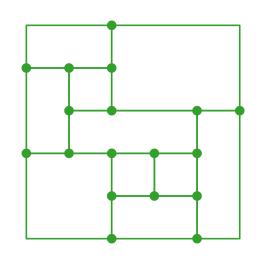
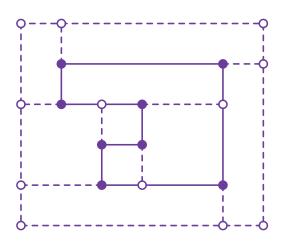
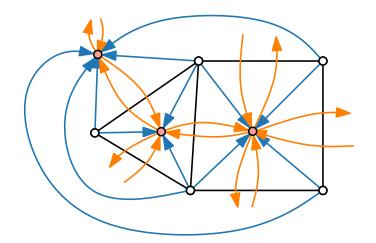


Visualization of Graphs



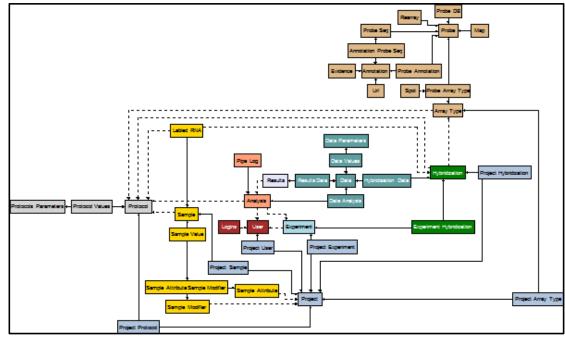
Lecture 6: Orthogonal Layouts



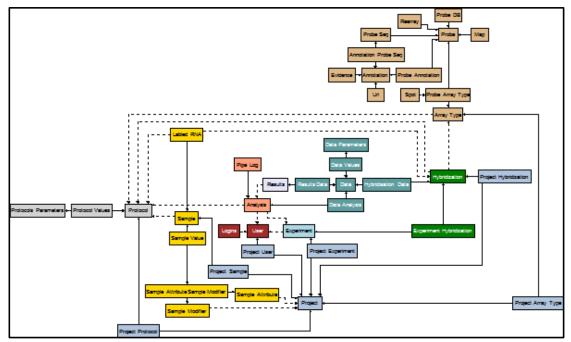


Alexander Wolff

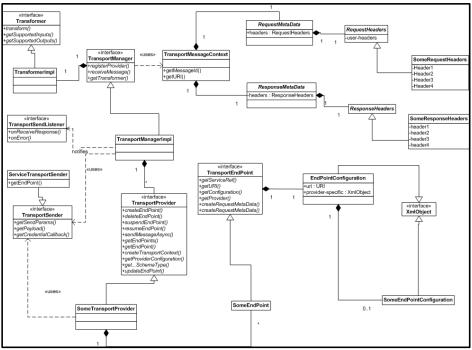
Summer term 2025



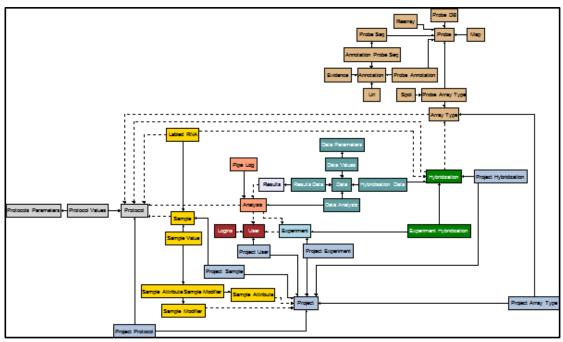
Entity-Relationship (ER) diagram in OGDF



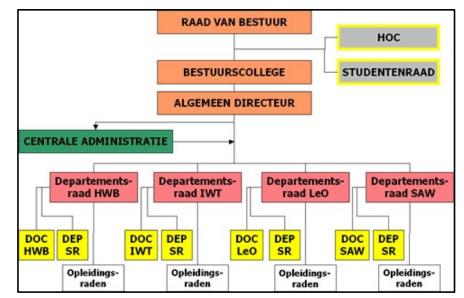
Entity-Relationship (ER) diagram in OGDF



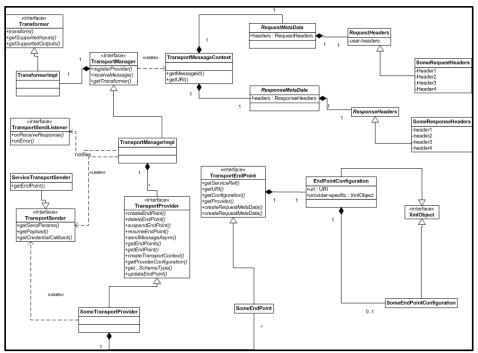
UML diagram by Oracle



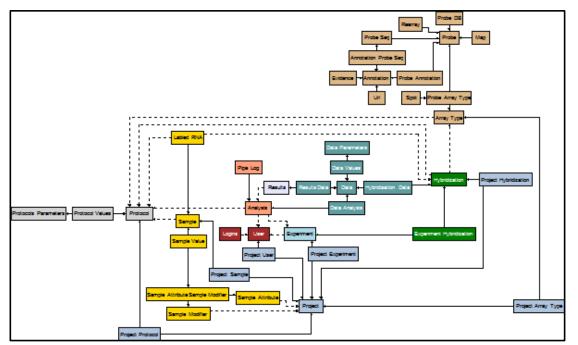
Entity-Relationship (ER) diagram in OGDF



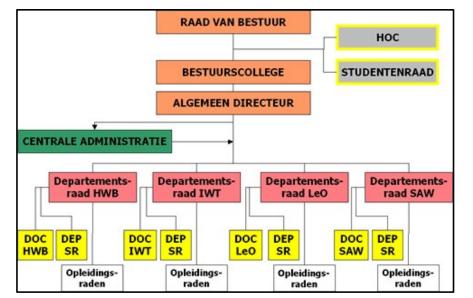
Organigram of HS Limburg



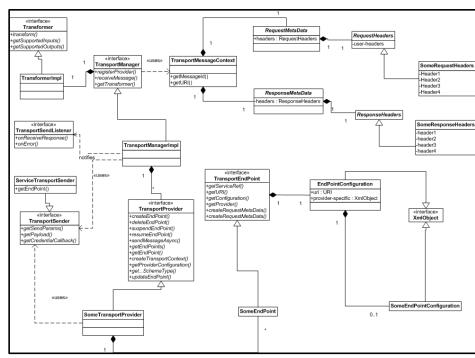
UML diagram by Oracle



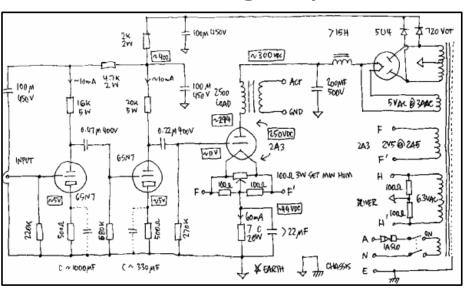
Entity-Relationship (ER) diagram in OGDF



Organigram of HS Limburg

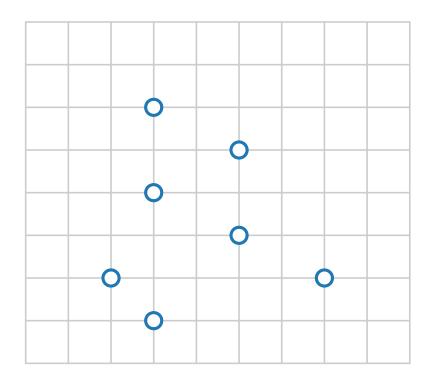


UML diagram by Oracle



Circuit diagram by Jeff Atwood

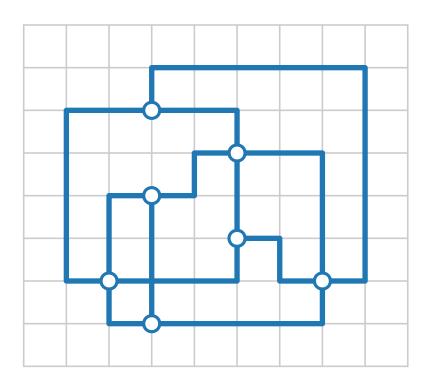
Definition.



Definition.

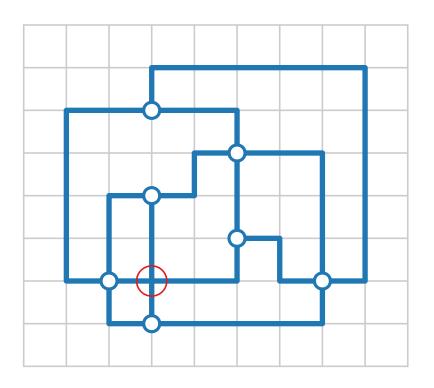
A drawing Γ of a graph G is called **orthogonal** if

vertices are drawn as points on a grid,



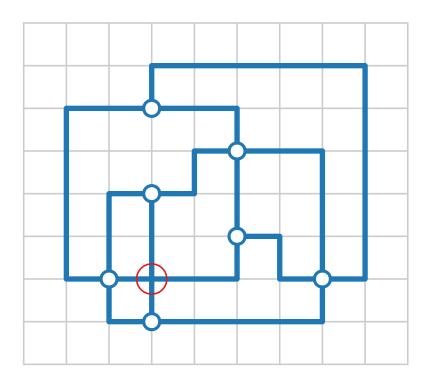
Definition.

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and



Definition.

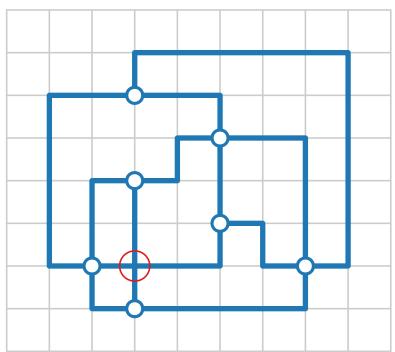
- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.



Observations.

Definition.

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.



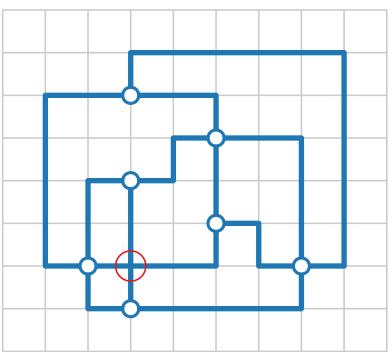
Observations.

■ Edges lie on a grid ⇒bends lie on grid points

Definition.

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

Definition.



vertices are drawn as points on a grid,

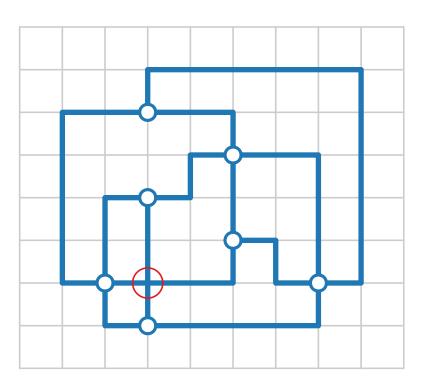
each edge is represented as a sequence of alternating

horizontal and vertical line segments of the grid, and

pairs of edges are disjoint or cross orthogonally.

A drawing Γ of a graph G is called **orthogonal** if

- Edges lie on a grid ⇒bends lie on grid points
- Max. degree of each vertex is at most 4

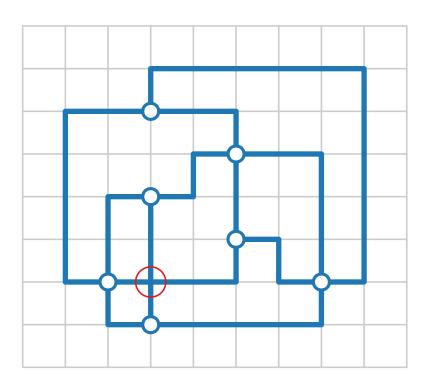


Definition.

A drawing Γ of a graph G is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

- Edges lie on a grid ⇒bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

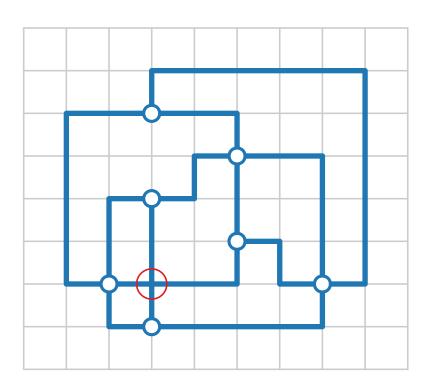


Definition.

A drawing Γ of a graph G is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

- Edges lie on a grid ⇒bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

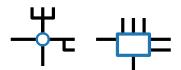


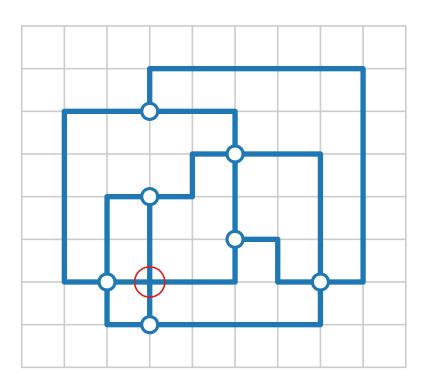
Definition.

A drawing Γ of a graph G is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise





Observations.

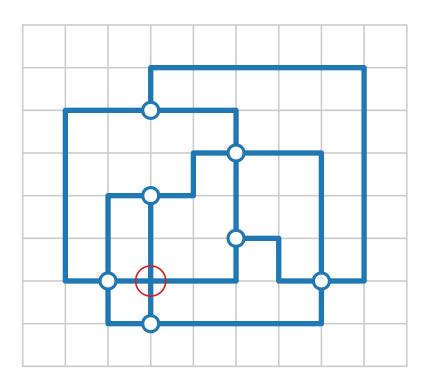
- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise



Definition.

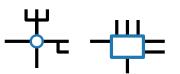
A drawing Γ of a graph G is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.



Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise



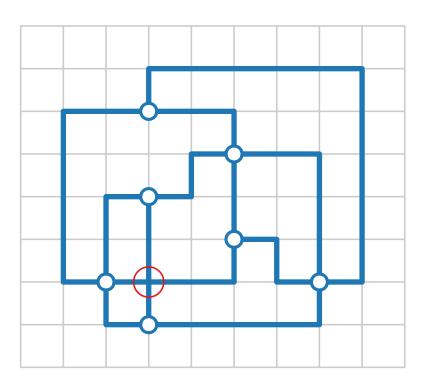
Definition.

A drawing Γ of a graph G is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

Planarization.

Fix embedding



Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

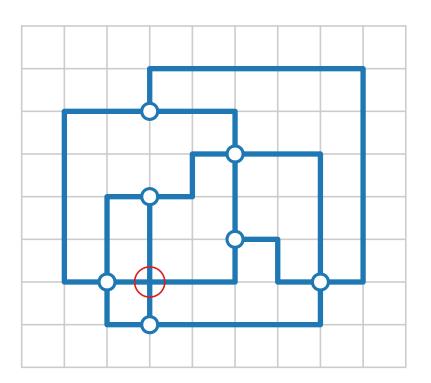


Definition.

A drawing Γ of a graph G is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

- Fix embedding
- Crossings become vertices



Observations.

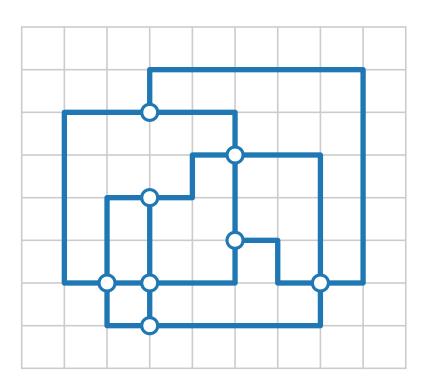
- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

Definition.

