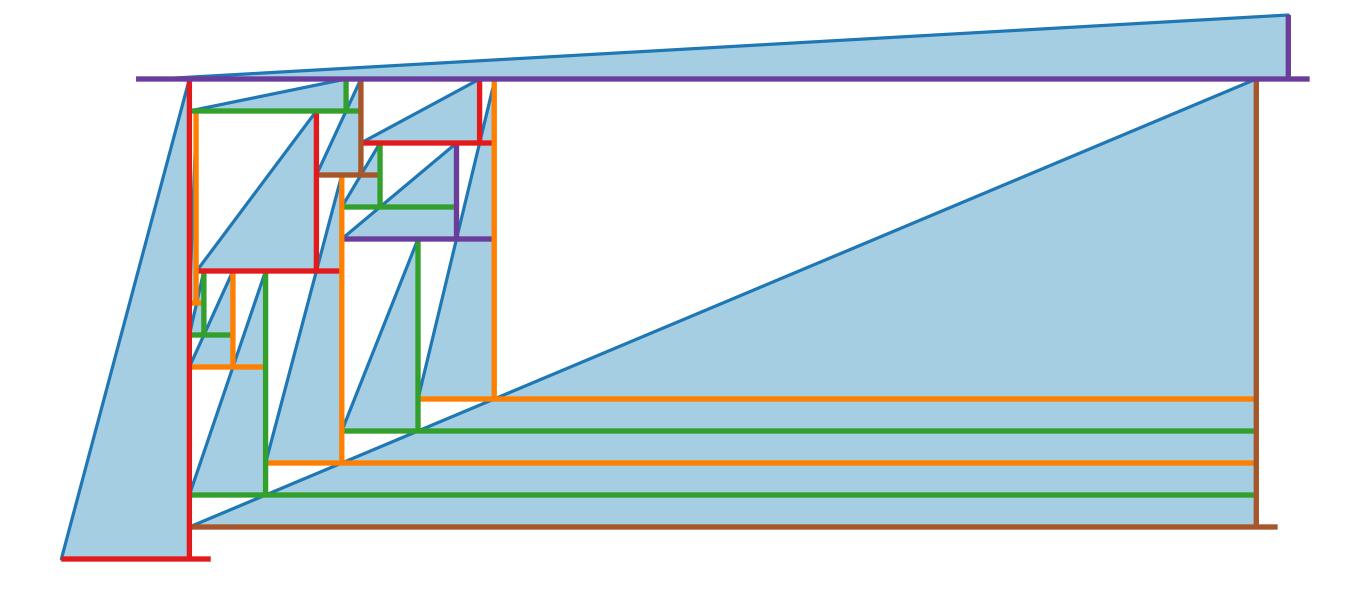
Triangle Contact Representation Example



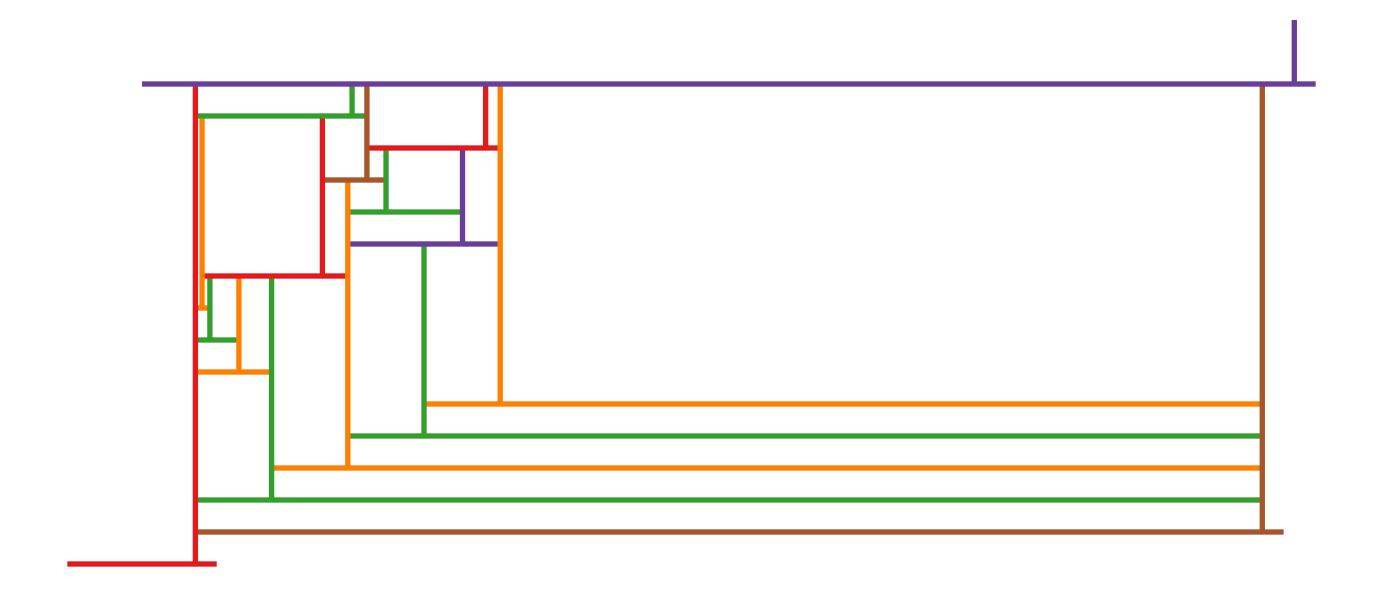
Triangle Contact Representation Example



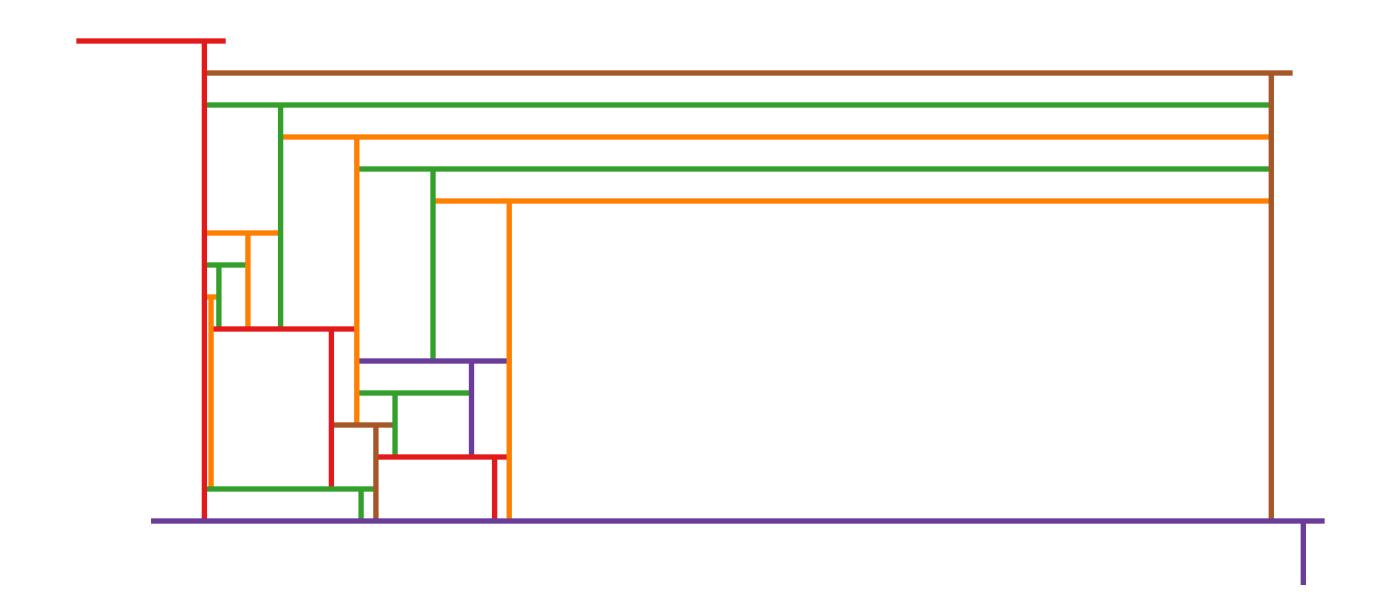
T-shape Contact Representation



T-shape Contact Representation

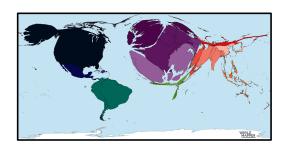


T-shape Contact Representation

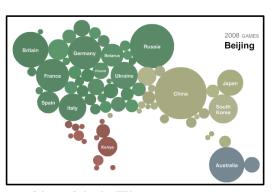


Needs 64 206 Romney ELECTORAL VOTE

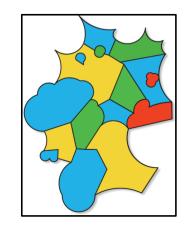
Cartograms



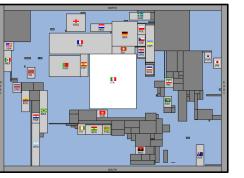
© worldmapper.org



© New York Times

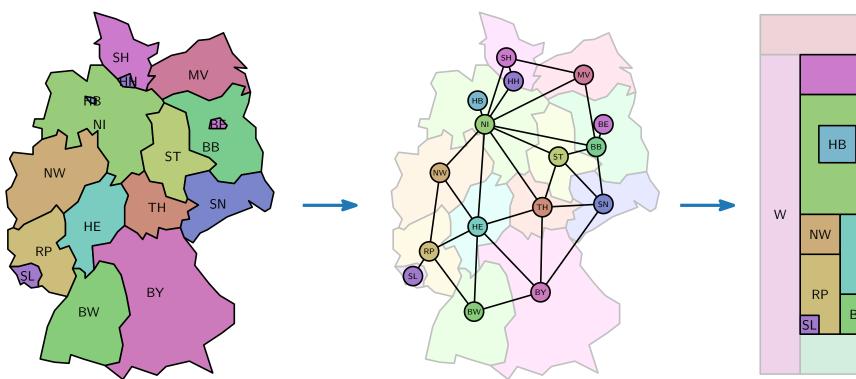


