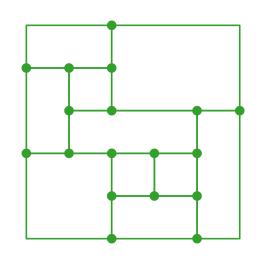
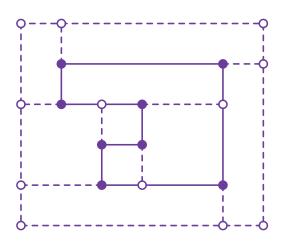
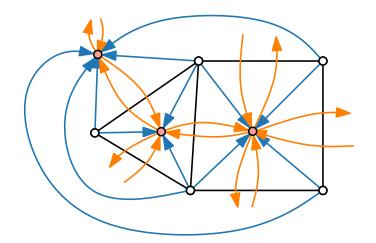


Visualization of Graphs



Lecture 6: Orthogonal Layouts

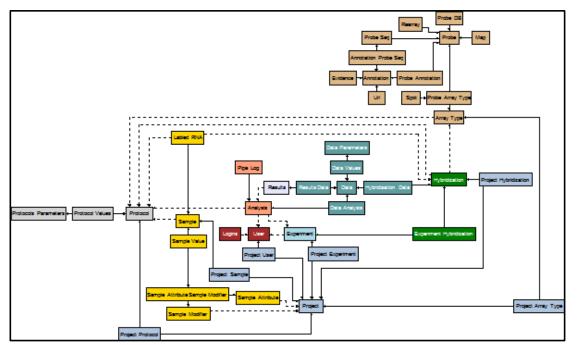




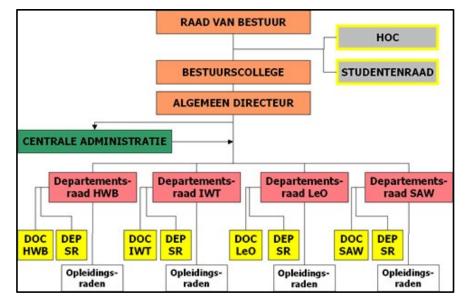
Alexander Wolff

Summer term 2025

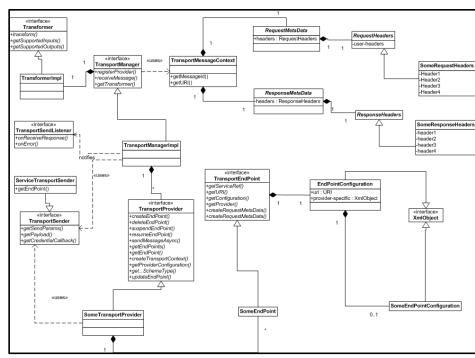
Orthogonal Layout – Applications



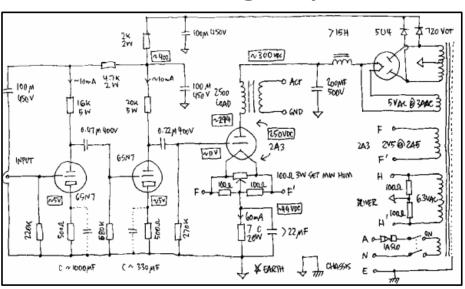
Entity-Relationship (ER) diagram in OGDF



Organigram of HS Limburg

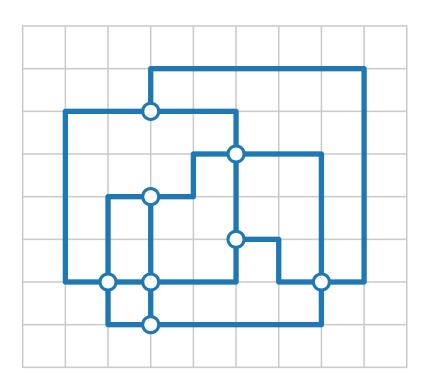


UML diagram by Oracle



Circuit diagram by Jeff Atwood

Orthogonal Layout – Definition



Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

Definition.

A drawing Γ of a graph G is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

Planarization.

- Fix embedding
- Crossings become vertices

Aesthetic criteria to optimize.

- Number of bends
- Length of edges
- Width, height, area
- Monotonicity of edges
- ..

Topology – Shape – Metrics

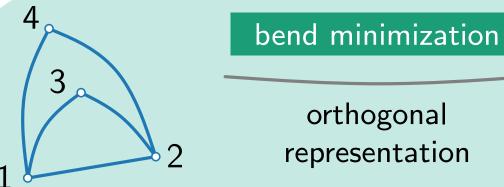
Three-step approach:

$$V(G) = \{v_1, v_2, v_3, v_4\}$$

$$E(G) = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

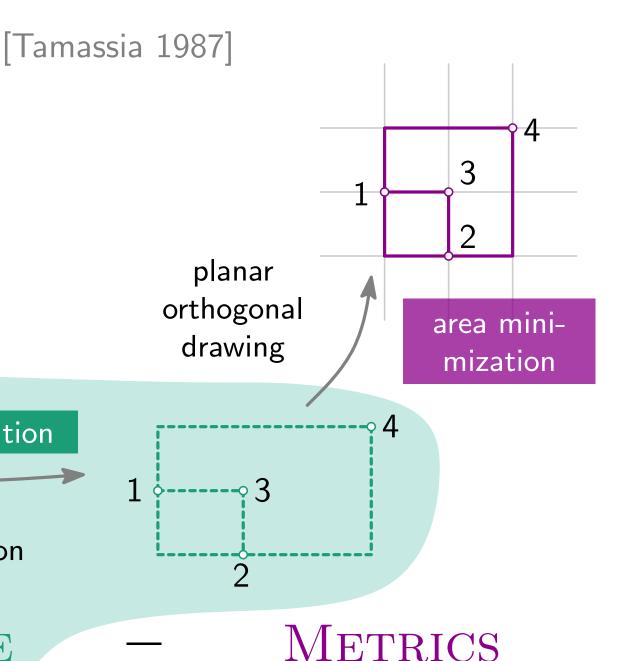
reduce crossings

combinatorial embedding/planarization



Topology

SHAPE



Orthogonal Representation

Idea.