A drawing Γ of a graph G is called **orthogonal** if

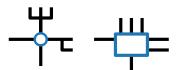
- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

- Fix embedding
- Crossings become vertices



Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

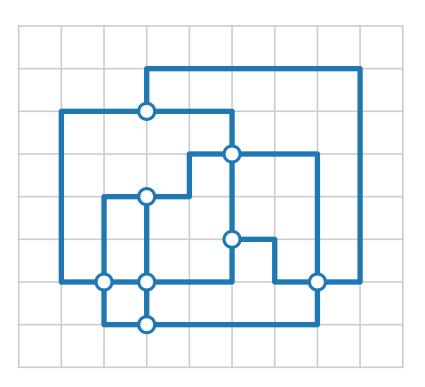


Definition.

A drawing Γ of a graph G is called **orthogonal** if

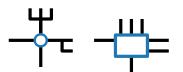
- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

- Fix embedding
- Crossings become vertices



Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise



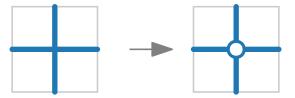
Definition.

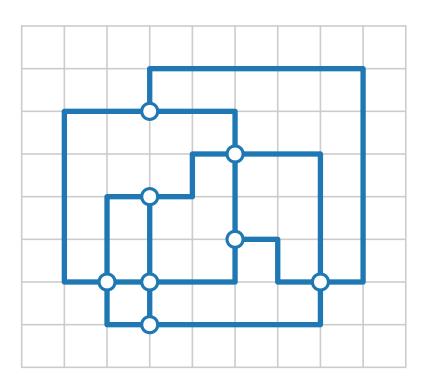
A drawing Γ of a graph G is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

Planarization.

- Fix embedding
- Crossings become vertices





Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

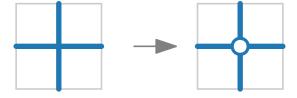
Definition.

A drawing Γ of a graph G is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

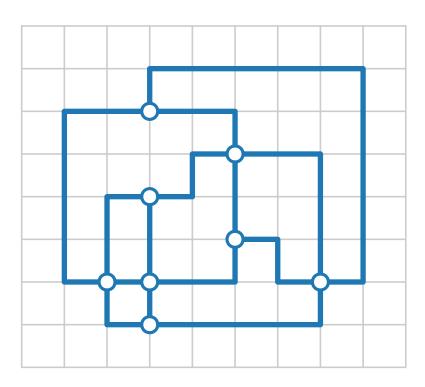
Planarization.

- Fix embedding
- Crossings become vertices



Aesthetic criteria to optimize.

Number of bends



Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

Definition.

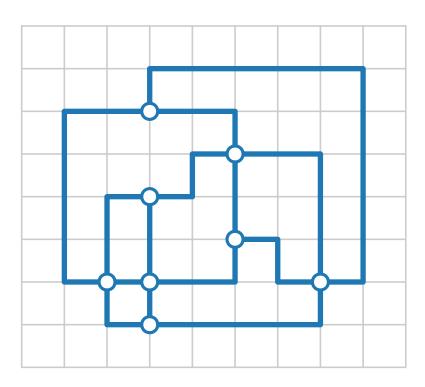
A drawing Γ of a graph G is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

Planarization.

- Fix embedding
- Crossings become vertices

- Number of bends
- Length of edges



Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

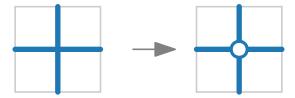
Definition.

A drawing Γ of a graph G is called **orthogonal** if

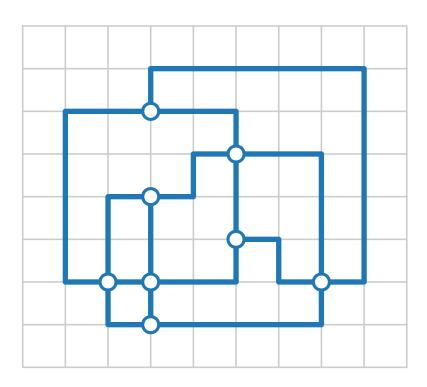
- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

Planarization.

- Fix embedding
- Crossings become vertices



- Number of bends
- Length of edges
- Width, height, area



Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

Definition.

A drawing Γ of a graph G is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

Planarization.

- Fix embedding
- Crossings become vertices

- Number of bends
- Length of edges
- Width, height, area
- Monotonicity of edges
- ..

Three-step approach:

[Tamassia 1987]

Topology

SHAPE

- Metrics

Three-step approach:

[Tamassia 1987]

$$V(G) = \{v_1, v_2, v_3, v_4\}$$

$$E(G) = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

Topology

SHAPE

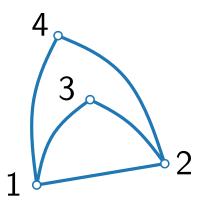
Three-step approach:

[Tamassia 1987]

$$V(G) = \{v_1, v_2, v_3, v_4\}$$

$$E(G) = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

combinatorial embedding/planarization

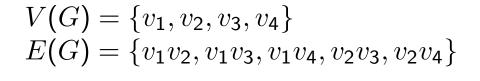


 $\operatorname{Topology}$

SHAPE

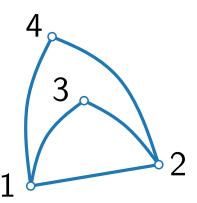
Three-step approach:

[Tamassia 1987]



reduce crossings

combinatorial embedding/planarization

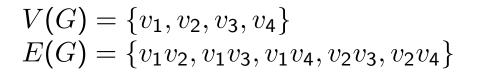


 $\operatorname{Topology}$

SHAPE

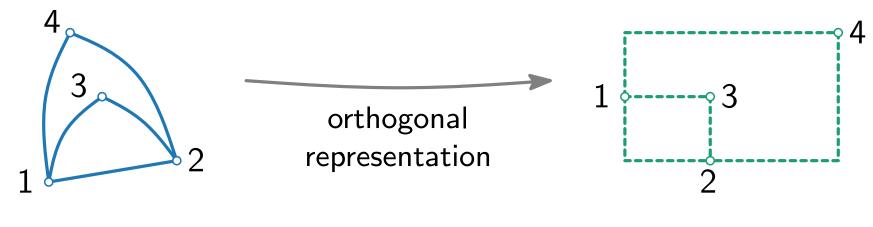
Three-step approach:

[Tamassia 1987]



reduce crossings

combinatorial embedding/planarization

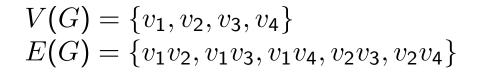


Topology

SHAPE

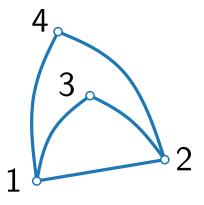
Three-step approach:

[Tamassia 1987]



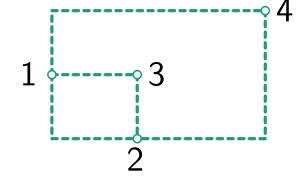
reduce crossings

combinatorial embedding/planarization



bend minimization

orthogonal representation



m 'I'OPOLOGY

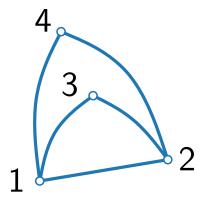
SHAPE

Three-step approach:

 $V(G) = \{v_1, v_2, v_3, v_4\}$ $E(G) = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$

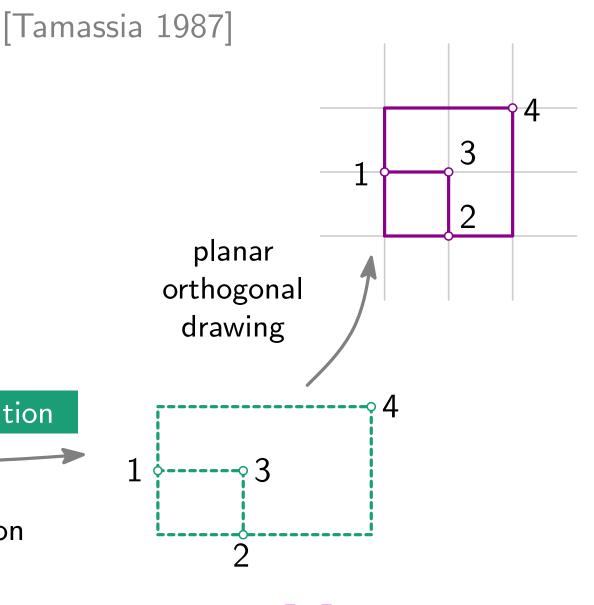
reduce crossings

combinatorial embedding/ planarization



bend minimization

orthogonal representation



METRICS

TOPOLOGY

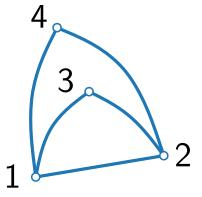
Three-step approach:

 $V(G) = \{v_1, v_2, v_3, v_4\}$ $E(G) = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$

TOPOLOGY

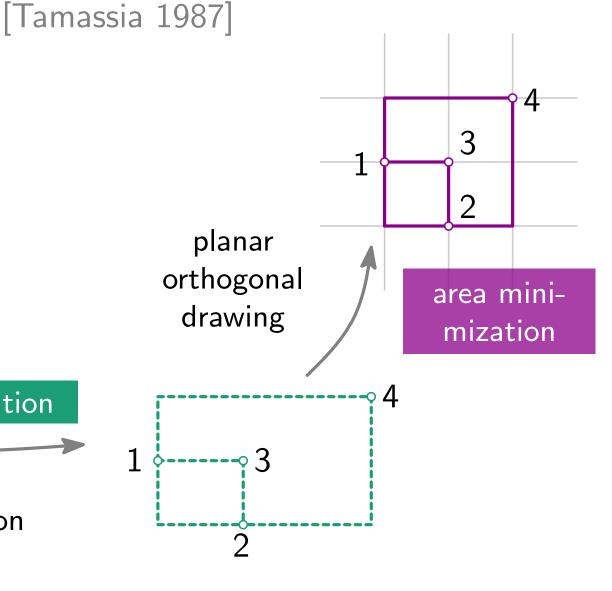
reduce crossings

combinatorial embedding/ planarization



bend minimization

orthogonal representation



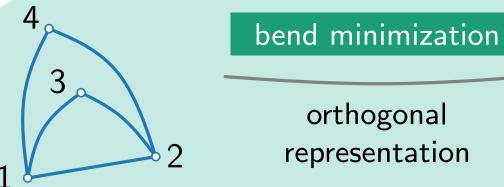
Three-step approach:

$$V(G) = \{v_1, v_2, v_3, v_4\}$$

$$E(G) = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

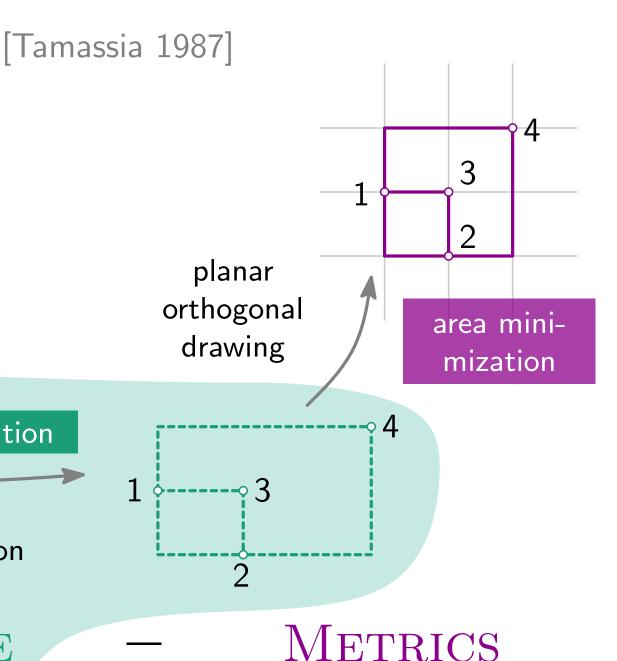
reduce crossings

combinatorial embedding/planarization



Topology

SHAPE



Orthogonal Representation

Idea.

Describe orthogonal drawing combinatorially.

Orthogonal Representation

Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

■ Let *e* be an edge

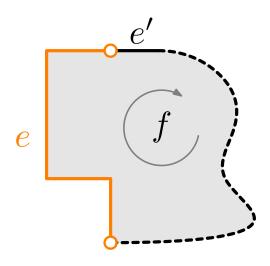
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

 \blacksquare Let e be an edge with the face f to the right.



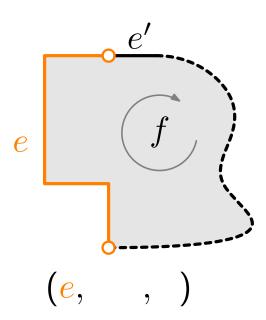
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple (e, δ, α) where

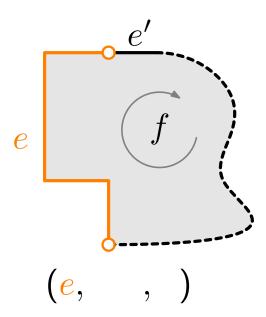


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

- Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple (e, δ, α) where
 - $\delta \in \{0,1\}^*$ (where 0 = right bend, 1 = left bend)

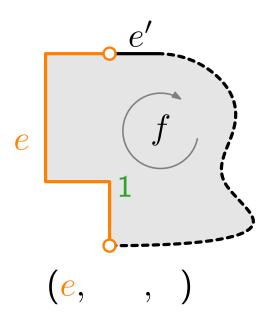


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

- Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple (e, δ, α) where
 - $\delta \in \{0,1\}^*$ (where 0 = right bend, 1 = left bend)

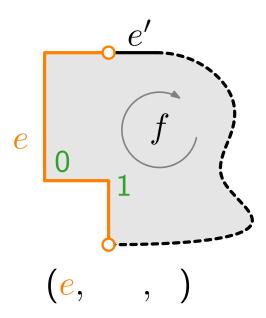


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

- Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple (e, δ, α) where
 - $\delta \in \{0,1\}^*$ (where 0 = right bend, 1 = left bend)

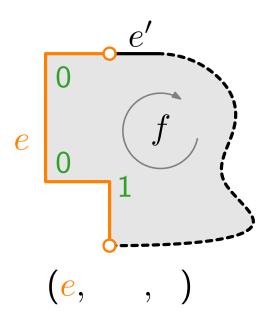


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

- Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple (e, δ, α) where
 - $\delta \in \{0,1\}^*$ (where 0 = right bend, 1 = left bend)

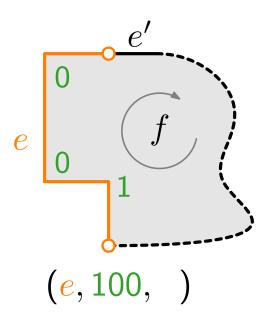


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

- Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple (e, δ, α) where
 - $\delta \in \{0,1\}^*$ (where 0 = right bend, 1 = left bend)

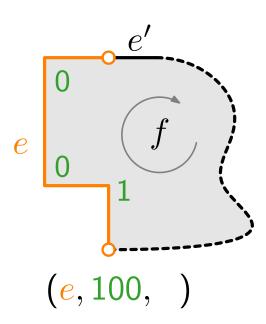


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

- Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple (e, δ, α) where
 - $\delta \in \{0,1\}^*$ (where 0 = right bend, 1 = left bend)
 - lacktriangle α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'

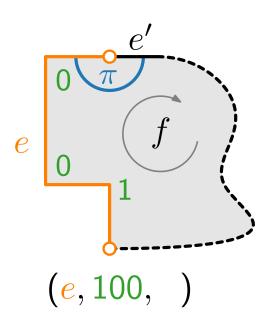


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

- Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple (e, δ, α) where
 - $\delta \in \{0,1\}^*$ (where 0 = right bend, 1 = left bend)
 - lacktriangle α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'

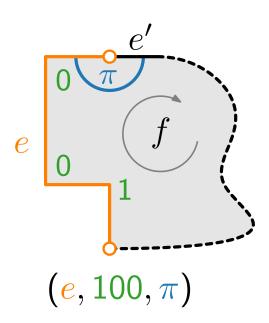


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

- Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple (e, δ, α) where
 - $\delta \in \{0,1\}^*$ (where 0 = right bend, 1 = left bend)
 - lacktriangle α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'

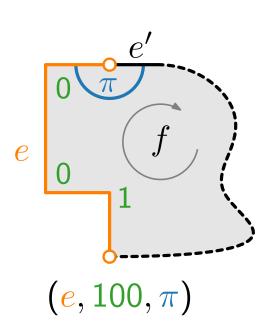


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

- Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple (e, δ, α) where
 - $\delta \in \{0,1\}^*$ (where 0 = right bend, 1 = left bend)
 - lacktriangle α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'
- A face representation H(f) of a face f is a clockwise ordered sequence $(e_1, \delta_1, \alpha_1), (e_2, \delta_2, \alpha_2), \ldots, (e_{\deg(f)}, \delta_{\deg(f)}, \alpha_{\deg(f)})$ of edge descriptions w.r.t. f.