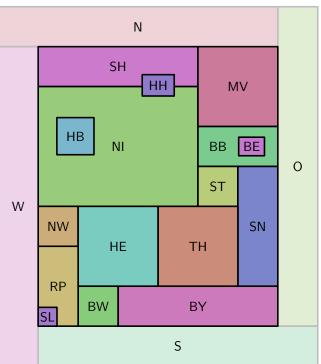
© Bettina Speckmann



© New York Times

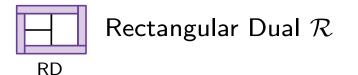
Obama 243 Needs 27 to win

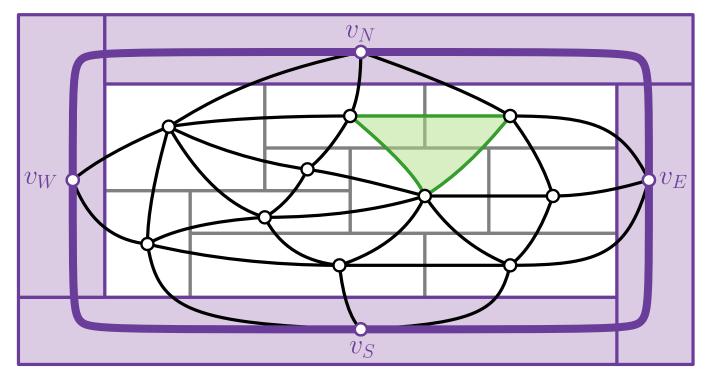


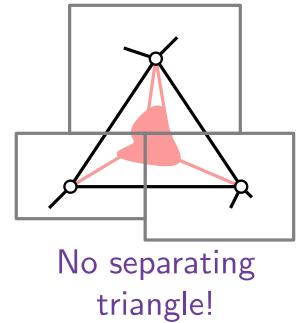


Rectangular Dual

Exactly four vertices on the outer face.

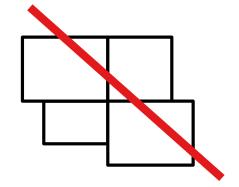






A rectangular dual of a graph G is a contact representation with axis-aligned rectangles s.t.

- no four rectangles share a point, and
- the union of all rectangles is a rectangle



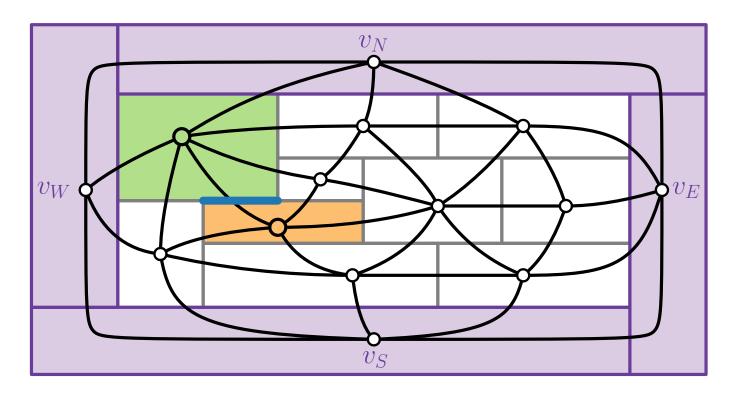
Theorem.