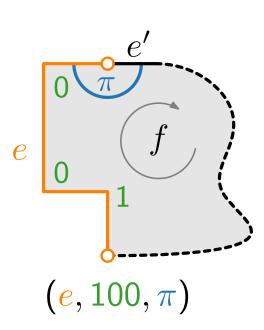
Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

- Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple (e, δ, α) where
 - $\delta \in \{0,1\}^*$ (where 0 = right bend, 1 = left bend)
 - lacktriangle α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'
- A face representation H(f) of a face f is a clockwise ordered sequence $(e_1, \delta_1, \alpha_1), (e_2, \delta_2, \alpha_2), \ldots, (e_{\deg(f)}, \delta_{\deg(f)}, \alpha_{\deg(f)})$ of edge descriptions w.r.t. f.
- lacktriangle An orthogonal representation H(G) of G is defined as

$$H(G) = \{ H(f) \mid f \in F \}.$$

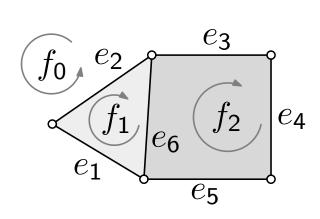


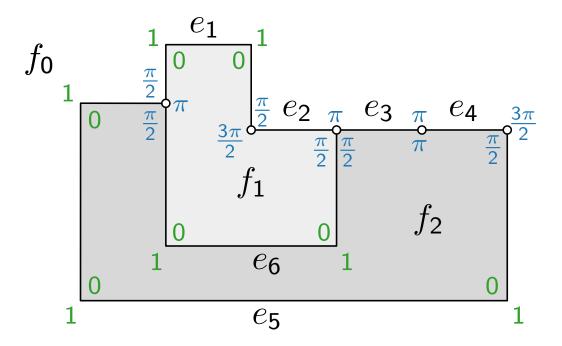
Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$



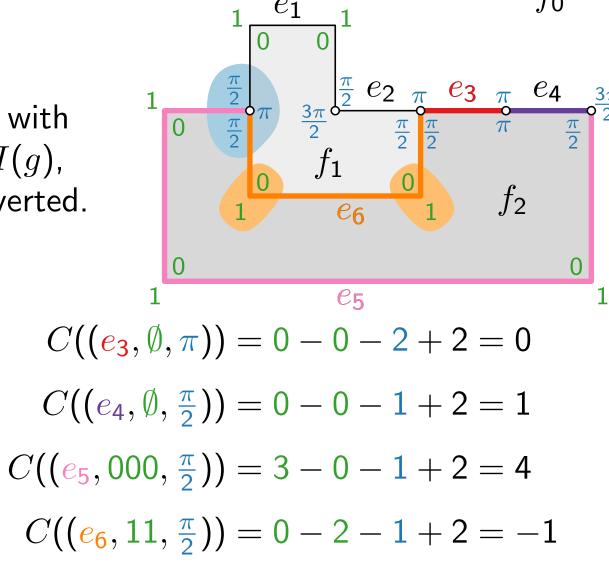


Coordinates are not fixed yet!

Correctness of an Orthogonal Representation

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



(H4) For each **vertex** v, the sum of incident angles is 2π .

$$\sum_{r \in H(f_2)} C(r) = +4$$

Reminder: s-t Flow Networks

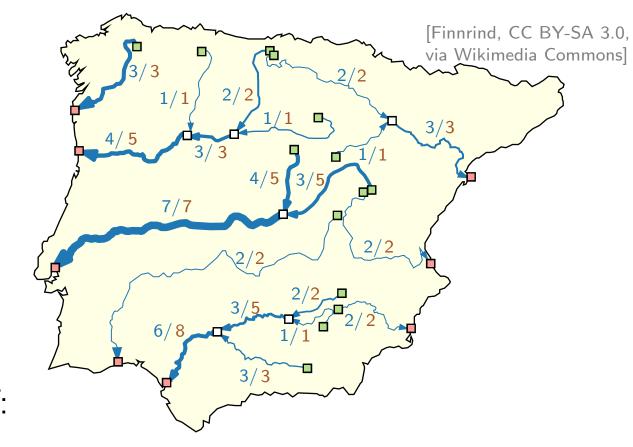
Flow network (G; S, T; u) with

- lacksquare directed graph G
- \blacksquare sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G) \ \sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus (S \cup T)$$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G), i\in S} X(i,j) - \sum_{(j,i)\in E(G), i\in S} X(j,i)$ is maximized.



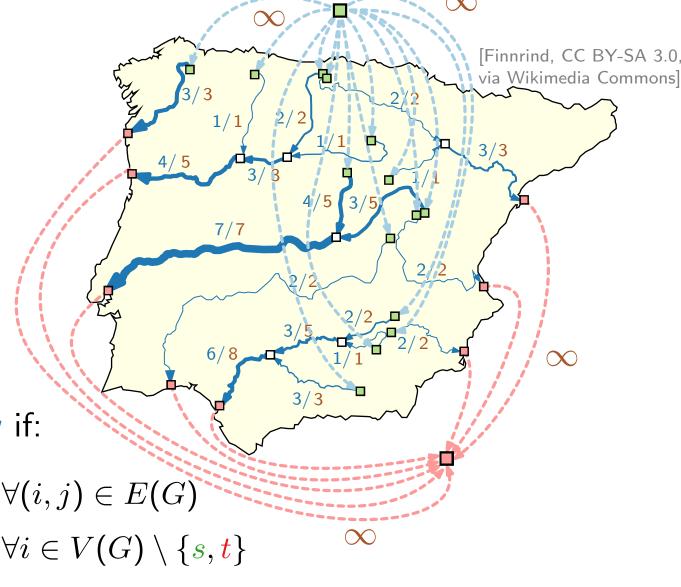
Reminder: s-t Flow Networks

Flow network (G; s, t; u) with

- \blacksquare directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s–t flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G) \ \sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus \{s,t\}$$



A maximum s-t flow is an s-t flow where $\sum_{(s,j)\in E(G)} X(s,j) - \sum_{(j,s)\in E(G)} X(j,s)$ is maximized.

General Flow Network

Flow network $(G; S, T; \ell; u)$ with

- directed graph G
- \blacksquare sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- \blacksquare edge *lower bound* ℓ : $E(G) \to \mathbb{R}_0^+$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

$$\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G) \ \sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus (S \cup T)$$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G), i\in S} X(i,j) - \sum_{(j,i)\in E(G), i\in S} X(j,i)$ is maximized.