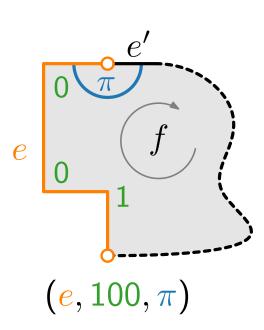
Idea.

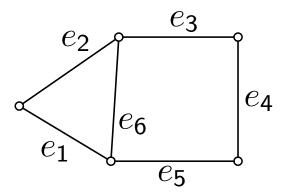
Describe orthogonal drawing combinatorially.

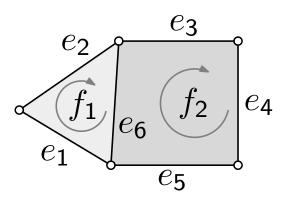
Definitions.

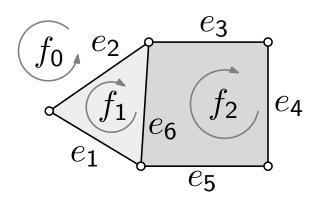
- Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple (e, δ, α) where
 - $\delta \in \{0,1\}^*$ (where 0 = right bend, 1 = left bend)
 - lacktriangle α is angle $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$ between e and next edge e'
- A face representation H(f) of a face f is a clockwise ordered sequence $(e_1, \delta_1, \alpha_1), (e_2, \delta_2, \alpha_2), \ldots, (e_{\deg(f)}, \delta_{\deg(f)}, \alpha_{\deg(f)})$ of edge descriptions w.r.t. f.
- lacktriangle An orthogonal representation H(G) of G is defined as

$$H(G) = \{ H(f) \mid f \in F \}.$$





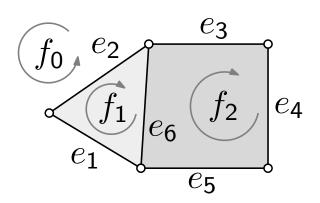




$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

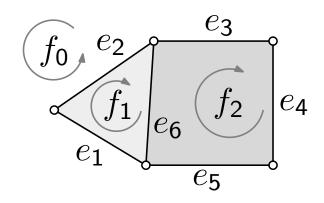
$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$



$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$



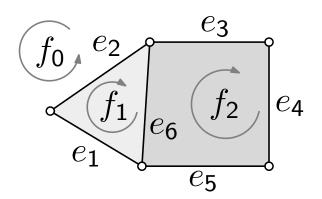
Combinatorial "drawing" of H(G)?