[Koźmiński, Kinnen '85]

A graph G has a rectangular dual if and only if G is a PTP graph.

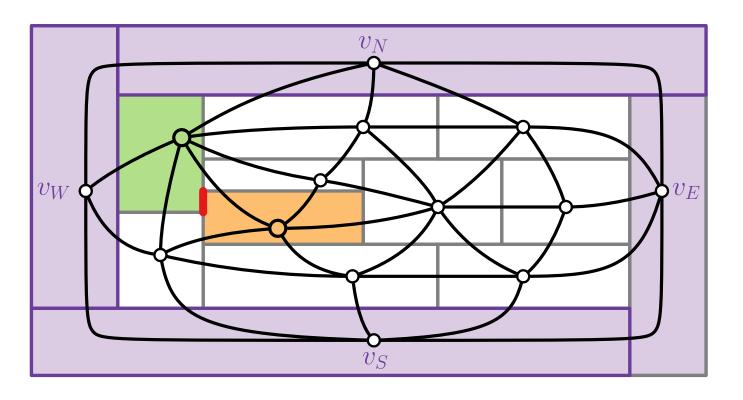
Properly Triangulated Planar Graph ${\cal G}$

Rectangular Dual ${\mathcal R}$



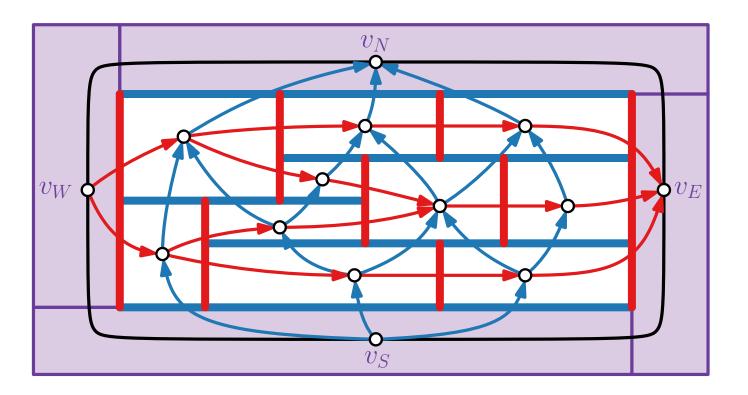
Properly Triangulated Planar Graph ${\cal G}$

Rectangular Dual ${\mathcal R}$



Properly Triangulated Planar Graph ${\cal G}$

Rectangular Dual ${\mathcal R}$

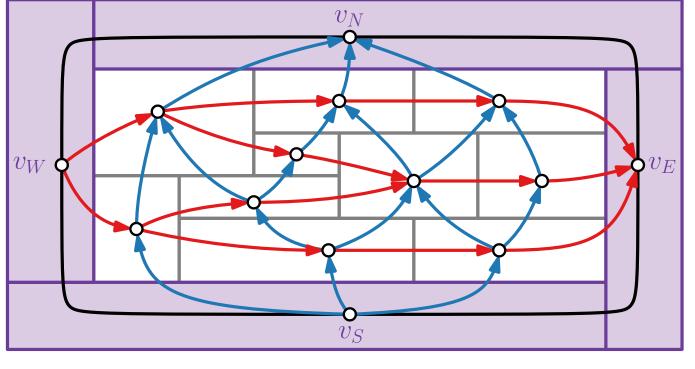


Properly Triangulated Planar Graph ${\cal G}$

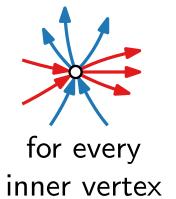
Regular Edge Labeling

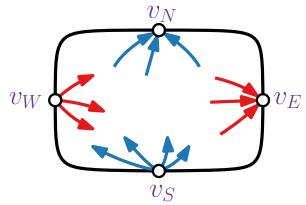
RD

Rectangular Dual ${\mathcal R}$



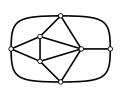
Properties:



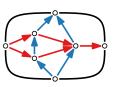


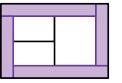
for four outer vertices

[Kant, He '94]:



O(n)