General Flow Network

Flow network $(G; b; \ell; u)$ with

- directed graph G
- lacksquare node $production/consumption <math>b\colon V(G) o \mathbb{R}$ with $\sum_{i \in V(G)} b(i) = 0$
- \blacksquare edge *lower bound* $\ell \colon E(G) \to \mathbb{R}_0^+$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

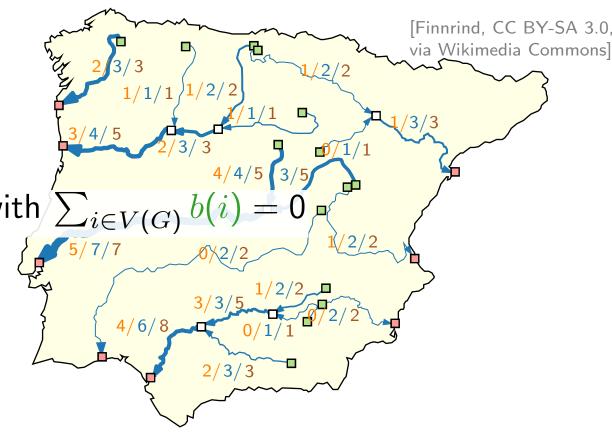
A function $X: E(G) \to \mathbb{R}_0^+$ is called **valid flow** if:

$$\ell(i,j) \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E(G)$$

$$\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = b(i) \quad \forall i \in V(G)$$

• Cost function: cost: $E(G) \to \mathbb{R}_0^+$ and $\operatorname{cost}(X) := \sum_{(i,j) \in E(G)} \operatorname{cost}(i,j) \cdot X(i,j)$

X is a minimum-cost flow if X is a valid flow that minimizes cost(X).



General Flow Network – Algorithms

n: #verticesm: #edges

Polynomial Algorithms						
#	Due to			Year	Running Time	
1	Edmonds and Karp		1972	$O((n + m') \log U S(n, m, nC))$		
2	Rock			1980	$O((n + m') \log U S(n, m, nC))$	
3	Rock			1980	O(n log C M(n, m, U))	
4	Bland and Jensen			1985	O(m log C M(n, m, U))	
5	Goldberg and Tarjan			1987	$O(nm \log (n^2/m) \log (nC))$	
6	Goldberg and Tarjan			1988	O(nm log n log (nC))	
7	Ahuja, Go	Ahuja, Goldberg, Orlin and Tarjan 198			O(nm log log U log (nC))	
s	Strongly Polynomial Algorithms					
#	Due to			Year	Running Time	
1	Tardos			1985	O(m ⁴)	
2	Orlin 198			1984	$O((n + m')^2 \log n S(n, m))$	
3	Fujishige 198			1986	$O((n + m')^2 \log n S(n, m))$	
4	Galil and Tardos 198			1986	$O(n^2 \log n S(n, m))$	
5	Goldberg and Tarjan			1987	$O(nm^2 \log n \log(n^2/m))$	
6	Goldberg and Tarjan			1988	$O(nm^2 log^2 n)$	
7	Orlin (this paper)		1988	$O((n + m') \log n S(n, m))$		
S	(n, m)	=	O(m + n log n)		Fredman and Tarjan [1984]	
S(n, m, C)		=	O(Min (m + $n\sqrt{\log C}$), (m log log C))		Ahuja, Mehlhorn, Orlin and Tarjan [1990] Van Emde Boas, Kaas and Zijlstra[1977]	
N	Λ(n, m)	(n, m) = O(min (nm + n ^{2+ϵ} , nm log n where ϵ is any fixed constant.			King, Rao, and Tarjan [1991]	
IN	M(n, m, U)	=	O(nm log ($\frac{n}{m}\sqrt{\log U} + 2$)))	Ahuja, Orlin and Tarjan [1989]	

Theorem.

[Orlin 1991]

The minimum-cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

Theorem.

[Cornelsen & Karrenbauer 2011]

The minimum-cost flow problem for planar graphs with bounded costs and face sizes can be solved in $O(n^{3/2})$ time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]

The minimum-cost flow problem with integral vertex demands, edge capacities, and edge costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time, where U is the maximum capacity and C are the maximum costs.

3

area mini-

mization

Topology – Shape – Metrics

Three-step approach:

$$V(G) = \{v_1, v_2, v_3, v_4\}$$

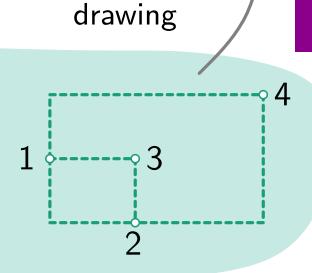
$$E(G) = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

reduce crossings

combinatorial embedding/planarization

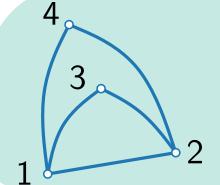


[Tamassia 1987]



planar

orthogonal



orthogonal representation

bend minimization

Topology -

SHAPE

- Metrics

Bend Minimization with Given Embedding

Geometric orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

 \blacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variant:

Combinatorial orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Combinatorial embedding F and outer face f_0

Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding.

Bend Minimization with Given Embedding

How to solve the combinatorial orthogonal bend minimization problem?

Idea.

Formulate as a network-flow problem:

- \blacksquare a unit of flow $= \measuredangle \frac{\pi}{2}$
- vertices $\stackrel{\measuredangle}{\longrightarrow}$ faces $(\# \measuredangle \frac{\pi}{2} \text{ per face})$
- faces $\stackrel{\checkmark}{\longrightarrow}$ neighboring faces (# bends toward the neighbor)

Combinatorial orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

 \blacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding.

Flow Network for Bend Minimization

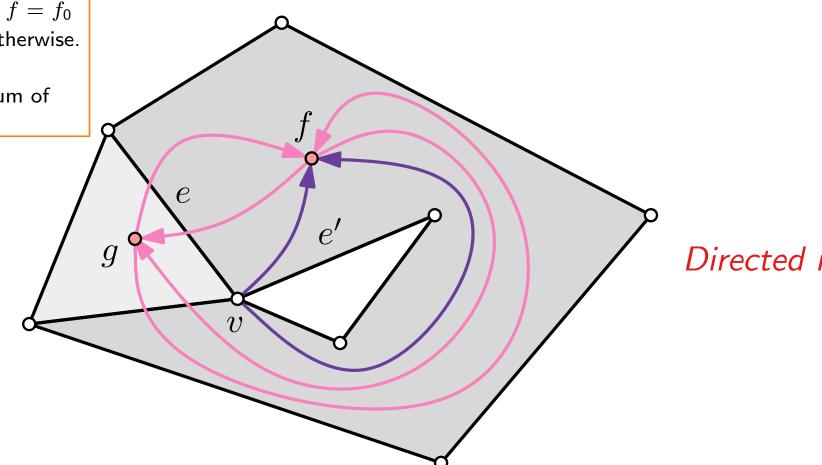
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$



Directed multigraph!