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

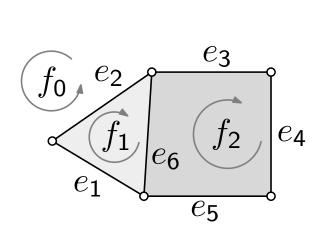
 f_0

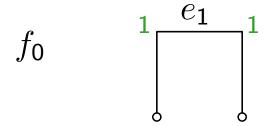


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

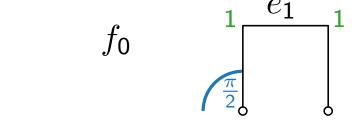


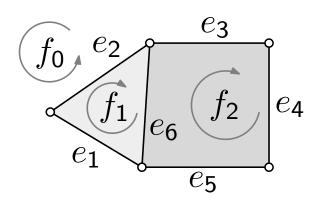


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

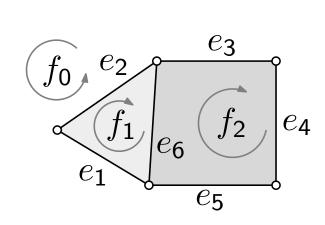


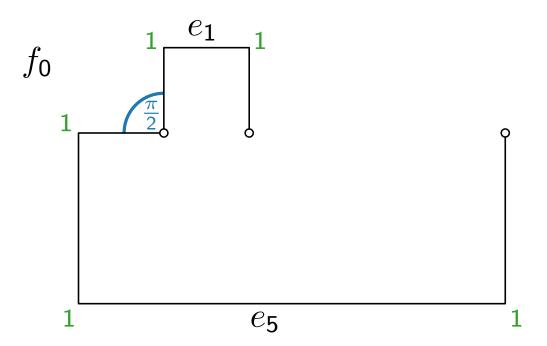


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

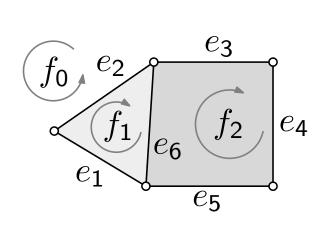


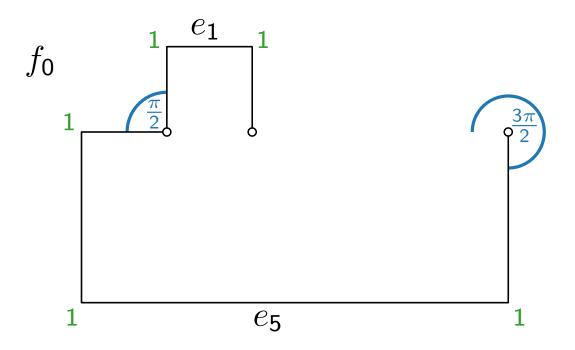


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

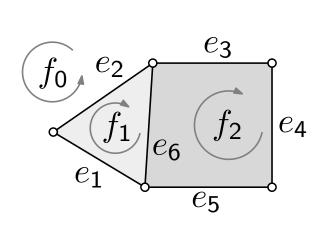


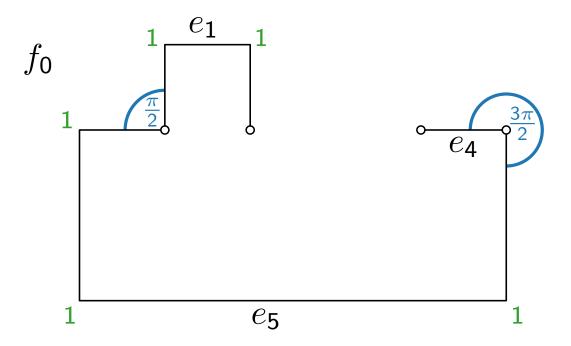


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

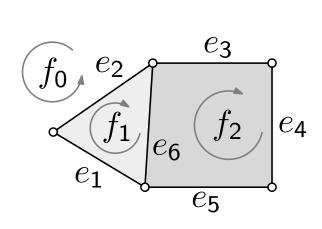


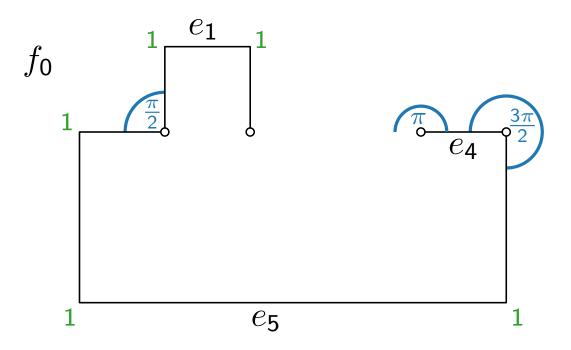


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

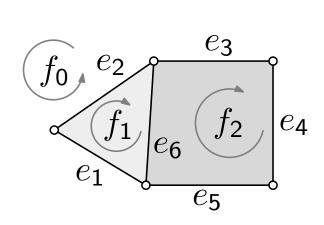


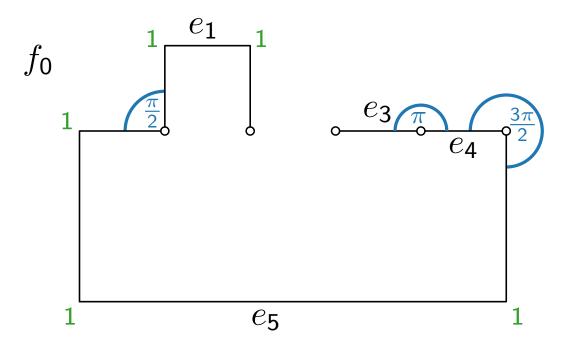


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

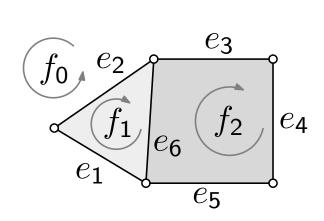


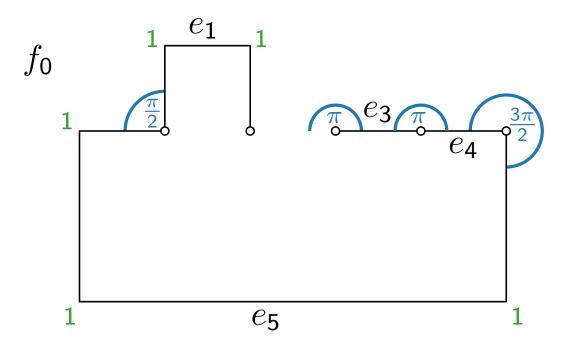


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

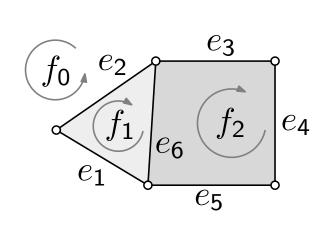


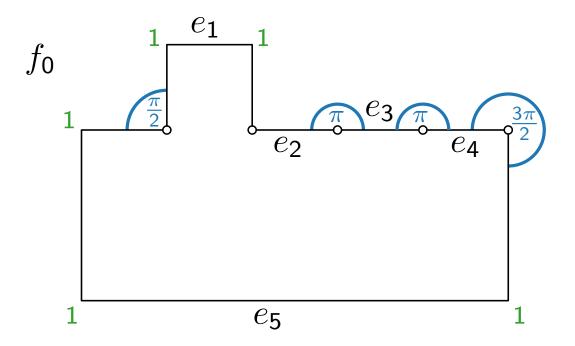


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

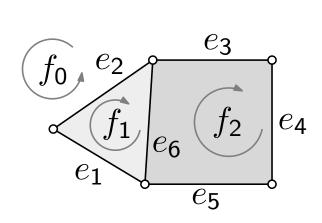


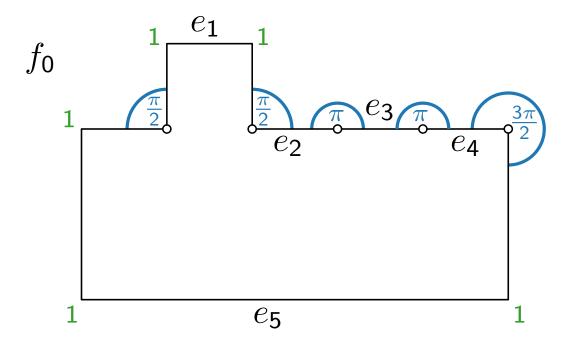


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

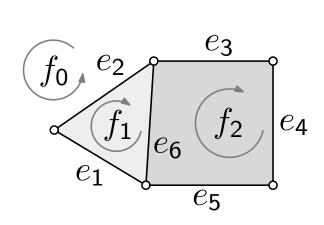


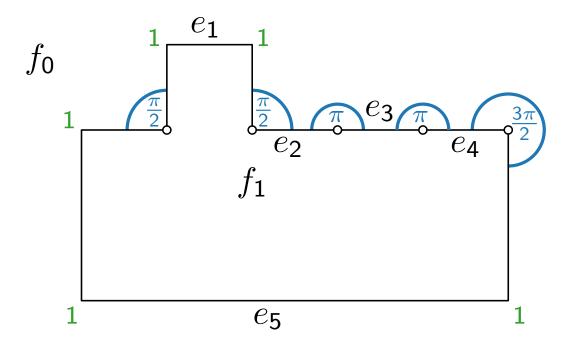


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

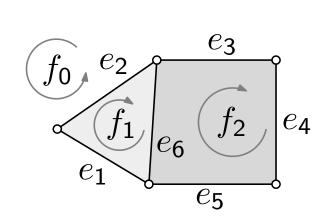


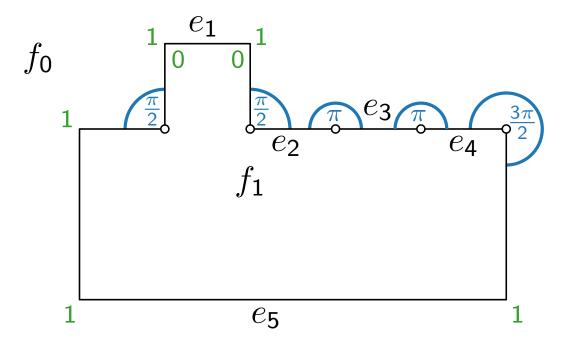


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

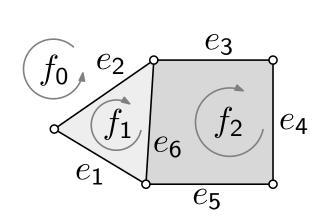


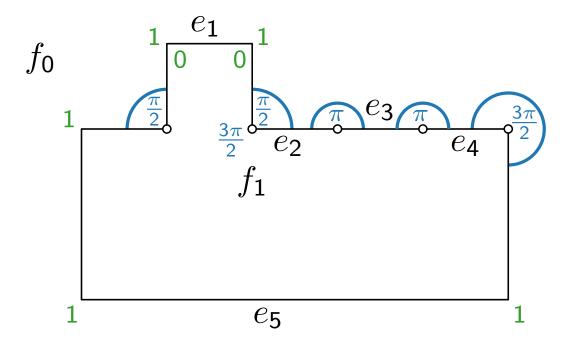


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

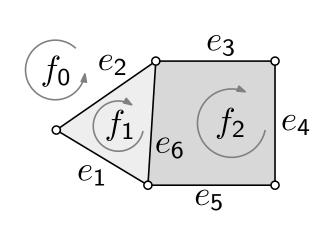


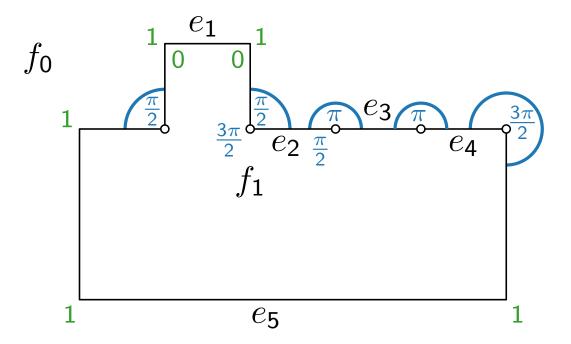


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

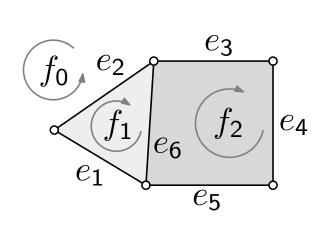


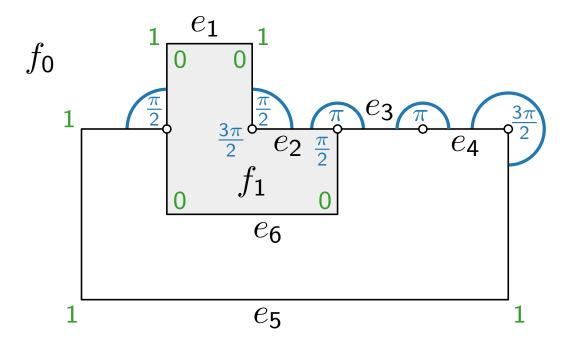


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

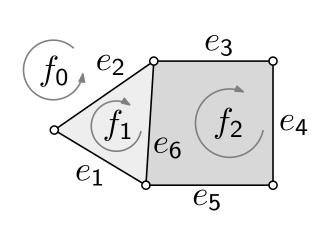


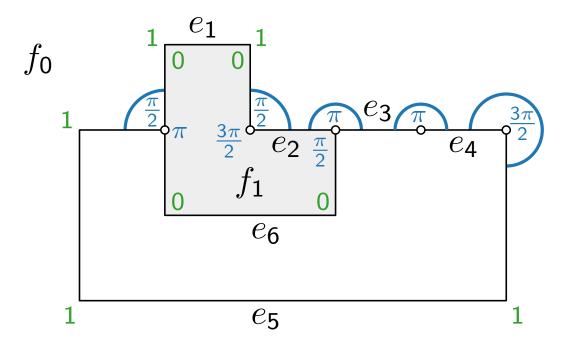


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$



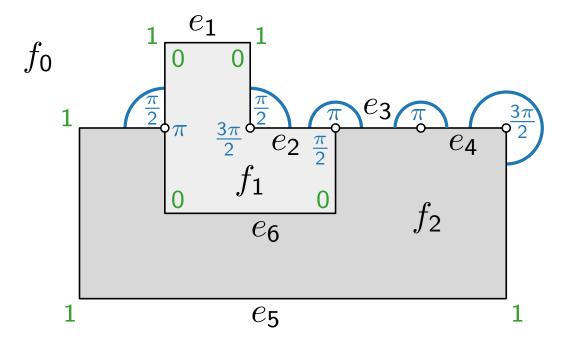


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

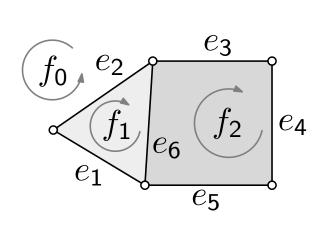


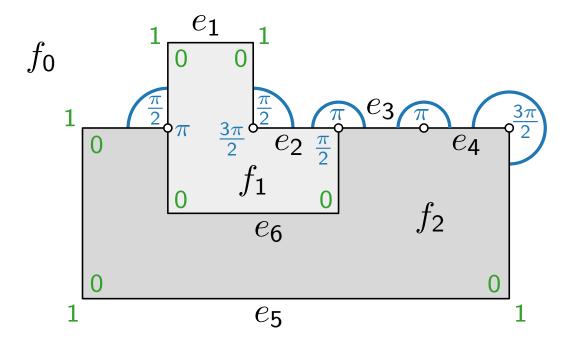


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

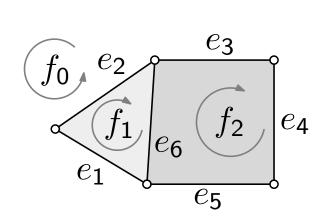


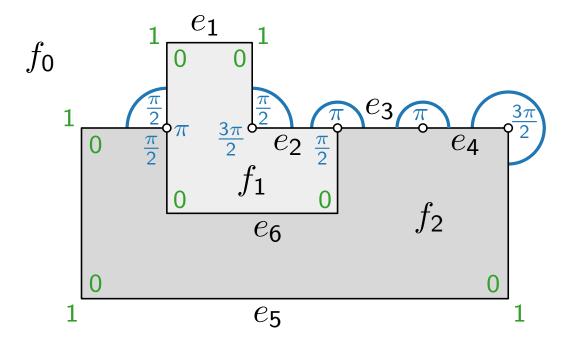


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

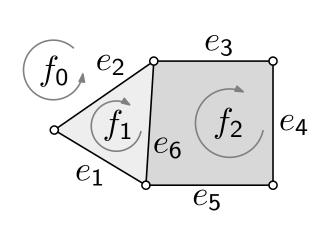


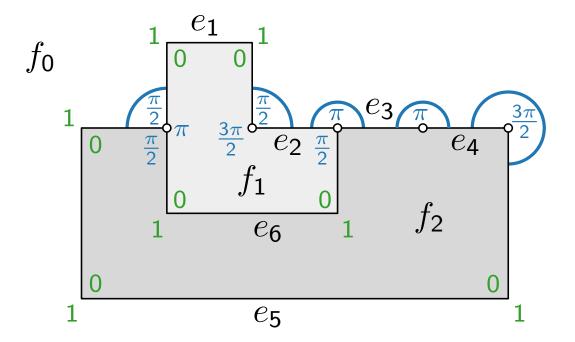


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

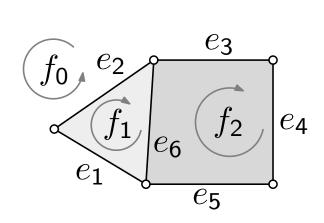


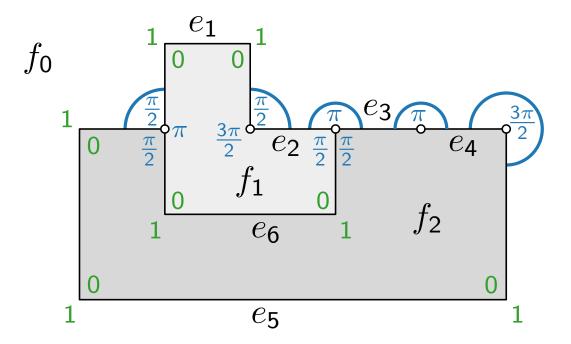


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

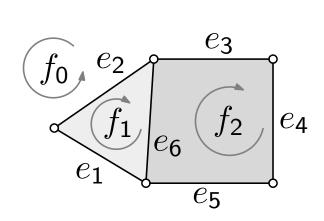


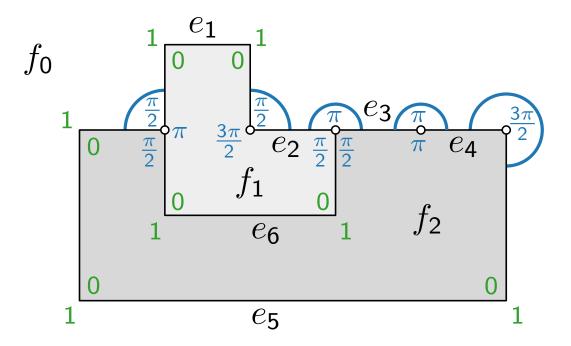


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

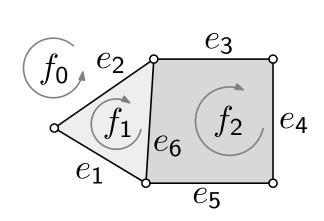


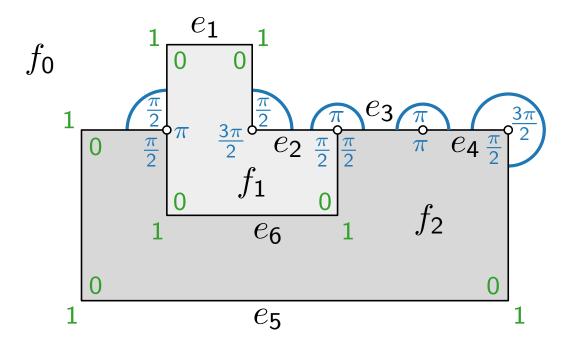


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

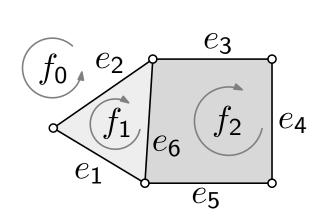


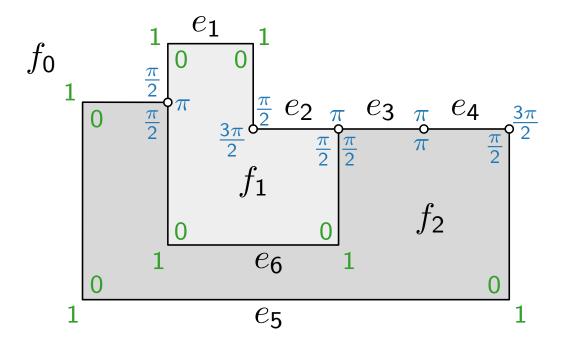


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$

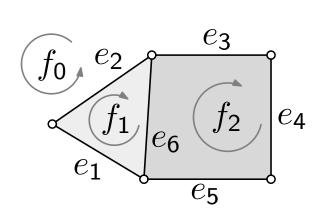


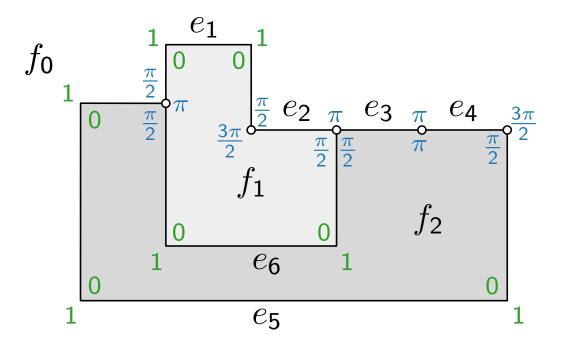


$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

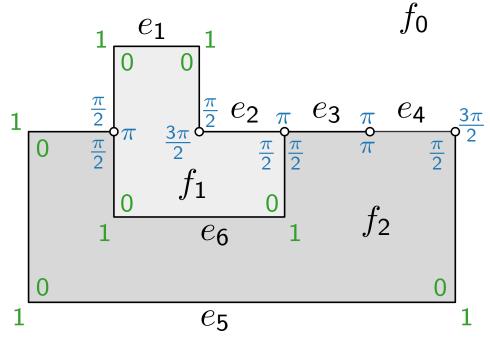
$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$



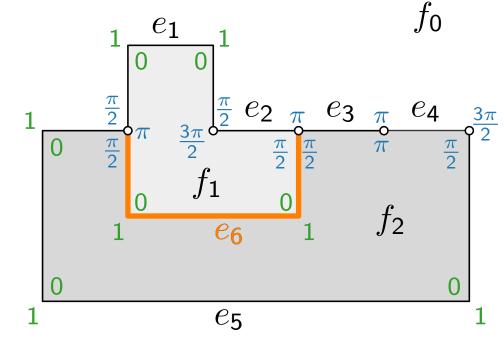


Coordinates are not fixed yet!

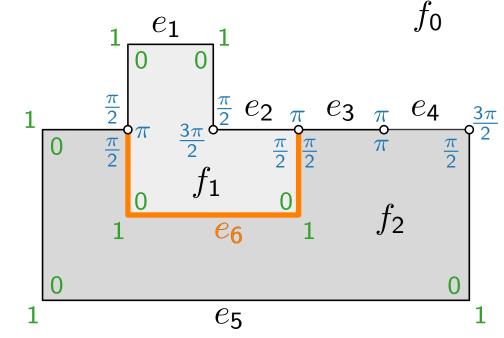
(H1) H(G) corresponds to F, f_0 .



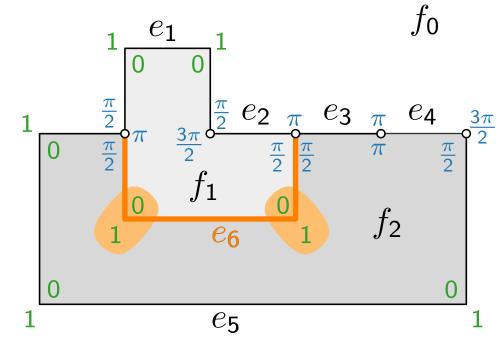
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$



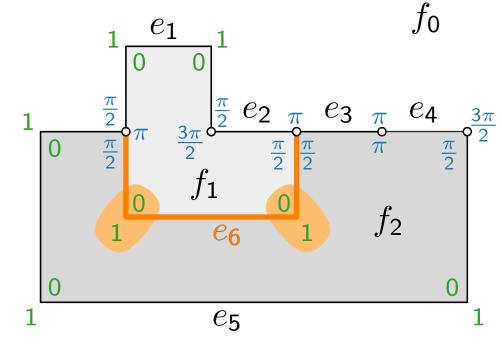
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2



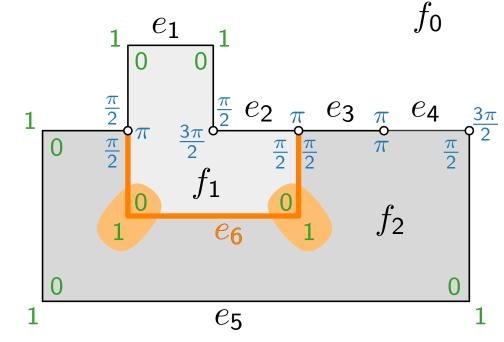
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.



- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$.

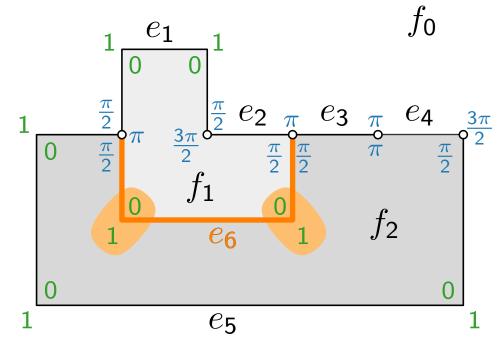


- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:



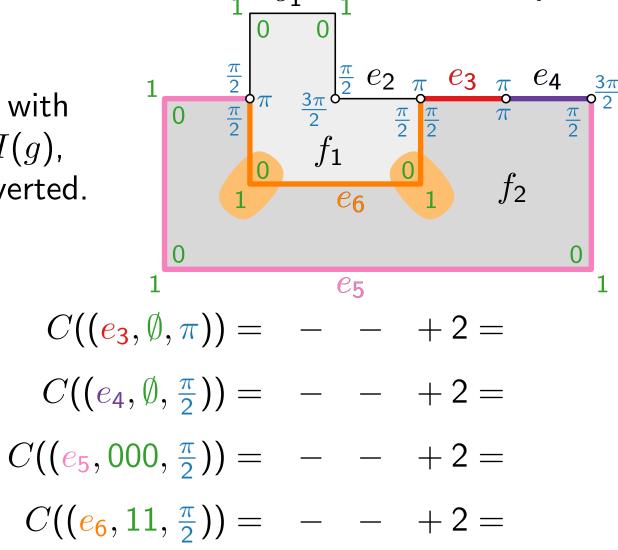
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



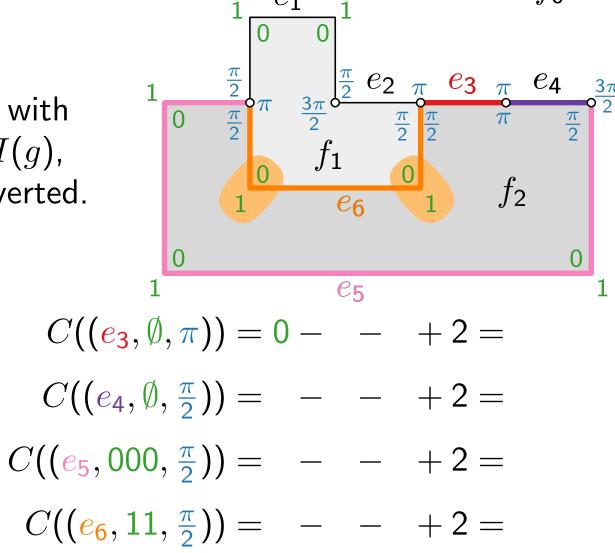
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