PTP

REL

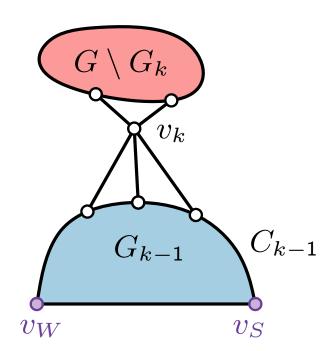
RD

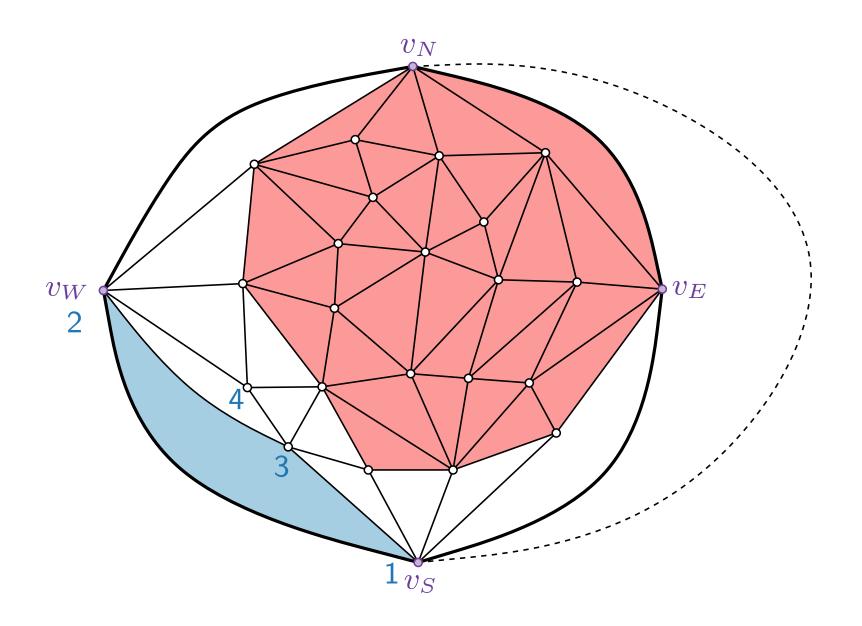
Refined Canonical Order

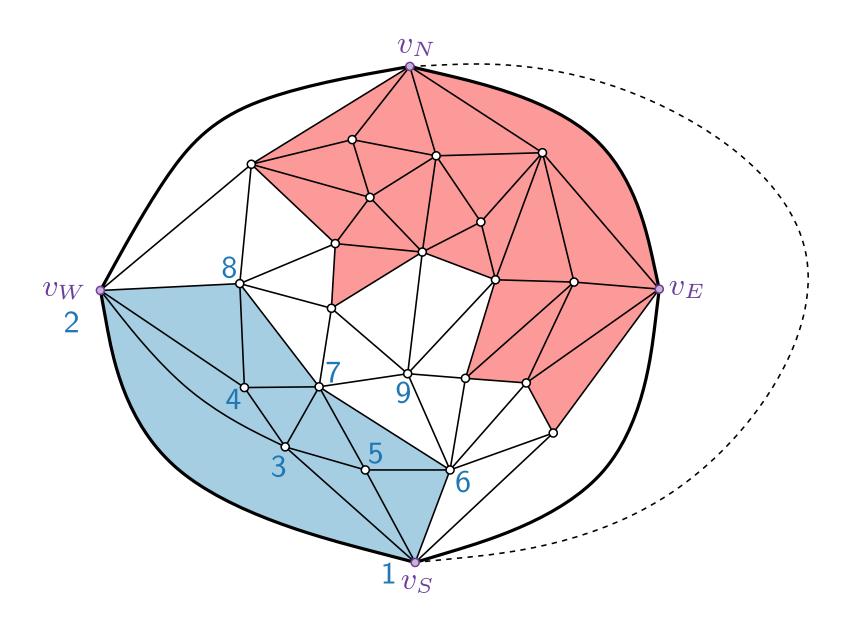
Theorem.

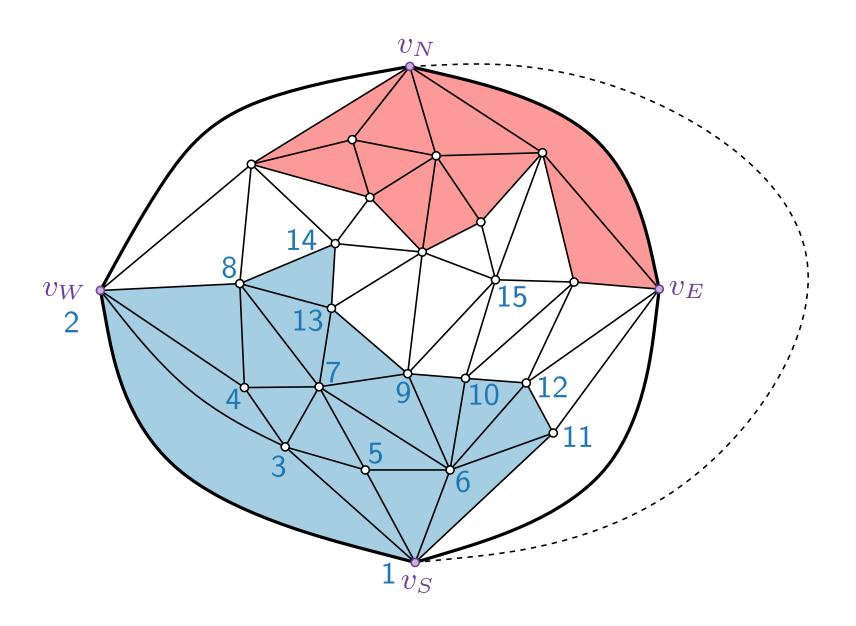
Let G be a PTP graph that is embedded in its unique planar embedding with counter-clockwise outer face $\langle v_W, v_S, v_E, v_N \rangle$. There exists a labeling $v_1 = v_S, v_2 = v_W, v_3, \ldots, v_n = v_N$ of the vertices of G such that for every $4 \le k \le n$:

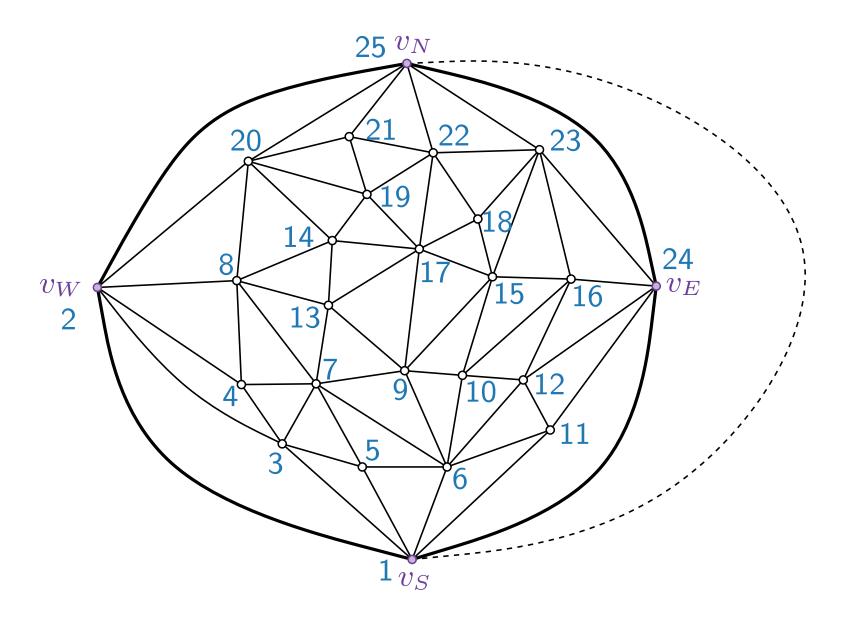
- The subgraph G_{k-1} induced by v_1, \ldots, v_{k-1} is biconnected and the boundary C_{k-1} of G_{k-1} contains the edge (v_S, v_W) .
- v_k is in the outer face of G_{k-1} , and its neighbors in G_{k-1} form an (at least 2-element) subinterval of the path $C_{k-1} \setminus (v_S, v_W)$.
- If $k \le n-2$, then v_k has at least two neighbors in $G \setminus G_k$.







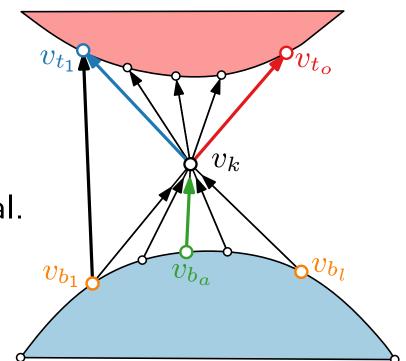




Refined Canonical Order REL

We construct a REL as follows:

- For i < j, orient (v_i, v_j) from v_i to v_j ;
- If v_k has incoming edges from v_{b_1}, \ldots, v_{b_l} , we say that v_{b_1} is the **left point** of v_k and v_{b_l} is the **right point** of v_k .
- Base edge of v_k is (v_{b_a}, v_k) , where $b_a \in \{b_1, \ldots, b_l\}$ is minimal.
- If v_{t_1}, \ldots, v_{t_o} are higher numbered neighbors of v_k , we call (v_k, v_{t_1}) left edge and (v_k, v_{t_o}) right edge of v_k .