Flow Network for Bend Minimization

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

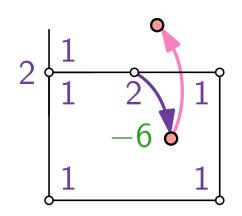
$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

- $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V(G)$

$$b(f) = -2\deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$

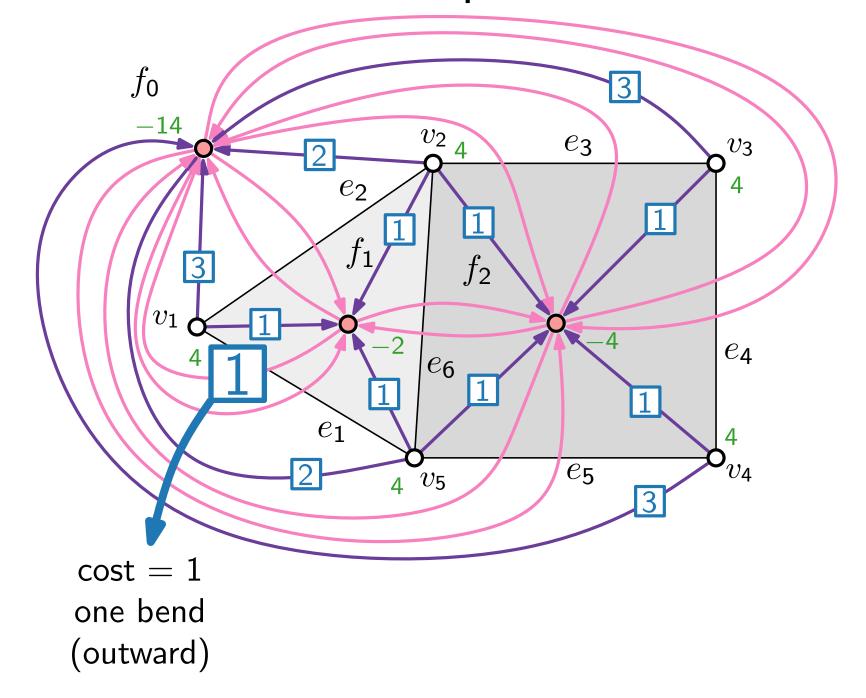


$$\forall (v, f) \in E', v \in V(G), f \in F$$

$$\forall (f,g) \in E', f,g \in F$$

$$\ell(v,f) := 1 \le X(v,f) \le 4 =: u(v,f)$$
 $\cot(v,f) = 0$
 $\ell(f,g) := 0 \le X(f,g) \le \infty =: u(f,g)$
 $\cot(f,g) = 1$
 $\cot(f,g)$

Flow Network Example



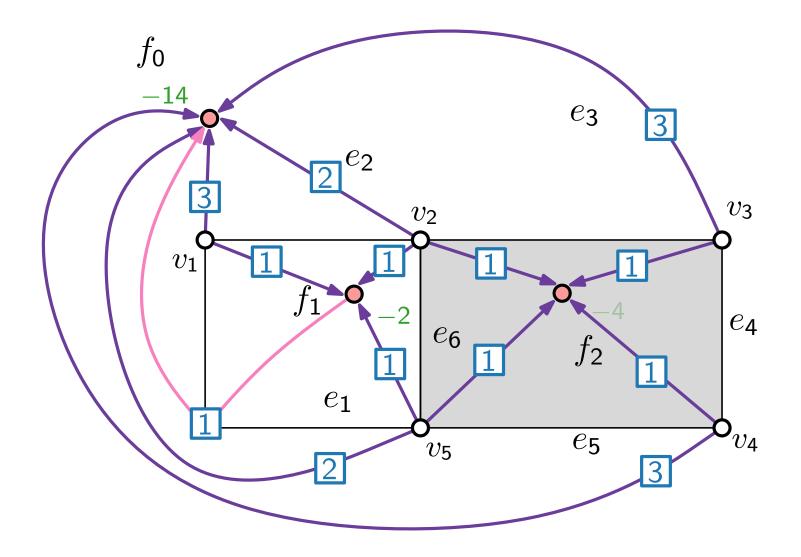
Legend

$$V(G)$$
 \circ
 F \bullet
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$

3 flow

4 = b-value

Flow Network Example



Legend

$$V(G)$$
 O F O $\ell/u/\mathrm{cost}$ $V(G) \times F \supseteq \frac{1/4/0}{}$ F $\times F \supseteq \frac{0/\infty/1}{}$ 4 = b -value

3 flow

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
 - (H1) H(G) matches F, f_0

- $\sqrt{}$
- (H2) Bend order inverted and reversed on opposite sides ✓
- (H3) Angle sum of $f = \pm 4$

 $\checkmark \rightarrow \textit{Exercise}.$

(H4) Total angle at each vertex = 2π

(H2) For each **edge** $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .

(H1) H(G) corresponds to F, f_0 .

(H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = egin{cases} -4 & ext{if } f = f_0 \ +4 & ext{otherwise}. \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Bend Minimization – Result

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\ell(v, f) := 1 \le X(v, f) \le 4 =: u(v, f)$$

$$\cot(v, f) = 0$$

$$\ell(f, g) := 0 \le X(f, g) \le \infty =: u(f, g)$$

$$\cot(f, g) = 1$$

Proof.

" \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.

- Define flow $X : E' \to \mathbb{R}_0^+$.
- lacksquare Show that X is a valid flow and has cost k.

(N1)
$$X(vf) = 1/2/3/4$$

(N2) $X((fg)_e) = |\delta|_0$, where (e, δ, x) describes edge e in H(f)

 \checkmark

(N3) capacities, deficit/demand coverage

 \checkmark

 $(N4) \cos t = k$

Bend Minimization – Remarks

■ The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem.

[van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]

The minimum-cost flow problem with integral vertex demands, edge capacities & costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time, where U is max. capacity and C are max. costs.

 $U \in O(n) \text{ because } 2n+4 \text{ bends in total are always sufficient [Storer 1984]}$ $m \in O(n) \text{ for planar graphs } C \in \{0,1\} \text{ Further, } \log n = n^{\log_n \log n} = n^{\log\log n/\log n} \in n^{o(1)} \text{ since } \lim_{n \to \infty} \frac{\log\log n}{\log n} = 0$

Corollary.