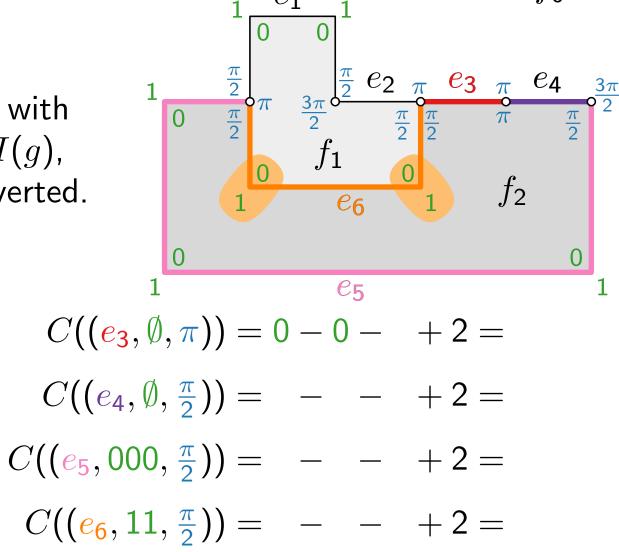
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



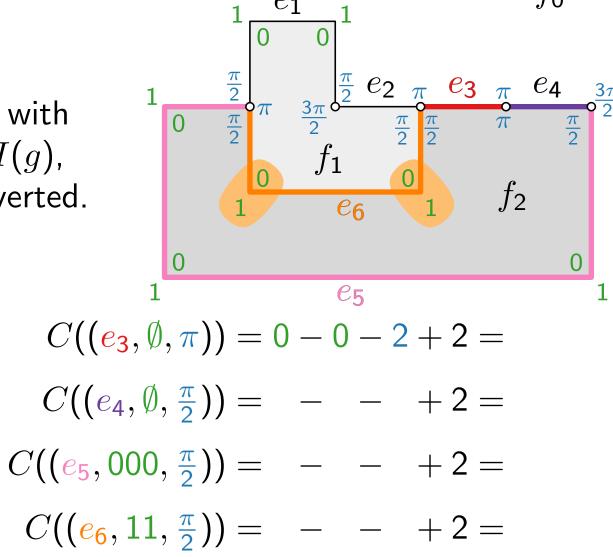
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



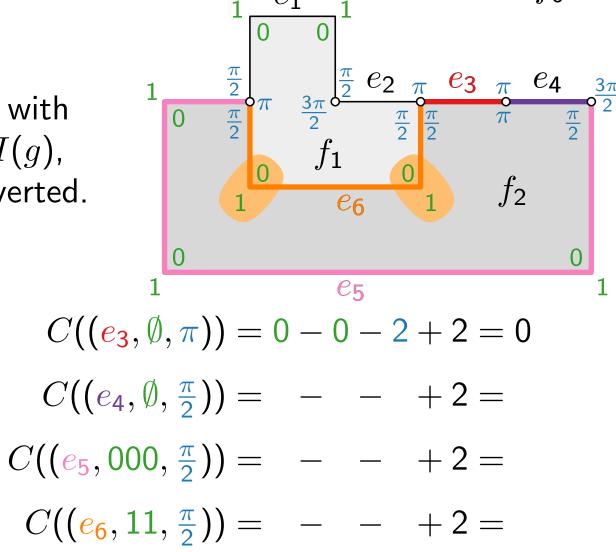
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



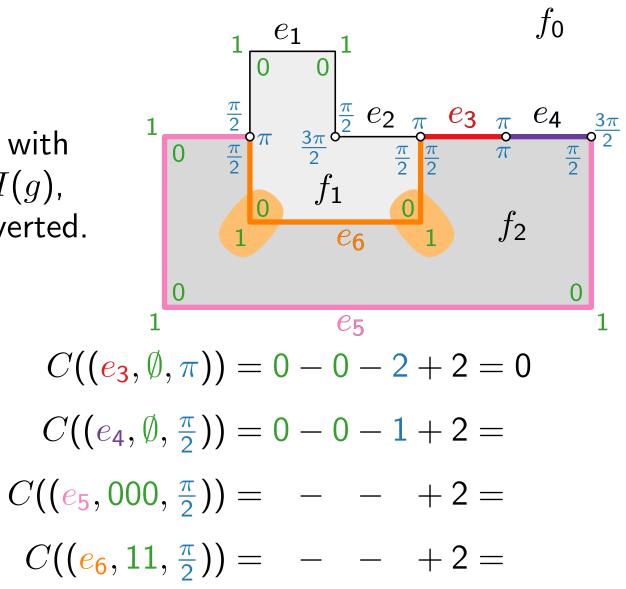
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



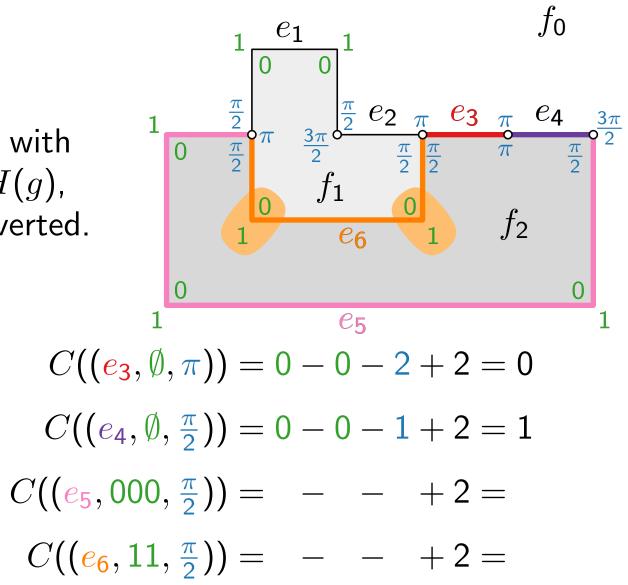
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



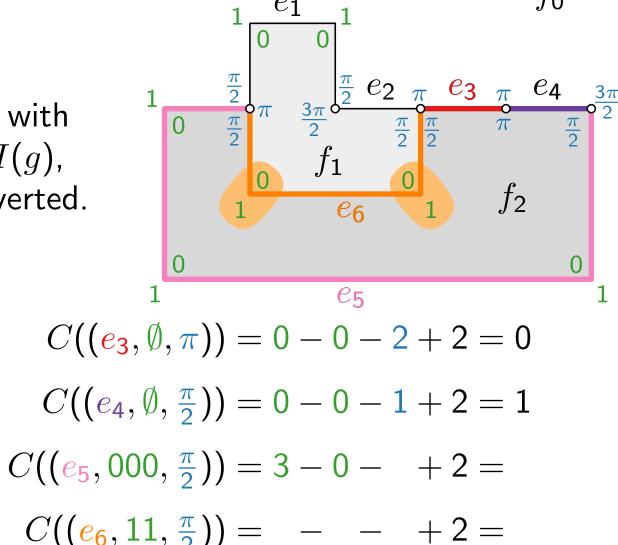
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



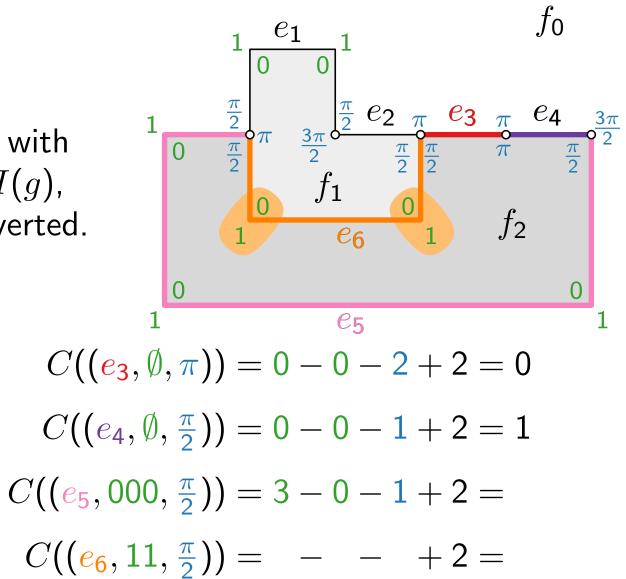
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



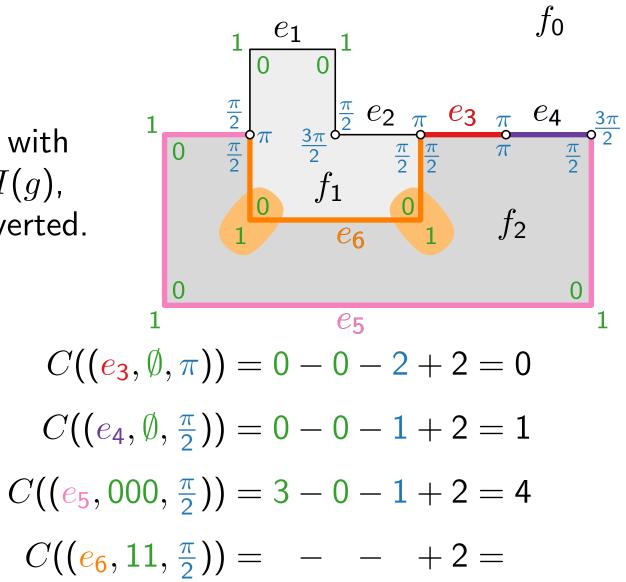
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



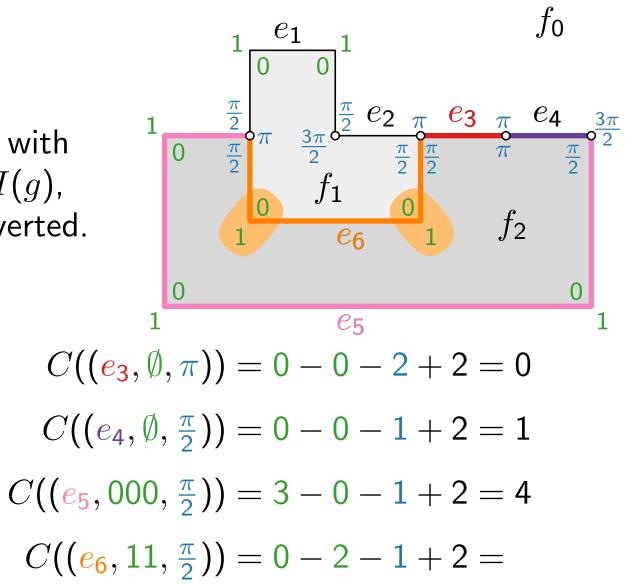
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



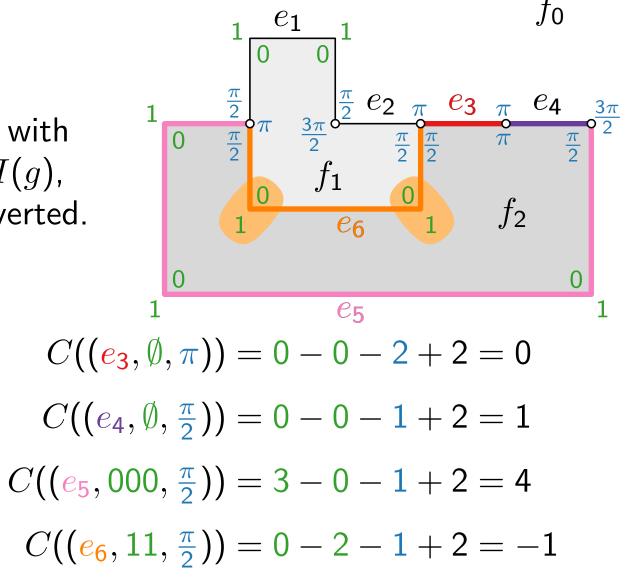
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

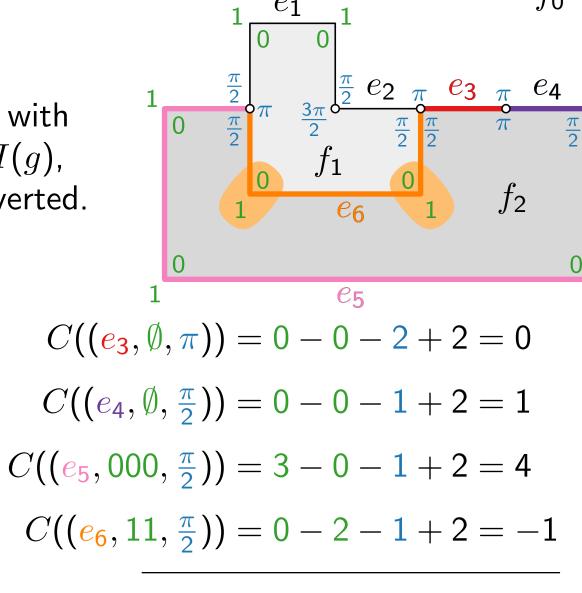
$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



$$\sum_{r \in H(f_2)} C(r) =$$

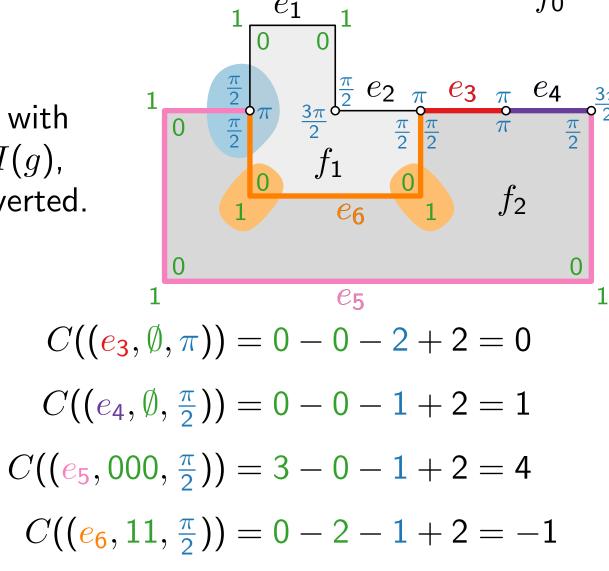
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r=(e,\delta,\alpha)$. Let $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$. For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



(H4) For each **vertex** v, the sum of incident angles is 2π .

$$\sum_{r \in H(f_2)} C(r) = +4$$

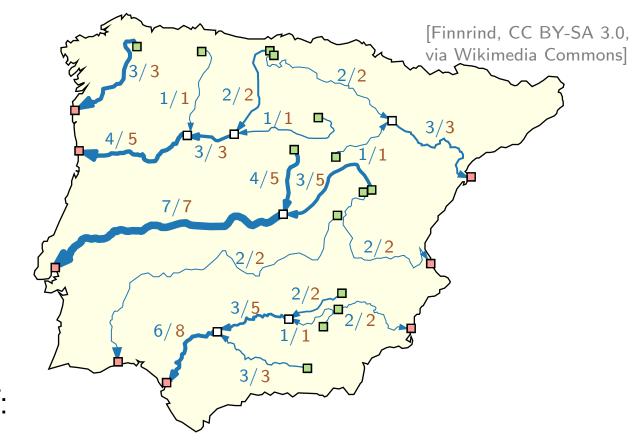
Flow network (G; S, T; u) with

- lacksquare directed graph G
- \blacksquare sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G) \ \sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus (S \cup T)$$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G), i\in S} X(i,j) - \sum_{(j,i)\in E(G), i\in S} X(j,i)$ is maximized.