Lemma 1.

A left edge or right edge cannot be a base edge.

Proof. Suppose that the left edge (v_k, v_{t_1}) is the base edge of v_{t_1} . Since G is triangulated, $(v_{b_1}, v_{t_1}) \in E(G)$. Contradiction since $k > b_1$.

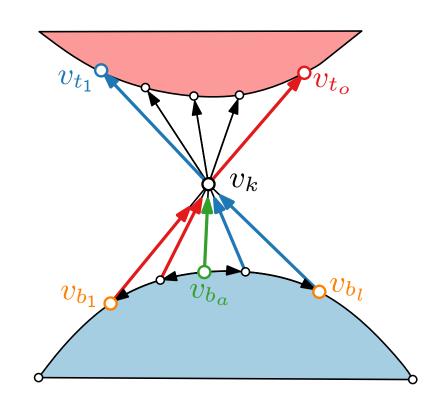
Refined Canonical Order \rightarrow REL

Lemma 2.

Every edge is either a left edge, a right edge or a base edge.

Proof.

- Exclusive "or" follows from Lemma 1.
- Let (v_{b_a}, v_k) be the base edge of v_k .
- lacksquare v_{b_a} is the right point of $v_{b_{a-1}}$.
 - lacksquare v_{b_i} has at least two higher-numbered neighbors.
 - lacksquare One of them is v_k ; the other one is $v_{b_{i-1}}$ or $v_{b_{i+1}}$.
 - For $1 \le i < a-1$, it is $v_{b_{i-1}}$. Thus, v_{b_i} is the right point of $v_{b_{i-1}}$.
- Analogously, v_{b_i} is the left point of $v_{b_{i+1}}$ for $i \geq a$.
- Edges (v_{b_i}, v_k) , $1 \le i < a 1$, are right edges.
- Similarly, (v_{b_i}, v_k) , for $a + 1 \le i \le l$, are left edges.



Refined Canonical Order \rightarrow REL

Coloring.

- Color right (left) edges in red (blue).
- Color a base edge (v_{b_i}, v_k) red if i = 1 and blue if i = l and otherwise arbitrarily.

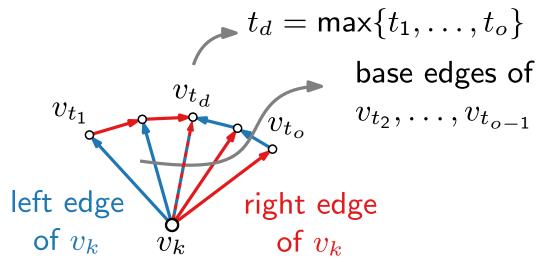
Let T_r be the red edges and T_b the blue edges.

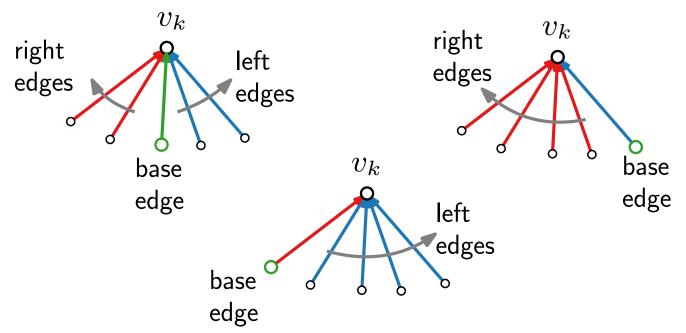
Lemma 3.

 $\{T_r, T_b\}$ is a regular edge labeling.

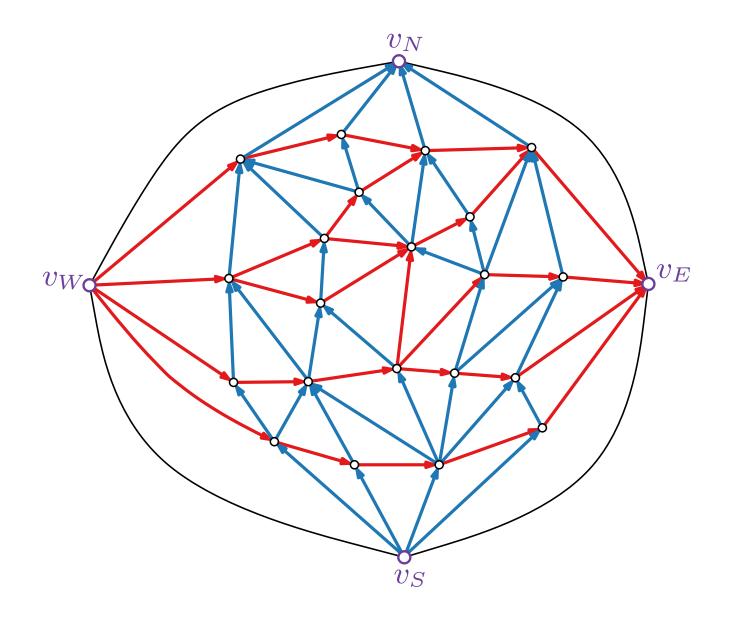
Proof.