The combinatorial orthogonal bend minimization problem can be solved in $O(n^{1+o(1)})$ time.

Theorem.

[Garg & Tamassia 2001]

Bend minimization without given combinatorial embedding is NP-hard.

Topology – Shape – Metrics

Three-step approach:

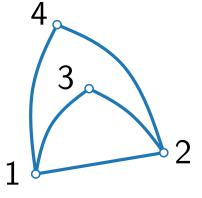
$$V(G) = \{v_1, v_2, v_3, v_4\}$$

$$E(G) = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

TOPOLOGY

reduce crossings

combinatorial embedding/ planarization



bend minimization

orthogonal

representation

[Tamassia 1987] planar orthogonal drawing 2

METRICS

area mini-

mization

Compaction

Compaction problem.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees:

minimum total edge length

minimum area

Properties.

- bends only on the outer face
- opposite sides of a face have the same length

Idea.

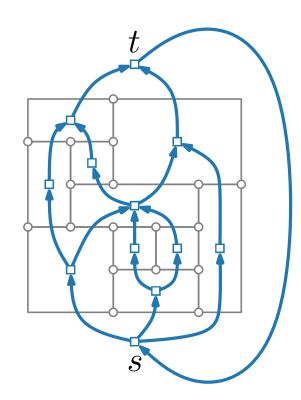
■ Formulate flow network for horizontal/vertical compaction

Flow Network for Edge-Length Assignment

Definition.

Flow Network $N_{\mathsf{hor}} = ((W_{\mathsf{hor}}, E_{\mathsf{hor}}); b; \ell; u; \mathsf{cost})$

- $E_{hor} = \{(f,g) \mid f,g \text{ share a } horizontal \text{ segment and } f \text{ lies } below g\} \cup \{(t,s)\}$
- \bullet $\ell(a) = 1 \quad \forall a \in E_{\mathsf{hor}}$
- $u(a) = \infty \quad \forall a \in E_{\mathsf{hor}}$
- $b(f) = 0 \quad \forall f \in W_{\mathsf{hor}}$

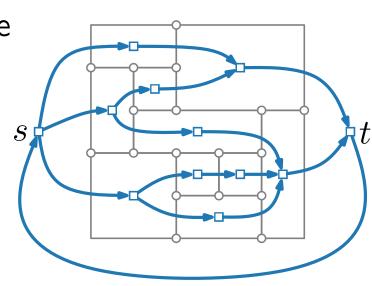


Flow Network for Edge-Length Assignment

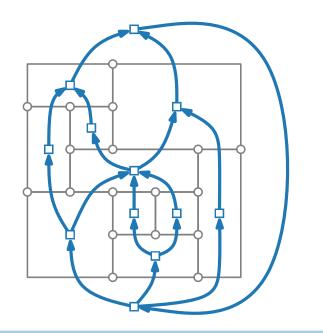
Definition.

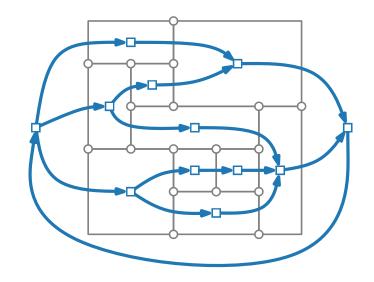
Flow Network $N_{\text{ver}} = ((W_{\text{ver}}, E_{\text{ver}}); b; \ell; u; \text{cost})$

- $W_{\mathsf{ver}} = F \setminus \{f_0\} \cup \{s, t\}$
- $E_{\text{ver}} = \{(f,g) \mid f,g \text{ share a } \textit{vertical} \text{ segment and } f \text{ lies to the } \textit{left} \text{ of } g\} \cup \{(t,s)\}$
- lacklet $\ell(a) = 1 \quad \forall a \in E_{\mathsf{ver}}$
- $u(a) = \infty \quad \forall a \in E_{\text{ver}}$
- $b(f) = 0 \quad \forall f \in W_{\text{ver}}$



Compaction – Result





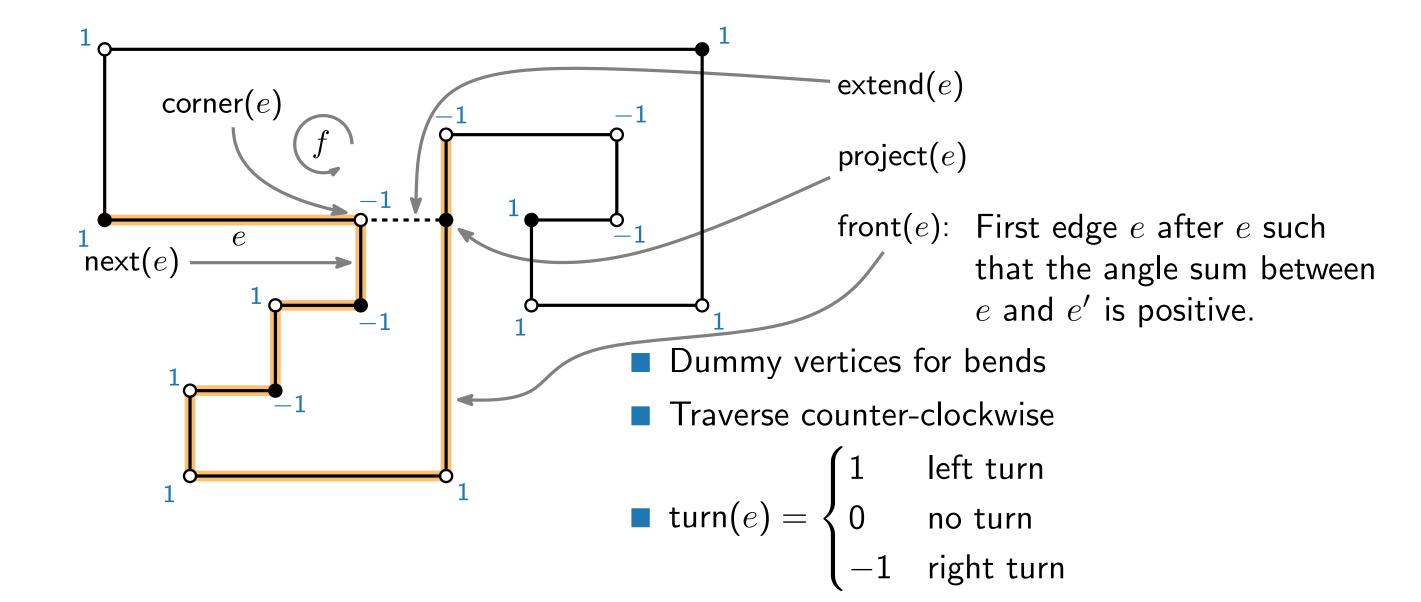
What if not all faces are rectangular?