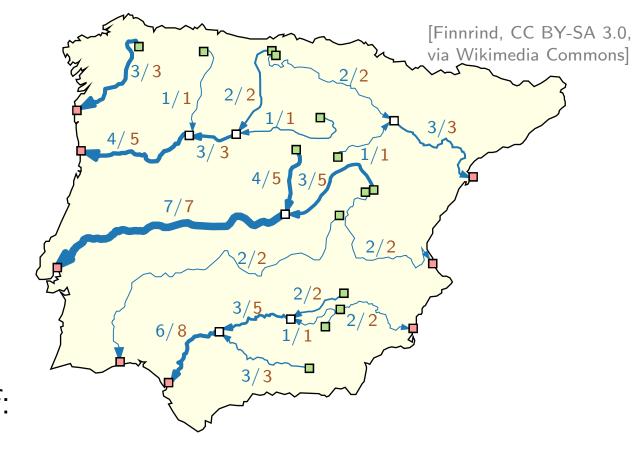
Flow network (G; s, t; u) with

- \blacksquare directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G)$$
 $\sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus (S \cup T)$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G), i\in S} X(i,j) - \sum_{(j,i)\in E(G), i\in S} X(j,i)$ is maximized.



Flow network (G; s, t; u) with

- \blacksquare directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s–t flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G) \ \sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus \{s,t\}$$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G), i\in S} X(i,j) - \sum_{(j,i)\in E(G), i\in S} X(j,i)$ is maximized.



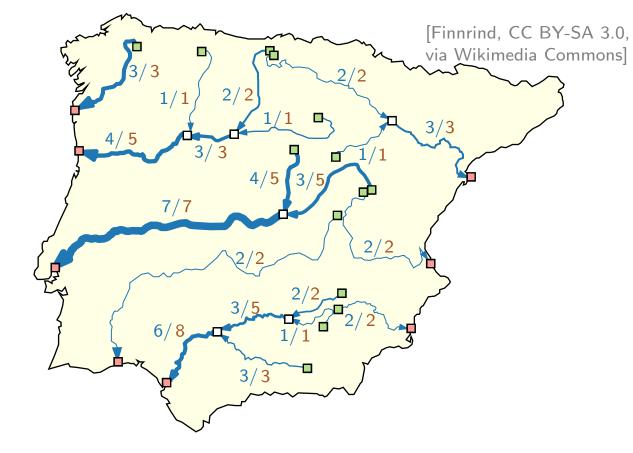
Flow network (G; s, t; u) with

- directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s–t flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G)$$
 $\sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus \{s,t\}$

A maximum s-t flow is an s-t flow where $\sum_{(s,j)\in E(G)} X(s,j) - \sum_{(j,s)\in E(G)} X(j,s)$ is maximized.



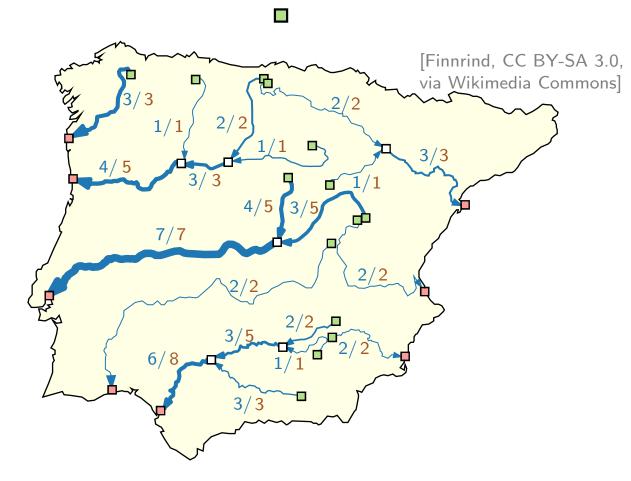
Flow network (G; s, t; u) with

- \blacksquare directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s–t flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G)$$
 $\sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus \{s,t\}$

A maximum s-t flow is an s-t flow where $\sum_{(s,j)\in E(G)} X(s,j) - \sum_{(j,s)\in E(G)} X(j,s)$ is maximized.



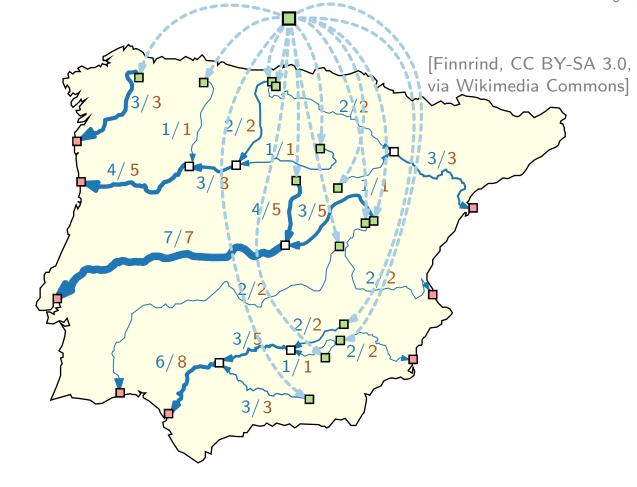
Flow network (G; s, t; u) with

- \blacksquare directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s–t flow if:

$$0 \le X(i,j) \le u(i,j)$$
 $\forall (i,j) \in E(G)$ $\sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0$ $\forall i \in V(G) \setminus \{s,t\}$

A maximum s-t flow is an s-t flow where $\sum_{(s,j)\in E(G)} X(s,j) - \sum_{(j,s)\in E(G)} X(j,s)$ is maximized.



Reminder: s-t Flow Networks

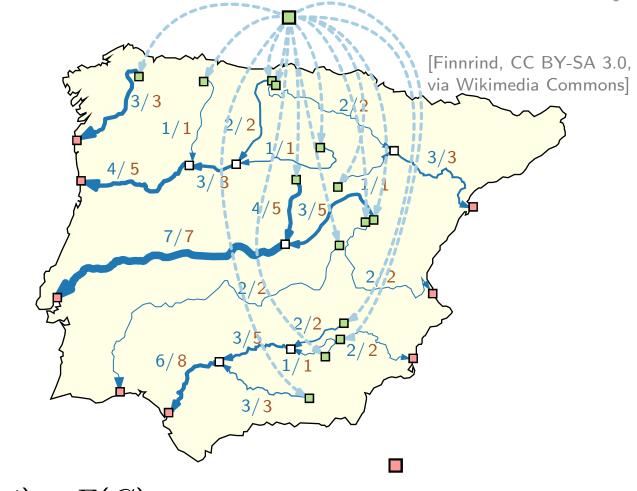
Flow network (G; s, t; u) with

- \blacksquare directed graph G
- \blacksquare source $s \in V(G)$, sink $t \in V(G)$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s–t flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G)$$
 $\sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus \{s,t\}$

A maximum s-t flow is an s-t flow where $\sum_{(s,j)\in E(G)} X(s,j) - \sum_{(j,s)\in E(G)} X(j,s)$ is maximized.



Reminder: s-t Flow Networks

Flow network (G; s, t; u) with

- \blacksquare directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s–t flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G) \ \sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus \{s,t\}$$

$$|f| = V(G) \setminus \{s,t\}$$

A maximum
$$s$$
- t flow is an s - t flow where $\sum_{(s,j)\in E(G)} X(s,j) - \sum_{(j,s)\in E(G)} X(j,s)$ is maximized.

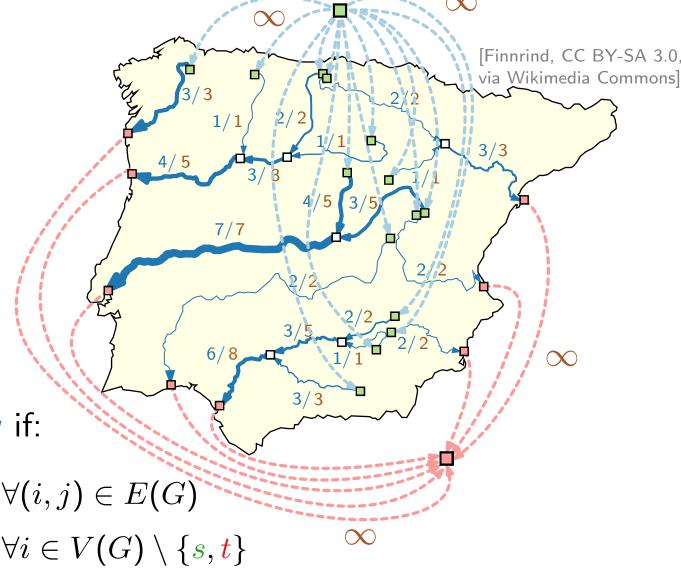
Reminder: s-t Flow Networks

Flow network (G; s, t; u) with

- \blacksquare directed graph G
- \blacksquare source $s \in V(G)$, sink $t \in V(G)$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s–t flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G) \ \sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus \{s,t\}$$



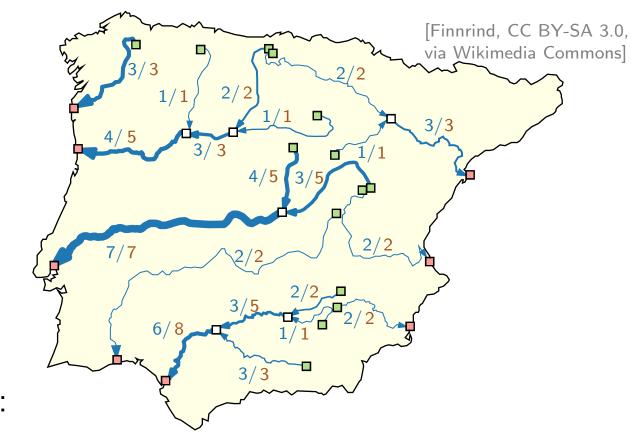
A maximum s-t flow is an s-t flow where $\sum_{(s,j)\in E(G)} X(s,j) - \sum_{(j,s)\in E(G)} X(j,s)$ is maximized.

Flow network (G; S, T; u) with

- lacksquare directed graph G
- \blacksquare sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G) \ \sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus (S \cup T)$$

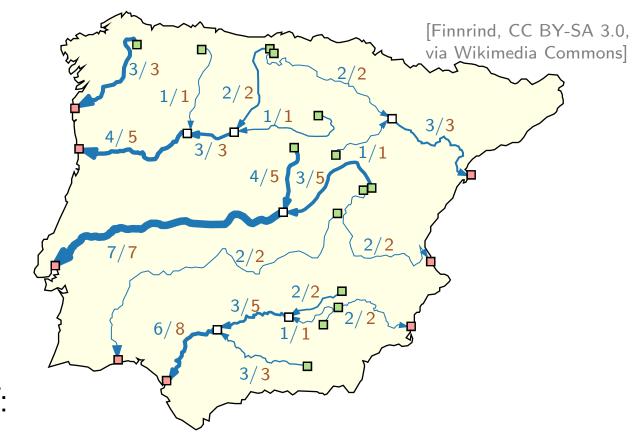


Flow network $(G; S, T; \ell; u)$ with

- \blacksquare directed graph G
- \blacksquare sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G) \ \sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus (S \cup T)$$

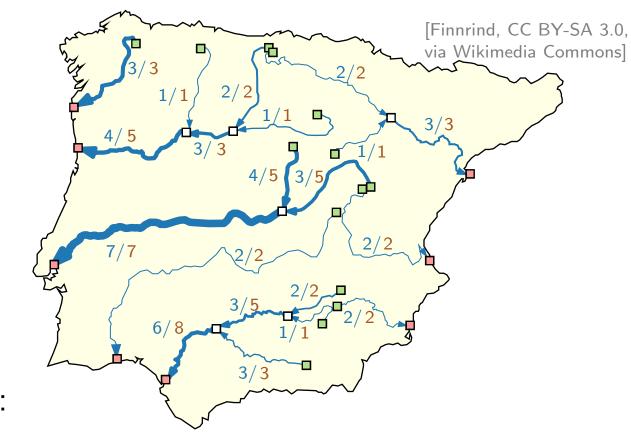


Flow network $(G; S, T; \ell; u)$ with

- \blacksquare directed graph G
- \blacksquare sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- \blacksquare edge *lower bound* $\ell \colon E(G) \to \mathbb{R}_0^+$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G) \ \sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus (S \cup T)$$

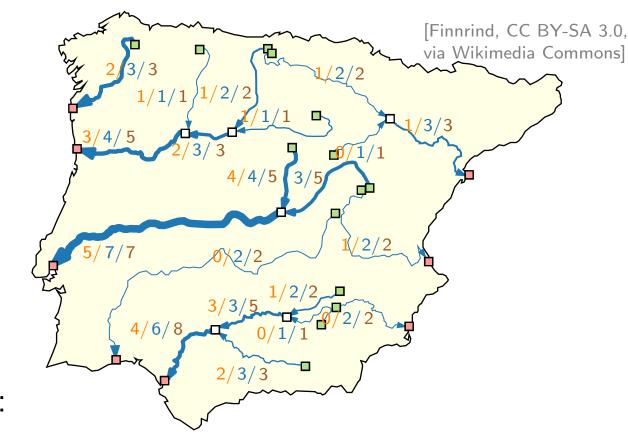


Flow network $(G; S, T; \ell; u)$ with

- directed graph G
- \blacksquare sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- \blacksquare edge *lower bound* ℓ : $E(G) \to \mathbb{R}_0^+$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G) \ \sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus (S \cup T)$$



Flow network $(G; S, T; \ell; u)$ with

- directed graph G
- \blacksquare sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- \blacksquare edge *lower bound* ℓ : $E(G) \to \mathbb{R}_0^+$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

$$\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G) \ \sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus (S \cup T)$$

Flow network $(G; b; \ell; u)$ with

- directed graph G
- node $production/consumption b: V(G) \to \mathbb{R}$ with $\sum_{i \in V(G)} b(i)$
- \blacksquare edge *lower bound* $\ell : E(G) \to \mathbb{R}_0^+$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

$$\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E(G) \ \sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0 \qquad orall i \in V(G) \setminus (S \cup T)$$

[Finnrind, CC BY-SA 3.0, via Wikimedia Commons]
$$\frac{2}{1/1/1} \frac{3/4}{1/2/2} \frac{1/1/1}{1/2/2} \frac{1/1/1}{1/3/3} \frac{3/4}{1/2/2} \frac{1/2/2}{1/2/2} \frac{3/3}{1/2/2} \frac{1/2/2}{1/2/2} \frac{3/3}{1/2/2} \frac{1/2/2}{1/2/2} \frac{3/3}{1/2/2} \frac{1/2/2}{1/2/2} \frac{3/3}{1/2/2} \frac{1/2/2}{1/2/2} \frac{3/3}{1/2/2} \frac{1/2/2}{1/2/2} \frac{3/3}{1/2/2} \frac{1/2/2}{1/2/2} \frac{1/2/2}{1/2} \frac{1/2}{1/2} \frac{1/2/2}{1/2} \frac{1/2}{1/2} \frac{1/2}{$$

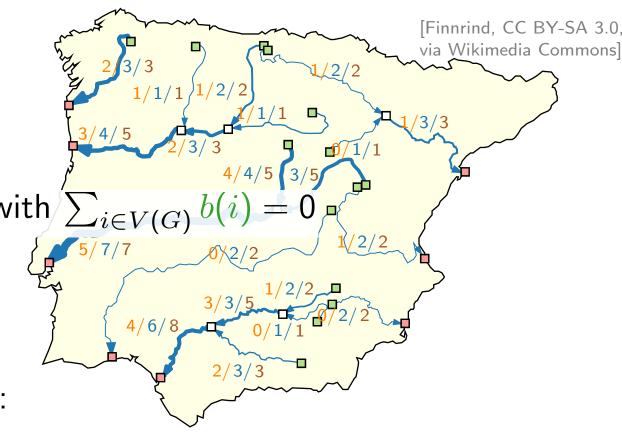
Flow network $(G; b; \ell; u)$ with

- directed graph G
- lacksquare node $production/consumption <math>b\colon V(G) o\mathbb{R}$ with $\sum_{i\in V(G)}b(i)=0$
- edge *lower bound* ℓ : $E(G) \to \mathbb{R}_0^+$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called **valid flow** if:

$$\ell(i,j) \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E(G)$$

$$\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = b(i) \quad \forall i \in V(G)$$