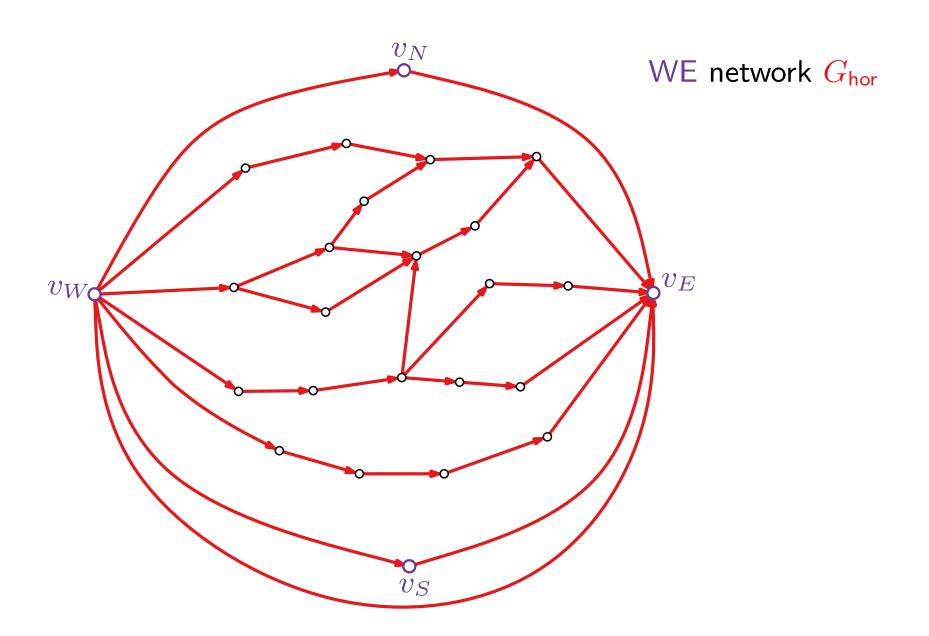
$$t_o \geq 2$$

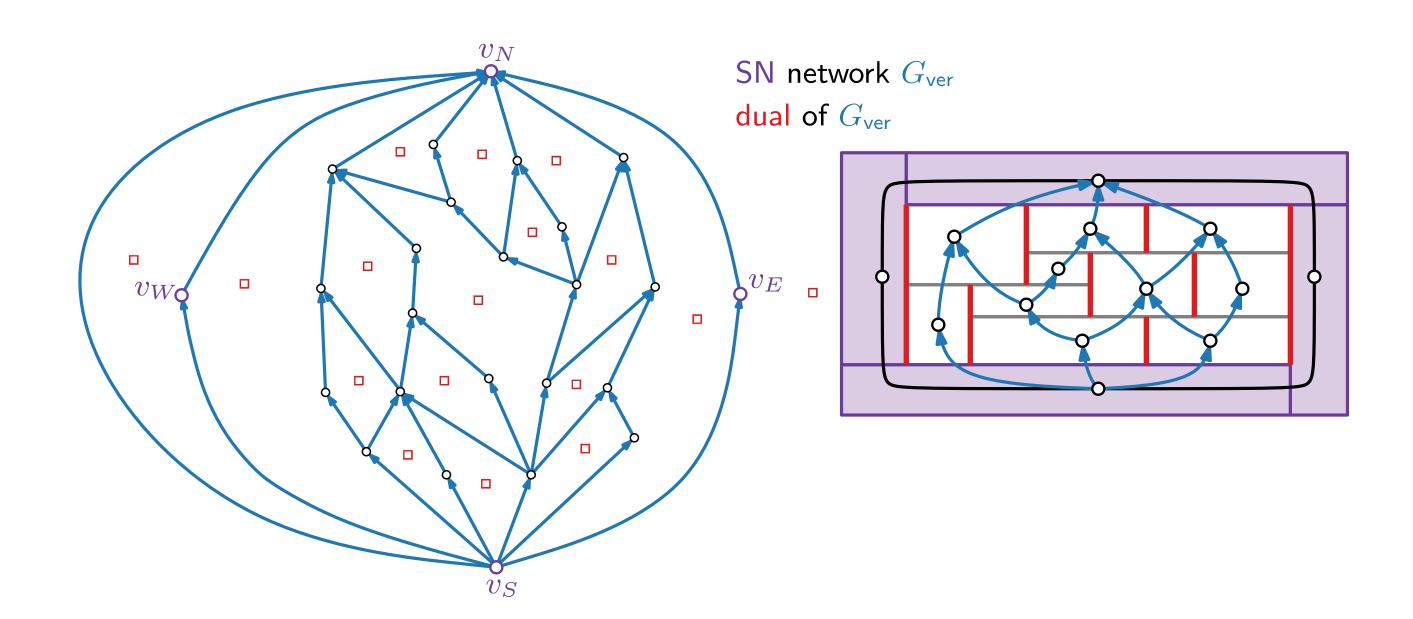


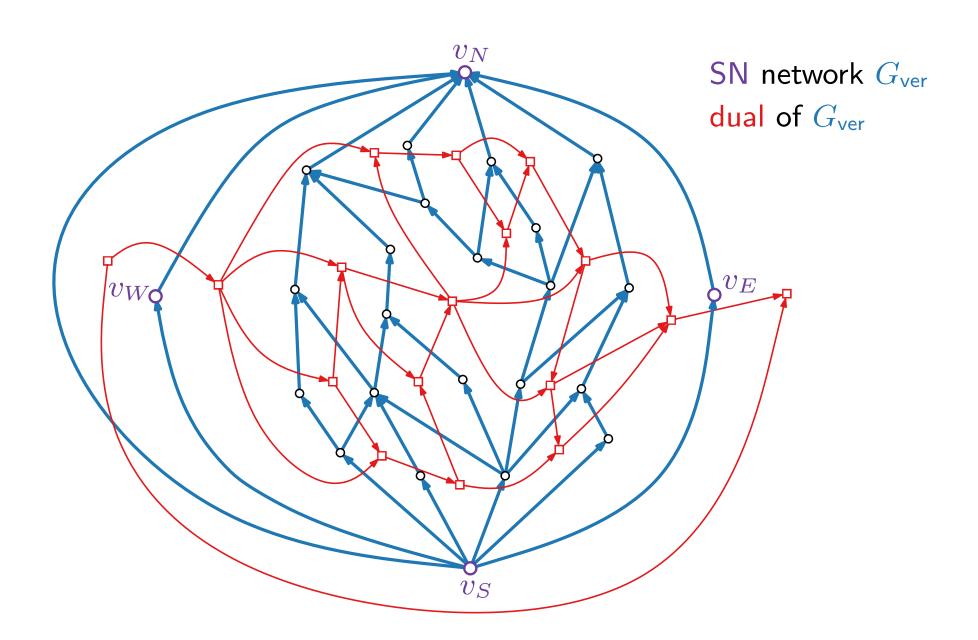


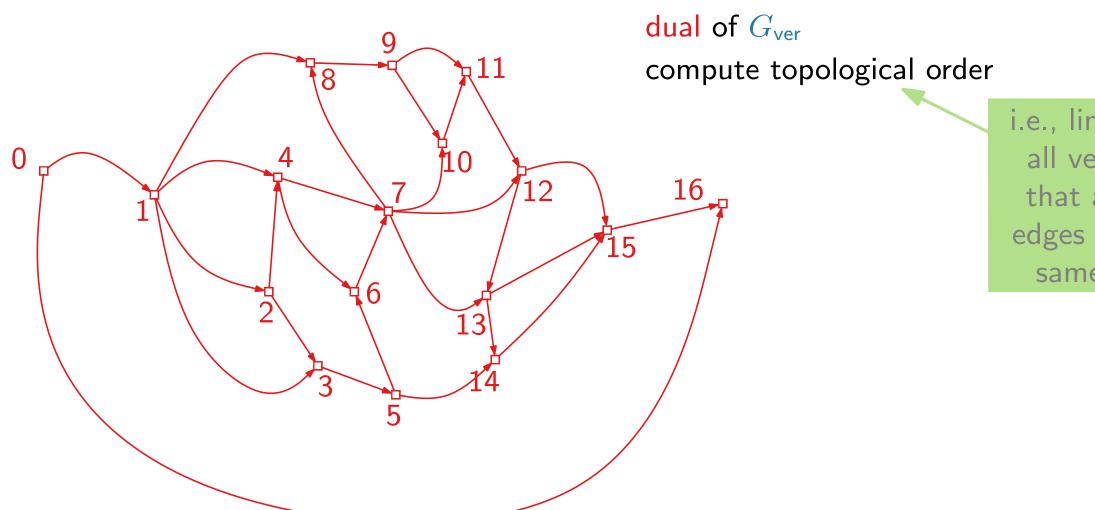
- $t_1 < t_2 < \ldots < t_d \text{ and } t_d > t_{d+1} > \ldots > t_o$
- (v_k, v_{t_i}) , $2 \le i \le d-1$ are blue
- $(v_k, v_{t_i}), d+1 \leq i \leq o-1$ are red
- \bullet (v_k, v_{t_d}) is either red or blue
- \Rightarrow Circular order of outgoing edges at v_k correct.