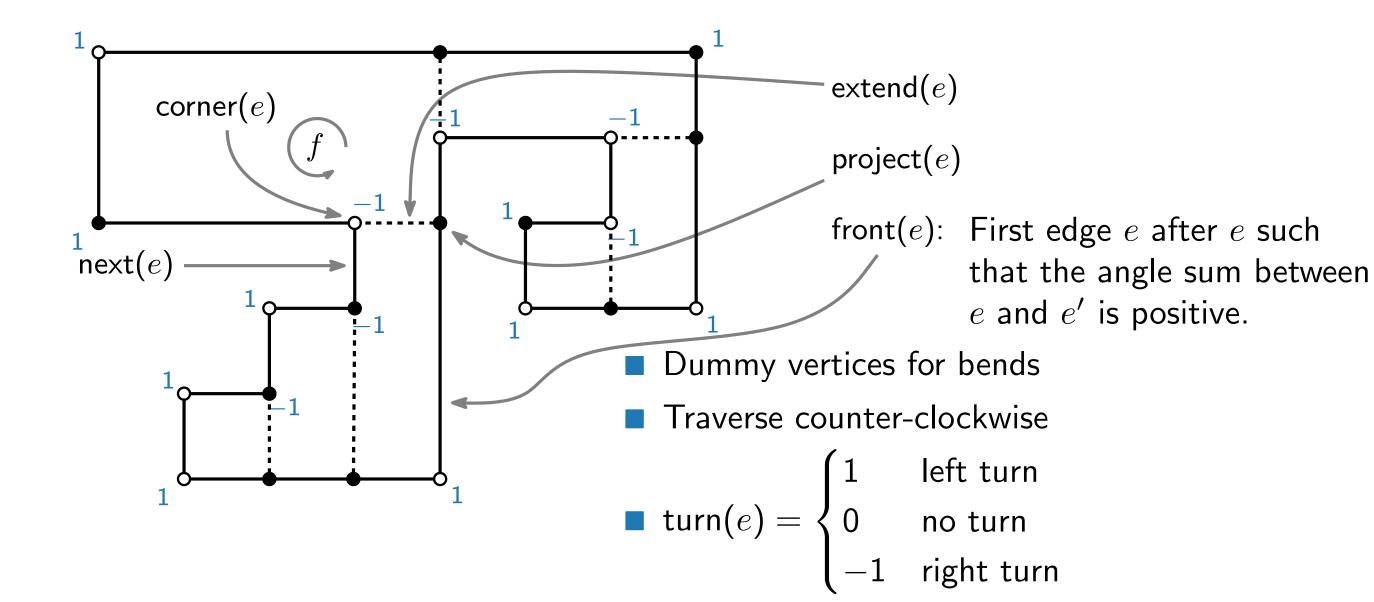
Theorem.

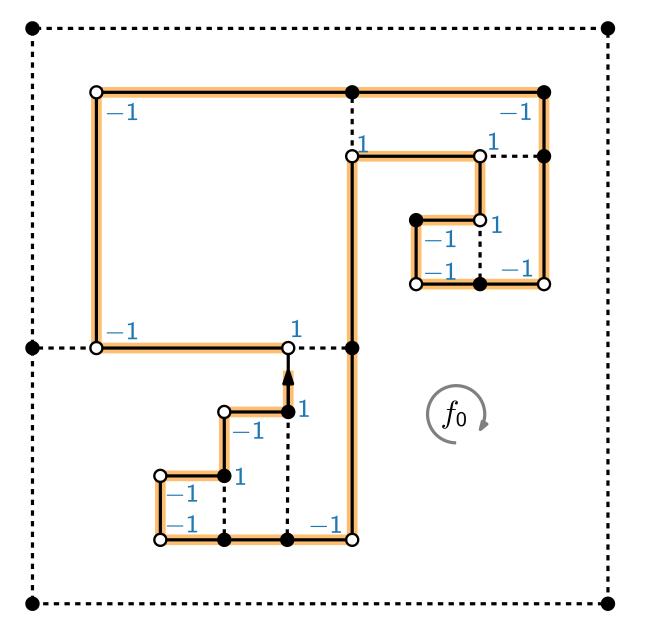
A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

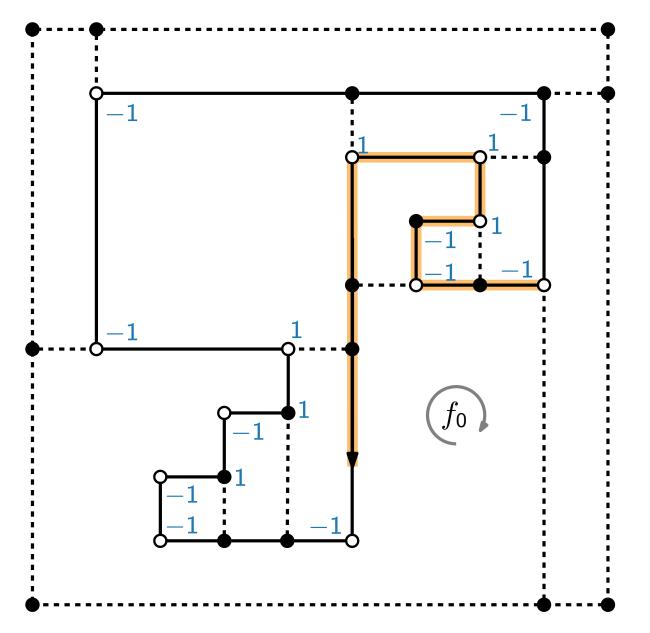
- $\blacksquare |X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$? width and height of the drawing