Flow network $(G; b; \ell; u)$ with

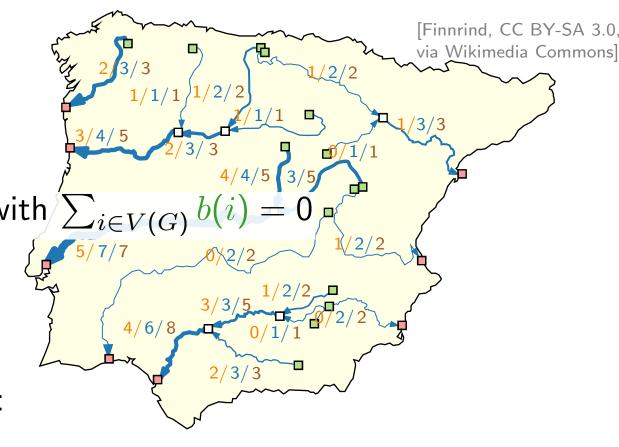
- directed graph G
- node $production/consumption b: V(G) \to \mathbb{R}$ with $\sum_{i \in V(G)} b(i)$
- \blacksquare edge *lower bound* ℓ : $E(G) \to \mathbb{R}_0^+$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called **valid flow** if:

$$\ell(i,j) \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E(G)$$

$$\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = b(i) \quad \forall i \in V(G)$$

A maximum
$$S$$
 T flow is an S T flow where $\sum X(i,j)$ $\sum X(j,i)$ is maximized $(i,j) \in E(G), i \in S$ $(j,i) \in E(G), i \in S$



Flow network $(G; b; \ell; u)$ with

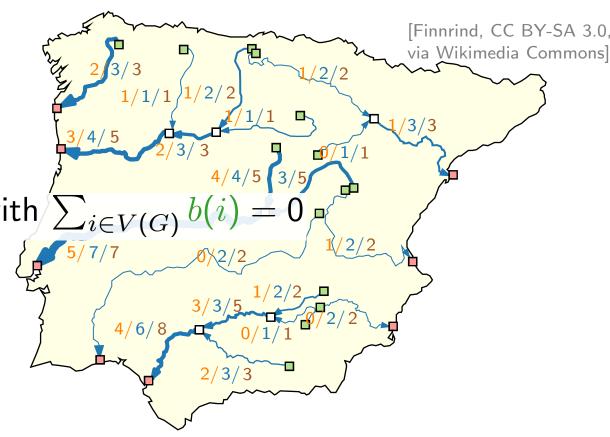
- directed graph G
- node production/consumption $b\colon V(G) o \mathbb{R}$ with $\sum_{i\in V(G)}b(i)=0$
- \blacksquare edge *lower bound* $\ell \colon E(G) \to \mathbb{R}_0^+$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called **valid flow** if:

$$\ell(i,j) \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E(G)$$

$$\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = b(i) \quad \forall i \in V(G)$$

• Cost function: cost: $E(G) \to \mathbb{R}_0^+$



Flow network $(G; b; \ell; u)$ with

- directed graph G
- lacksquare node $production/consumption <math>b\colon V(G) o\mathbb{R}$ with $\sum_{i\in V(G)}b(i)=0$
- \blacksquare edge *lower bound* ℓ : $E(G) \to \mathbb{R}_0^+$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called **valid flow** if:

$$\ell(i,j) \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E(G)$$

$$\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = b(i) \quad \forall i \in V(G)$$

• Cost function: cost: $E(G) \to \mathbb{R}_0^+$ and $\operatorname{cost}(X) := \sum_{(i,j) \in E(G)} \operatorname{cost}(i,j) \cdot X(i,j)$

Flow network $(G; b; \ell; u)$ with

- directed graph G
- lacksquare node $production/consumption <math>b\colon V(G) o \mathbb{R}$ with $\sum_{i \in V(G)} b(i) = 0$
- \blacksquare edge *lower bound* $\ell \colon E(G) \to \mathbb{R}_0^+$
- edge capacity $u: E(G) \to \mathbb{R}_0^+ \cup \{\infty\}$

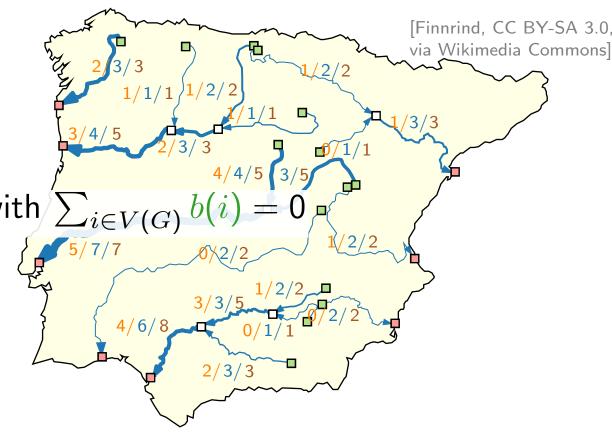
A function $X: E(G) \to \mathbb{R}_0^+$ is called **valid flow** if:

$$\ell(i,j) \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E(G)$$

$$\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = b(i) \quad \forall i \in V(G)$$

• Cost function: cost: $E(G) \to \mathbb{R}_0^+$ and $\operatorname{cost}(X) := \sum_{(i,j) \in E(G)} \operatorname{cost}(i,j) \cdot X(i,j)$

X is a minimum-cost flow if X is a valid flow that minimizes cost(X).



[Dalaman Laboratoria					
	Polynomial Algorithms			3/	D	
#				Year	· ·	
1	Edmonds	and	l Karp	1972		
2	Rock			1980	O((n + m') log U S(n, m, nC))	
3	Rock			1980	O(n log C M(n, m, U))	
4	Bland and	l Je	nsen	1985	O(m log C M(n, m, U))	
5	Goldberg	and	l Tarjan	1987	O(nm log (n ² /m) log (nC))	
6	Goldberg	and	l Tarjan	1988	O(nm log n log (nC))	
7	Ahuja, Go	oldb	erg, Orlin and Tarjan	1988	O(nm log log U log (nC))	
S	trongly Po	lyn	omial Algorithms			
#	Due to			Year	Running Time	
1	Tardos			1985	O(m ⁴)	
2	Orlin		1984	$O((n + m')^2 \log n S(n, m))$		
3	Fujishige	Fujishige			$O((n + m')^2 \log n S(n, m))$	
4	Galil and	Galil and Tardos			$O(n^2 \log n S(n, m))$	
5	Goldberg				$O(nm^2 \log n \log(n^2/m))$	
6	Goldberg	Goldberg and Tarjan			$O(nm^2 log^2 n)$	
7	Orlin (this	Orlin (this paper)		1988	$O((n + m') \log n S(n, m))$	
5	S(n, m)	=	O(m + n log n)		Fredman and Tarjan [1984]	
15	S(n, m, C)	22	O(Min (m + $n\sqrt{\log C}$),		Ahuja, Mehlhorn, Orlin and Tarjan [1990]	
	, , , , , ,		(m log log C))		Van Emde Boas, Kaas and Zijlstra[1977]	
1	M(n, m)		O(min (nm + $n^{2+\epsilon}$, nm l) where ϵ is any fixed cons		King, Rao, and Tarjan [1991]	
1	M(n, m, U)	=	O(nm log ($\frac{n}{m}\sqrt{\log U} + 2$))	Ahuja, Orlin and Tarjan [1989]	

n: #vertices

m: #edges

n: #vertices m: #edges

Po	lynomial Algorithms		
#	Due to	Year	Running Time
1	Edmonds and Karp	1972	O((n + m') log U S(n, m, nC))
2	Rock	1980	$O((n + m') \log U S(n, m, nC))$
3	Rock	1980	O(n log C M(n, m, U))
4	Bland and Jensen	1985	O(m log C M(n, m, U))
5	Goldberg and Tarjan	1987	$O(nm log (n^2/m) log (nC))$
6	Goldberg and Tarjan	1988	O(nm log n log (nC))
7	Ahuja, Goldberg, Orlin and Tarjan	1988	O(nm log log U log (nC))

Strongly Polynomial Algorithms

#	Due to			Year	Running Time	
1	Tardos			1985	O(m ⁴)	
2	Orlin			1984	$O((n + m')^2 \log n S(n, m))$	
3	Fujishige			1986	$O((n + m')^2 \log n S(n, m))$	
4	Galil and	Tar	dos	1986	$O(n^2 \log n S(n, m))$	
5	Goldberg	and	ł Ta rj an	1987	$O(nm^2 \log n \log(n^2/m))$	
6	Goldberg	and	l Tarjan	1988	$O(nm^2 log^2 n)$	
7	Orlin (this	в ра	aper)	1988	$O((n + m') \log n S(n, m))$	
					•	
S(r	n, m)	=	O(m + n log n)		Fredman and Tarjan [1984]	
S(r	n, m, C)	22	O(Min (m + $n\sqrt{\log C}$),		Ahuja, Mehlhorn, Orlin and Tarjan [1990]	
			(m log log C))		Van Emde Boas, Kaas and Zijlstra[1977]	
M((n, m)	=	O(min (nm + $n^{2+\epsilon}$, nm log where ϵ is any fixed constant	-	King, Rao, and Tarjan [1991]	
M	(n, m, U)	=	O(nm log ($\frac{n}{m}\sqrt{\log U} + 2$))		Ahuja, Orlin and Tarjan [1989]	

Theorem.

[Orlin 1991]

The minimum-cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

n: #vertices m: #edges

Polynomial Algorithms						
#	Due to	Year	Running Time			
1	Edmonds and Karp	1972	O((n + m') log U S(n, m, nC))			
2	Rock	1980	O((n + m') log U S(n, m, nC))			
3	Rock	1980	O(n log C M(n, m, U))			
4	Bland and Jensen	1985	O(m log C M(n, m, U))			
5	Goldberg and Tarjan	1987	$O(nm log (n^2/m) log (nC))$			
6	Goldberg and Tarjan	1988	O(nm log n log (nC))			
7	Ahuja, Goldberg, Orlin and Tarjan	1988	O(nm log log U log (nC))			
Strongly Polynomial Algorithms						

#	Due to	Year	Running Time
1	Tardos	1985	$O(m^4)$
2	Orlin	1984	$O((n + m')^2 \log n S(n, m))$
3	Fujishige	1986	$O((n + m')^2 \log n S(n, m))$
4	Galil and Tardos	1986	$O(n^2 \log n S(n, m))$
5	Goldberg and Tarjan	1987	$O(nm^2 \log n \log(n^2/m))$
6	Goldberg and Tarjan	1988	$O(nm^2 log^2 n)$
7	Orlin (this paper)	1988	$O((n + m') \log n S(n, m))$

$$S(n, m) = O(m + n \log n) \qquad \qquad \text{Fredman and Tarjan [1984]}$$

$$S(n, m, C) = O(Min (m + n\sqrt{\log C}), \qquad \text{Ahuja, Mehlhorn, Orlin and Tarjan [1990]}$$

$$(m \log \log C)) \qquad \qquad \text{Van Emde Boas, Kaas and Zijlstra[1977]}$$

$$M(n, m) = O(min (nm + n^{2+\epsilon}, nm \log n) \qquad \text{King, Rao, and Tarjan [1991]}$$

$$\text{where } \epsilon \text{ is any fixed constant.}$$

$$M(n, m, U) = O(nm \log (\frac{n}{m}\sqrt{\log U} + 2)) \qquad \text{Ahuja, Orlin and Tarjan [1989]}$$

Theorem.

[Orlin 1991]

The minimum-cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

Theorem.

[Cornelsen & Karrenbauer 2011]

The minimum-cost flow problem for planar graphs with bounded costs and face sizes can be solved in $O(n^{3/2})$ time.

n: #verticesm: #edges

P	Polynomial Algorithms				
#	Due to	•	,	Year	Running Time
1	Edmonds	and	l Karp	1972	$O((n + m') \log U S(n, m, nC))$
2	Rock			1980	$O((n + m') \log U S(n, m, nC))$
3	Rock			1980	O(n log C M(n, m, U))
4	Bland and	d Je	nsen	1985	O(m log C M(n, m, U))
5	Goldberg	and	l Tarjan	1987	$O(nm \log (n^2/m) \log (nC))$
6	Goldberg	and	l Tarjan	1988	O(nm log n log (nC))
7	Ahuja, Go	oldb	erg, Orlin and Ta rj an	1988	O(nm log log U log (nC))
s	trongly Po	lyn	omial Algorithms		
#	Due to			Year	Running Time
1	Tardos			1985	O(m ⁴)
2	Orlin			1984	$O((n + m')^2 \log n S(n, m))$
3	3 Fujishige		1986	$O((n + m')^2 \log n S(n, m))$	
4	4 Galil and Tardos		1986	$O(n^2 \log n S(n, m))$	
5	Goldberg and Tarjan		1987	$O(nm^2 \log n \log(n^2/m))$	
6	Goldberg	and	ł Tarjan	1988	$O(nm^2 log^2 n)$
7	Orlin (thi	s pa	aper)	1988	$O((n + m') \log n S(n, m))$
S	(n, m)	=	O(m + n log n)		Fredman and Tarjan [1984]
s	(n, m, C)	=	O(Min (m + $n\sqrt{\log C}$), (m log log C))		Ahuja, Mehlhorn, Orlin and Tarjan [1990] Van Emde Boas, Kaas and Zijlstra[1977]
N	Λ(n, m)	=	O(min (nm + $n^{2+\epsilon}$, nm) where ϵ is any fixed cons		King, Rao, and Tarjan [1991]
N	1(n, m, U)	=	O(nm log ($\frac{n}{m}\sqrt{\log U} + 2$))	Ahuja, Orlin and Tarjan [1989]

Theorem.

[Orlin 1991]

The minimum-cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

Theorem.

[Cornelsen & Karrenbauer 2011]

The minimum-cost flow problem for planar graphs with bounded costs and face sizes can be solved in $O(n^{3/2})$ time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]

The minimum-cost flow problem with integral vertex demands, edge capacities, and edge costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time, where U is the maximum capacity and C are the maximum costs.

3

area mini-

mization

Topology – Shape – Metrics

Three-step approach:

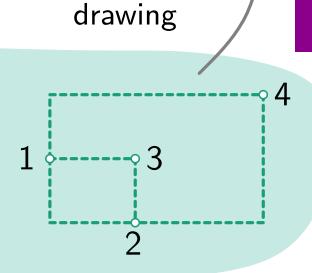
$$V(G) = \{v_1, v_2, v_3, v_4\}$$

$$E(G) = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

reduce crossings

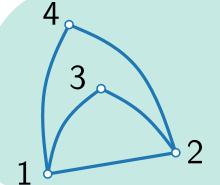
combinatorial embedding/planarization

[Tamassia 1987]



planar

orthogonal



orthogonal representation

bend minimization

Topology -

SHAPE

- Metrics

Geometric orthogonal bend minimization.

Given:

Geometric orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

Geometric orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

 \blacksquare Combinatorial embedding F and outer face f_0

Geometric orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Combinatorial embedding F and outer face f_0

Find: Orthogonal drawing with minimum number of bends that

preserves the embedding.

Geometric orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

 \blacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variant:

Combinatorial orthogonal bend minimization.

Given:

Geometric orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Combinatorial embedding F and outer face f_0

Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variant:

Combinatorial orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Combinatorial embedding F and outer face f_0

Geometric orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

 \blacksquare Combinatorial embedding F and outer face f_0

Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variant:

Combinatorial orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Combinatorial embedding F and outer face f_0

How to solve the combinatorial orthogonal bend minimization problem?

Combinatorial orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Combinatorial embedding F and outer face f_0

How to solve the combinatorial orthogonal bend minimization problem?

Idea.

Formulate as a network-flow problem:

Combinatorial orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Combinatorial embedding F and outer face f_0

How to solve the combinatorial orthogonal bend minimization problem?

Idea.

Formulate as a network-flow problem:

 \blacksquare a unit of flow $= \angle \frac{\pi}{2}$

Combinatorial orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

 \blacksquare Combinatorial embedding F and outer face f_0

How to solve the combinatorial orthogonal bend minimization problem?

Idea.