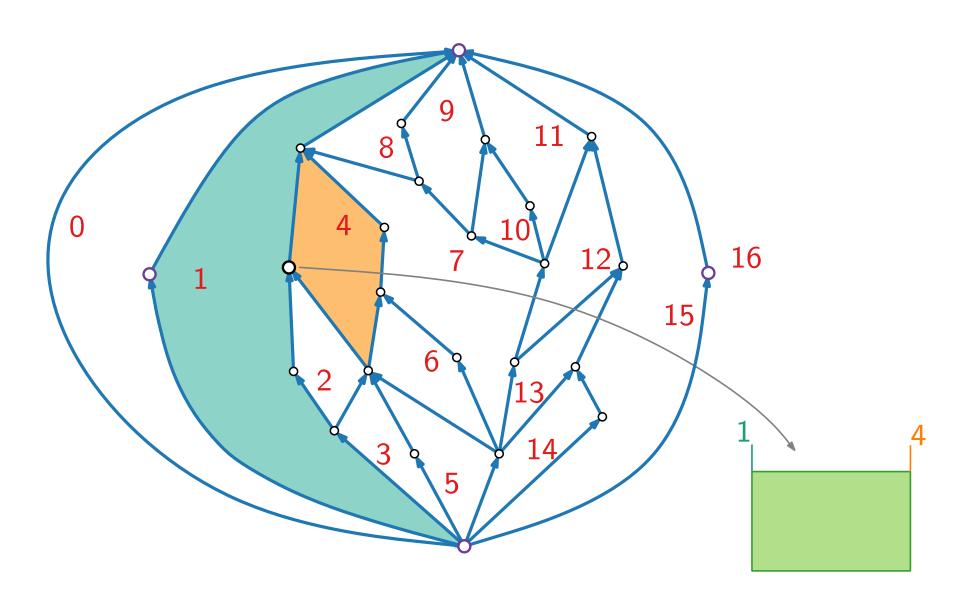


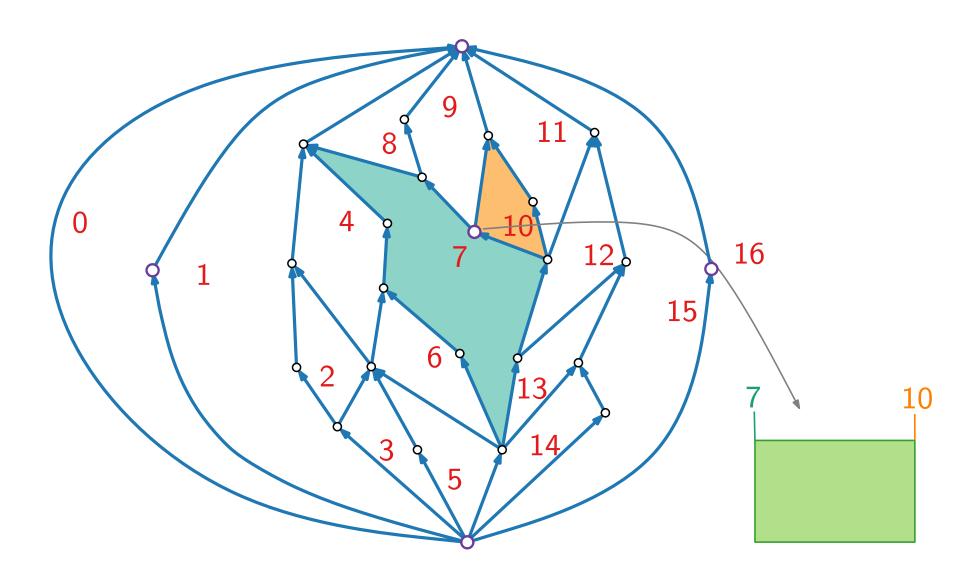






i.e., linear order of all vertices such that all directed edges point in the same direction





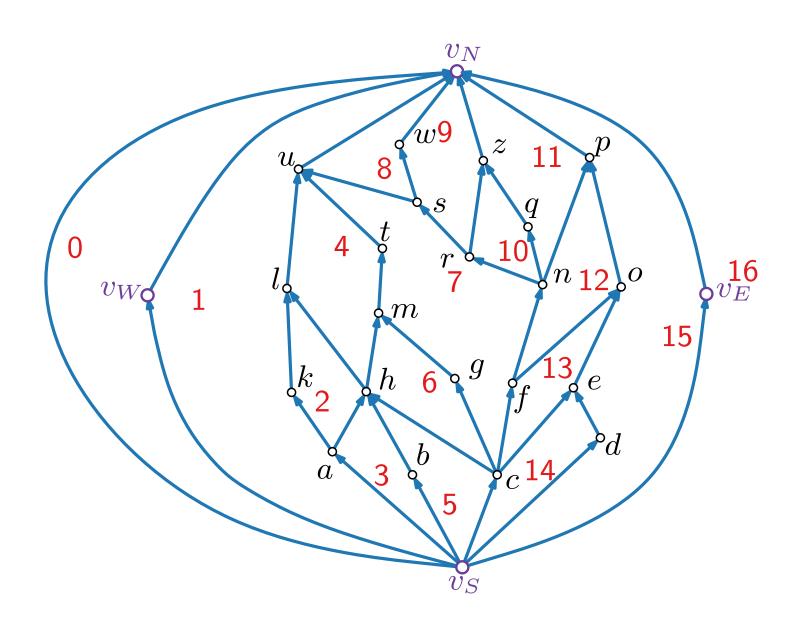
Rectangular Dual Algorithm

For a PTP graph G:

- Find a REL $\{T_r, T_b\}$ of G.
- Construct a SN network G_{ver} of G (consists of T_b plus outer edges).
- lacktriangle Construct the dual G_{ver}^{\star} of G_{ver} and compute a topological ordering f_{ver} of G_{ver}^{\star} .
- For each vertex v of G, let g and h be the face on the left and face on the right of v. Set $x_1(v) = f_{\text{ver}}(g)$ and $x_2(v) = f_{\text{ver}}(h)$.
- Define $x_1(v_N) = 0, x_1(v_S) = 1$ and $x_2(v_N) = \max f_{\text{ver}} 1, x_2(v_S) = \max f_{\text{ver}}$.
- \blacksquare Analogously compute y_1 and y_2 with G_{hor} .