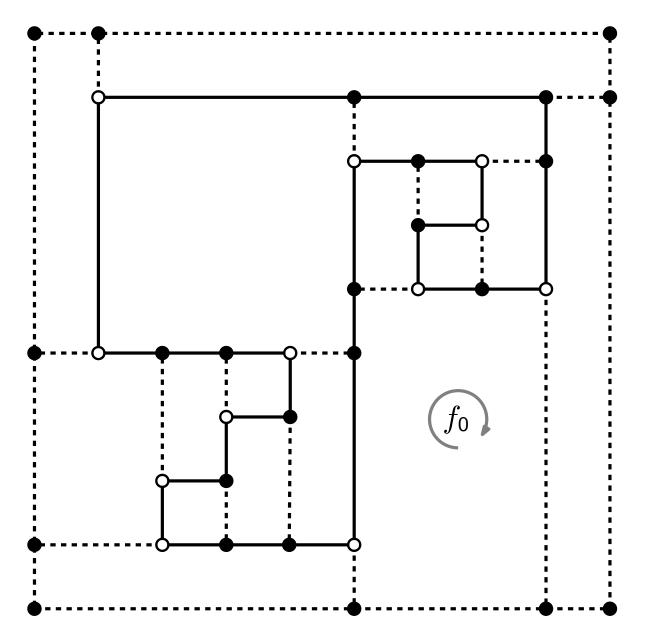




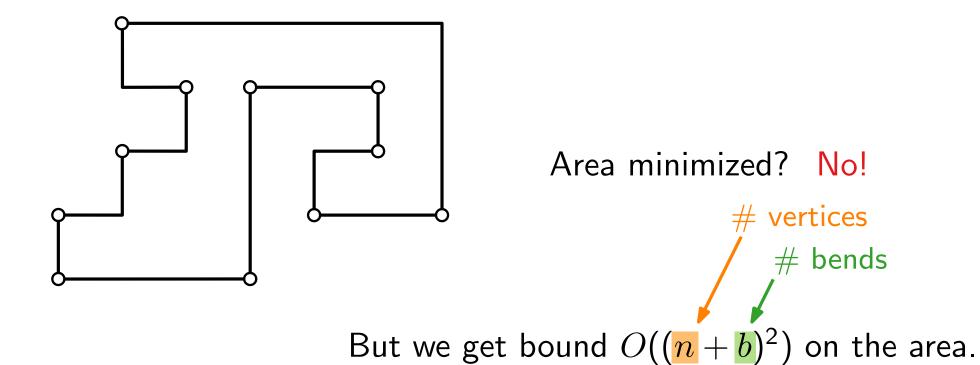
- Add an outer rectangle
- Traverse clockwise



- Add an outer rectangle
- Traverse clockwise



- Add an outer rectangle
- Traverse clockwise



Theorem.

[Patrignani 2001]

Compaction for a given orthogonal representation is NP-hard in general.

Theorem.

[EFKSSW 2022]

Compaction is NP-hard even for orthogonal representations of *cycles*.

Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

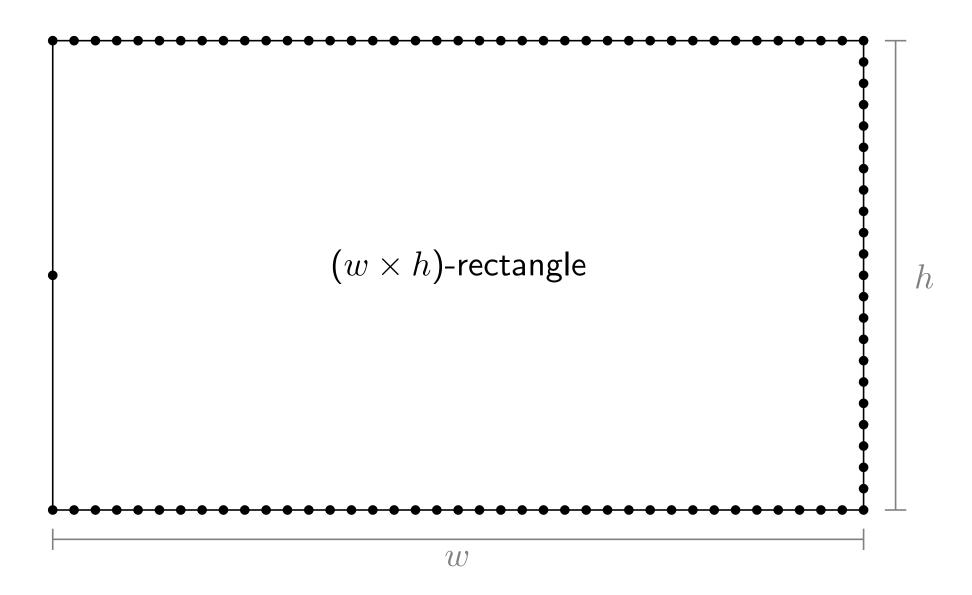
- \blacksquare set of n Boolean variables $X = \{x_1, x_2, \dots, x_n\}$
- m clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from X, e.g., $C_1 = x_1 \vee \neg x_2 \vee x_3$
- Boolean formula $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$

Question: Is there an assignment of truth values to the variables in X such that Φ is true?

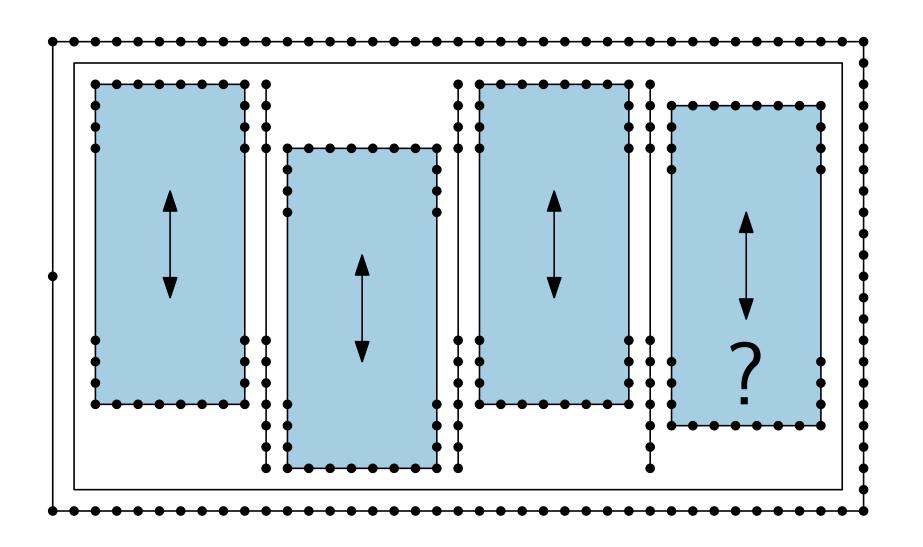
Idea of the reduction:

- lacktriangle Given SAT instance $\Phi\Rightarrow$ construct a plane graph G and a orthogonal description H(G)
- lacksquare lacksquare is satisfiable $\Leftrightarrow G$ can be drawn w.r.t. H(G) in area K for some specific number K

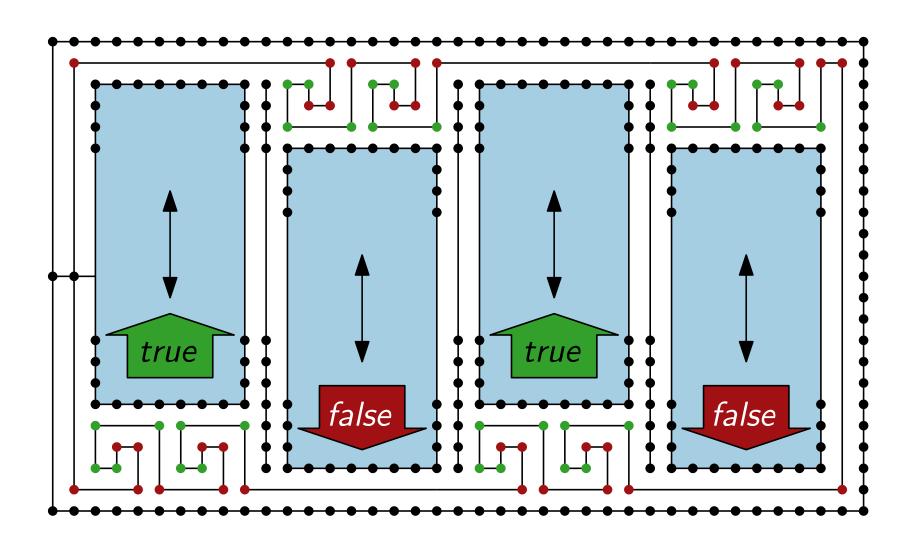
Boundary, Belt, and "Piston" Gadget



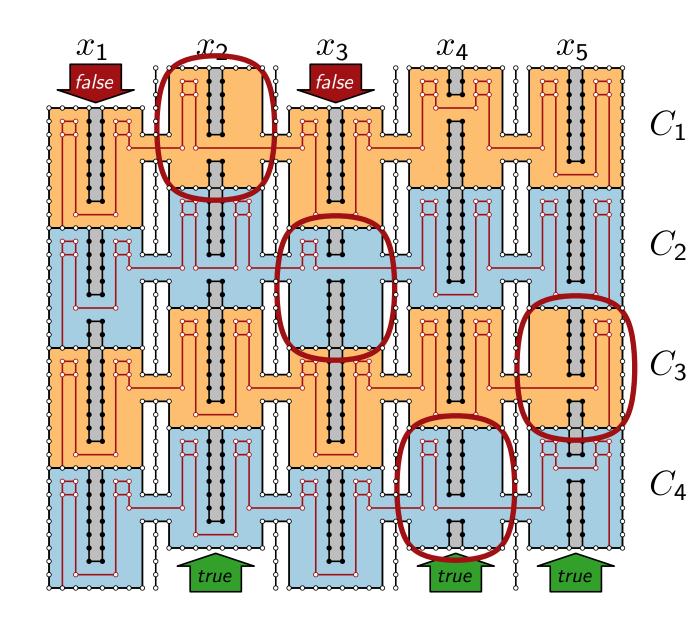
Boundary, Belt, and "Piston" Gadget



Boundary, Belt, and "Piston" Gadget



Clause Gadgets



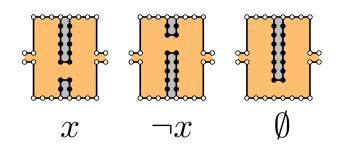
Example:

$$C_1 = x_2 \lor \neg x_4$$

$$C_2 = x_1 \lor x_2 \lor \neg x_3$$

$$C_3 = x_5$$

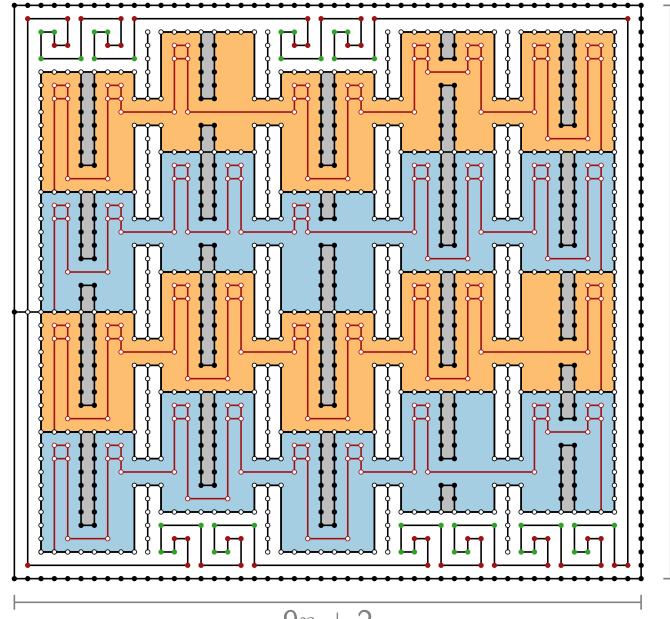
$$C_4 = x_4 \lor \neg x_5$$



insert (2n-1)-chain through each clause

ightarrow for every clause, there needs to be ≥ 1 "gap of a literal" to be on the same height as the "tunnel" to the next literal

Complete Reduction



Pick
$$K = (9n + 2) \times (9m + 7)$$

$$9m + 7$$

Then:

G under H(G) has an orthogonal drawing in area K

Φ satisfiable

9n + 2

Literature

- [GD Ch. 5] for detailed explanation
- [Tamassia 1987] "On embedding a graph in the grid with the minmum number of bends" Original paper on flow for bend minimization.
- [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023] "A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow" State-of-the-art algorithm for solving the minimum-cost flow problem (published recently in the proceedings of the FOCS 2023 conference).
- [Patrignani 2001] "On the complexity of orthogonal compaction" NP-hardness proof for orthogonal representation of planar max-degree-4 graphs.
- [Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff 2022] "Minimum rectilinear polygons for given angle sequences": Compacting cycles is NP-hard.
- [Antić, Liotta, Masařík Ortali, Pfretzschner, Stumpf, Wolff, Zink 2025] "Unbent Collections of Orthogonal Drawings": It is NP-hard to find two drawings such that each edge is straight in one and the total number of bends is minimum.