For each vertex v of G, let $R(v) = [x_1(v), x_2(v)] \times [y_1(v), y_2(v)]$.

Reading off Coordinates to Get Rectangular Dual



$$x_1(v_N) = 0, \ x_2(v_N) = 15$$

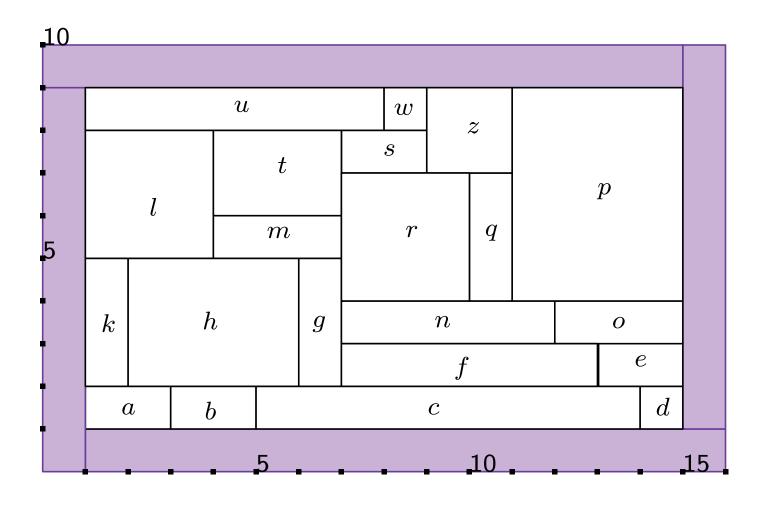
 $x_1(v_S) = 1, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$
...

$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

. . .

Reading off Coordinates to Get Rectangular Dual



$$x_1(v_N) = 0, \ x_2(v_N) = 15$$

 $x_1(v_S) = 1, \ x_2(v_S) = 16$
 $x_1(v_W) = 0, x_2(v_W) = 1$
 $x_1(v_E) = 15, \ x_2(v_E) = 16$
 $x_1(a) = 1, \ x_2(a) = 3$
 $x_1(b) = 3, \ x_2(b) = 5$
 $x_1(c) = 5, \ x_2(c) = 14$
 $x_1(d) = 14, \ x_2(d) = 15$
 $x_1(e) = 13, \ x_2(e) = 15$

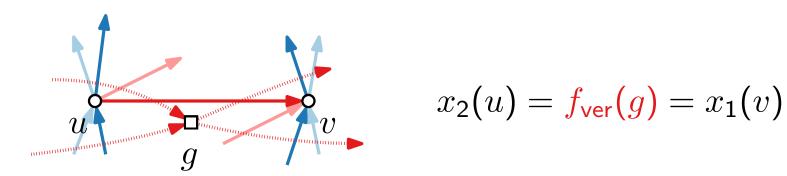
$$y_1(v_W) = 0, y_2(v_W) = 9$$

 $y_1(v_E) = 1, y_2(v_E) = 10$
 $y_1(v_N) = 9, y_2(v_N) = 10$
 $y_1(v_S) = 0, y_2(v_S) = 1$
 $y_1(a) = 1, y_2(a) = 2$
 $y_1(b) = 1, y_2(b) = 2$

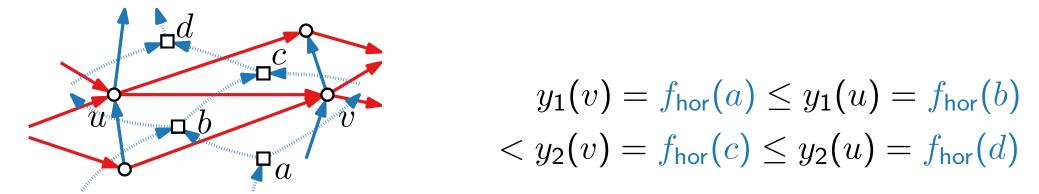
. . .

Correctness of Algorithm (Sketch)

If edge (u, v) exists, then $x_2(u) = x_1(v)$



...and the vertical segments of their rectangles overlap.



- If the path from u to v in red is at least two edges long, then $x_2(u) < x_1(v)$.
- No two boxes overlap.
- For details, see [He '93].

Rectangular Dual Result

Theorem.

Every PTP graph G has a rectangular dual. A rectangular dual can be computed in linear time.

Proof.

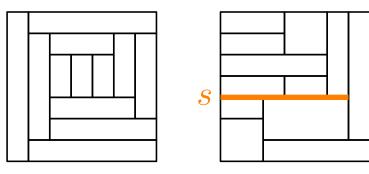
- \blacksquare Compute a planar embedding of G.
- \blacksquare Compute a refined canonical ordering of G.
- $lue{}$ Traverse the graph and color the edges. ightarrow REL
- \blacksquare Construct G_{ver} and G_{hor} .
- \blacksquare Construct their duals G_{ver}^{\star} and G_{hor}^{\star} .
- lacktriangle Compute topological orderings of G_{ver}^{\star} and G_{hor}^{\star} .
- Assign coordinates to the rectangles representing vertices.

Discussion

- A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout.
- A rectangular layout is area-universal if and only if it is one-sided.

[Eppstein et al., SIAM J. Comp. 2012]

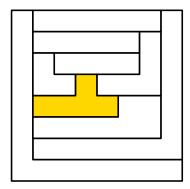
one-sided



not one-sided

i.e., every segment belongs to exactly one rectangle

- Area-universal rectlinear representation: possible for all planar graphs.
- [Alam et al. 2013]: 8 sides (matches the lower bound)



Literature

Construction of triangle contact representations based on

■ [de Fraysseix, Ossona de Mendez, Rosenstiehl '94] On Triangle Contact Graphs

Construction of rectangular dual based on

- [He '93] On Finding the Rectangular Duals of Planar Triangulated Graphs
- [Kant, He '94] Two algorithms for finding rectangular duals of planar graphs and originally from
- [Koźmiński, Kinnen '85] Rectangular Duals of Planar Graphs