Formulate as a network-flow problem:

- \blacksquare a unit of flow $= \angle \frac{\pi}{2}$
- vertices $\stackrel{\measuredangle}{\longrightarrow}$ faces $(\# \measuredangle \frac{\pi}{2} \text{ per face})$

Combinatorial orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

lacksquare Combinatorial embedding F and outer face f_0

How to solve the combinatorial orthogonal bend minimization problem?

Idea.

Formulate as a network-flow problem:

- \blacksquare a unit of flow $= \measuredangle \frac{\pi}{2}$
- vertices $\stackrel{\measuredangle}{\longrightarrow}$ faces $(\# \measuredangle \frac{\pi}{2} \text{ per face})$
- faces $\stackrel{\checkmark}{\longrightarrow}$ neighboring faces (# bends toward the neighbor)

Combinatorial orthogonal bend minimization.

Given: \blacksquare Plane graph G with maximum degree 4

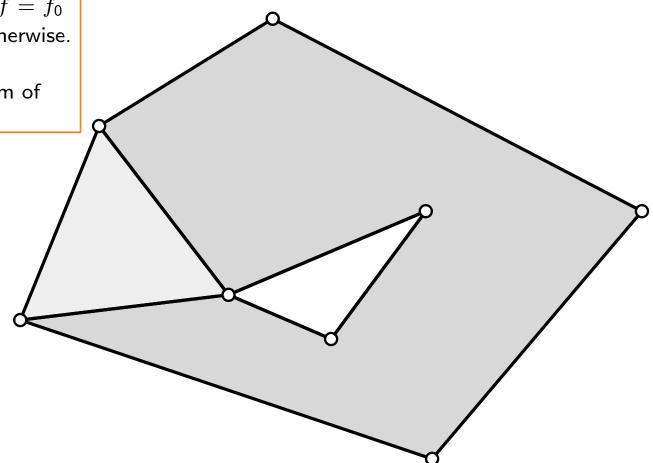
 \blacksquare Combinatorial embedding F and outer face f_0

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v, the sum of incident angles is 2π .

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

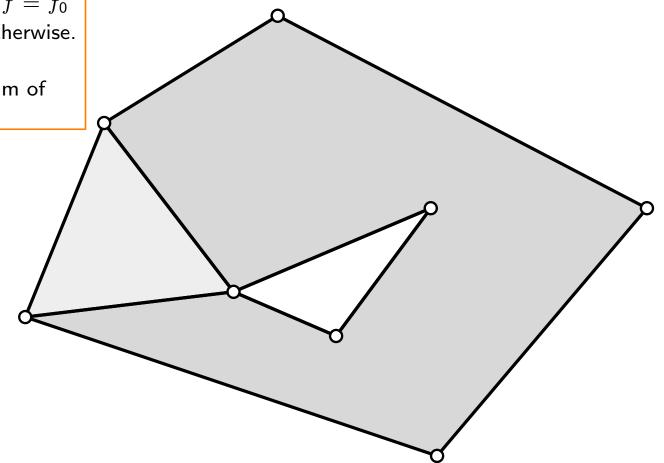


- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

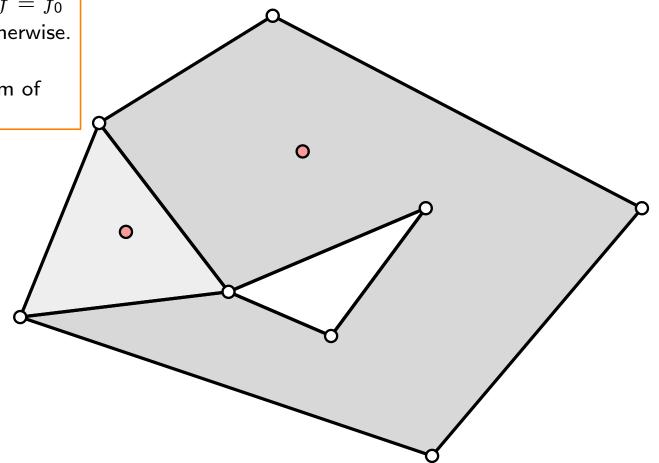


- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:



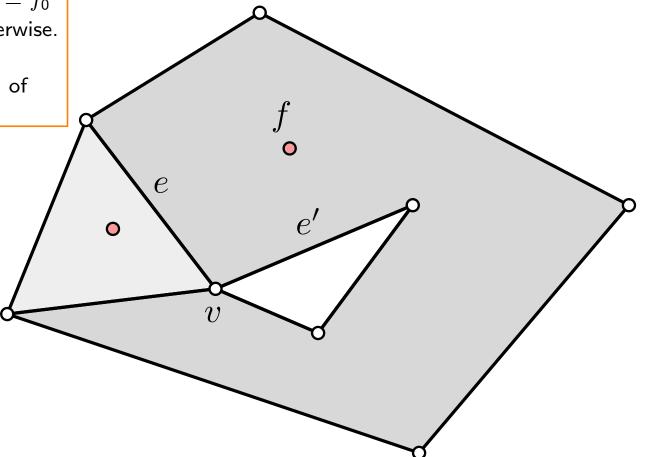
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

 \blacksquare $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\}$



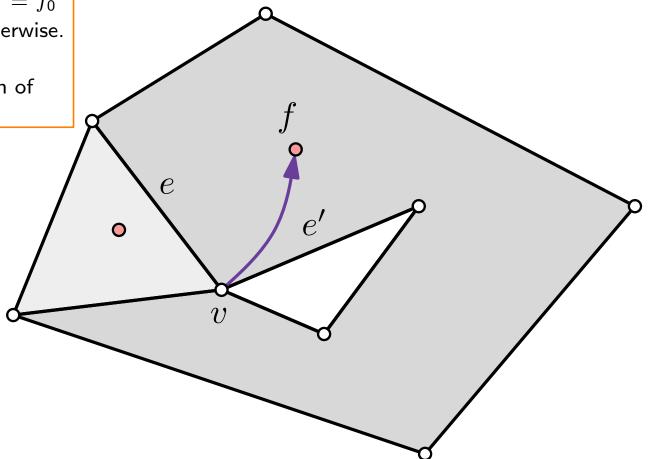
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

 \blacksquare $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\}$



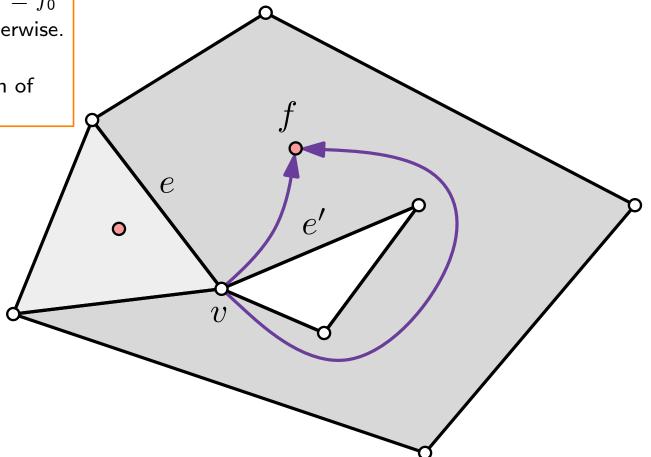
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

 \blacksquare $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\}$



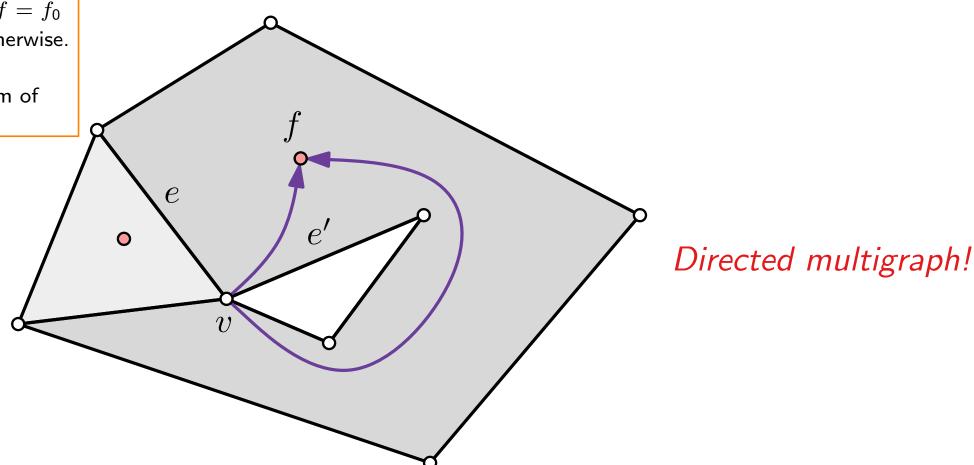
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

 $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\}$



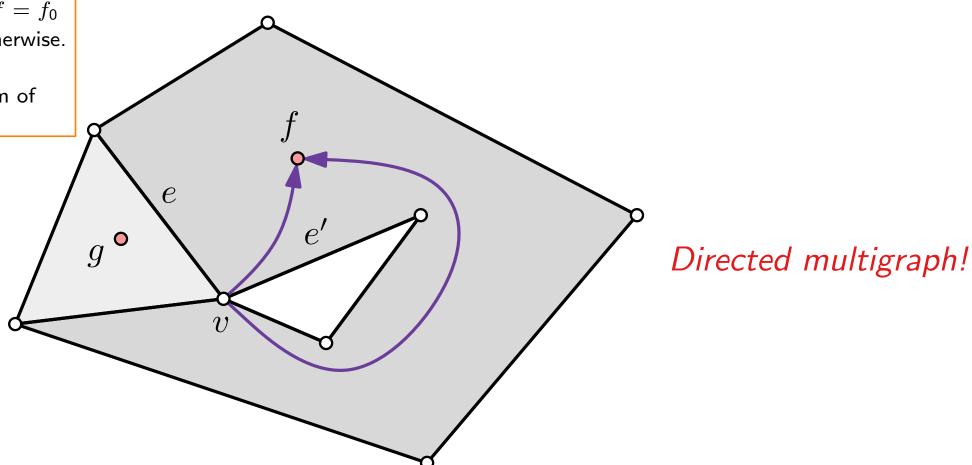
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$



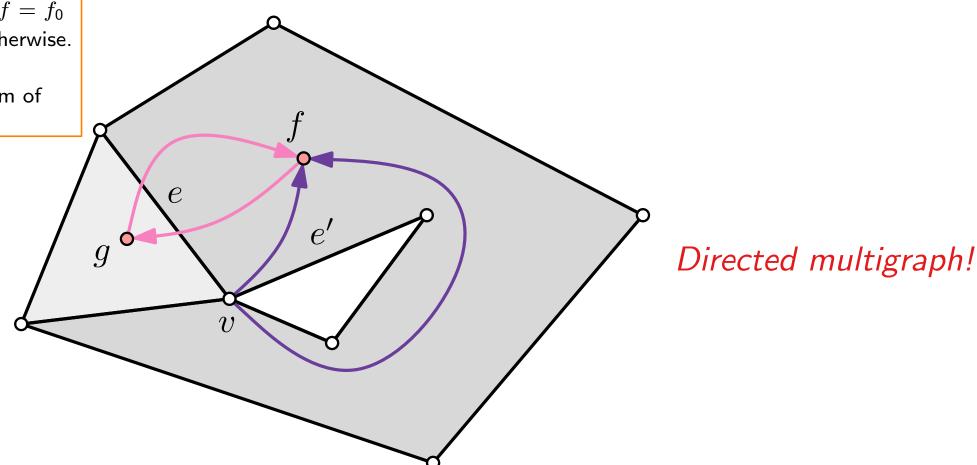
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$



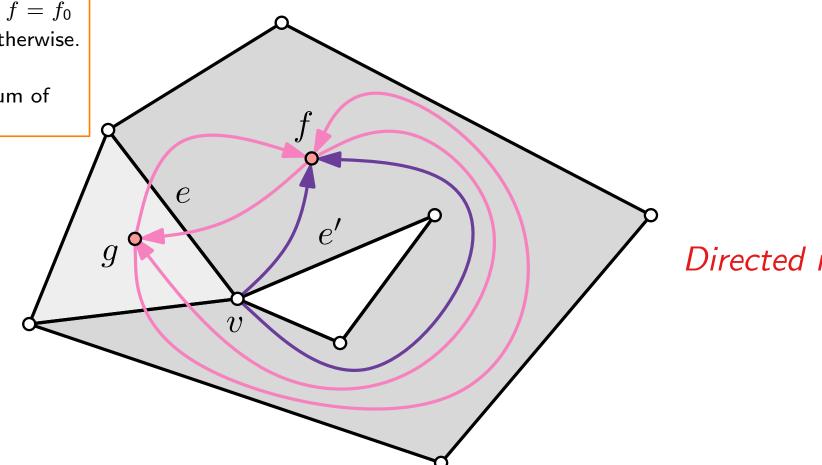
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$



Directed multigraph!

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

For each **face**
$$f$$
, it holds that:
$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases} \quad \blacksquare \quad b(v) = 4 \quad \forall v \in V(G)$$

For each **vertex** v, the sum of incident angles is 2π .

- $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup V$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases} \quad \bullet \quad b(v) = 4 \quad \forall v \in V(G)$ (H3) For each **face** f, it holds that:
- For each **vertex** v, the sum of incident angles is 2π .

- $\blacksquare E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$

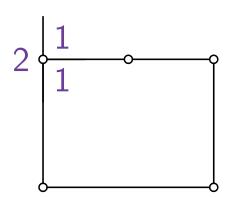
$$2 \left| \frac{1}{1} \right|$$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

 $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases} \quad \blacksquare \quad b(v) = 4 \quad \forall v \in V(G)$

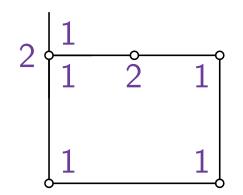
(H4) For each **vertex** v, the sum of incident angles is 2π .

- $\blacksquare E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$
- lacksquare b(f)



- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases} \quad \blacksquare \quad b(v) = 4 \quad \forall v \in V(G)$
- (H4) For each **vertex** v, the sum of incident angles is 2π .

- $\blacksquare E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$
- lacksquare b(f)

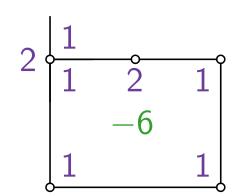


- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

For each face
$$f$$
, it holds that:
$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases} \quad \blacksquare \quad b(v) = 4 \quad \forall v \in V(G)$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

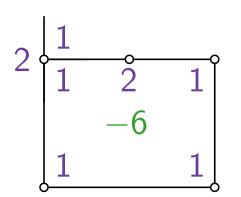
- $\blacksquare E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$
- lacksquare b(f)



- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases} \quad \bullet \quad b(v) = 4 \quad \forall v \in V(G)$ (H3) For each **face** f, it holds that:
- For each **vertex** v, the sum of incident angles is 2π .

- $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup V$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

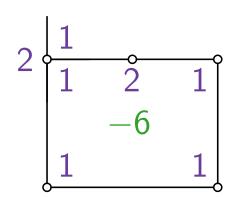


- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{{m r}\in H(f)} C({m r}) = egin{cases} -4 & ext{if } f=f_0 \ +4 & ext{otherwise} \end{cases}$$

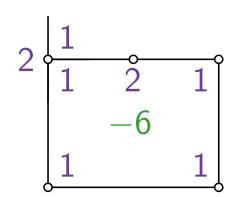
- $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup V$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$
- $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$ For each **vertex** v, the sum of incident angles is 2π . $b(v) = 4 \quad \forall v \in V(G)$ $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise.} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) \stackrel{?}{=} 0$

$$b(f) = -2\deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) \doteq 0$$



- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

- $\blacksquare E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$
- $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$ For each **vertex** v, the sum of incident angles is 2π . $b(v) = 4 \quad \forall v \in V(G)$ $b(v) = 4 \quad \forall v \in V(G)$



- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

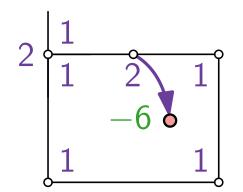
$$\sum_{r \in H(f)} C(r) = egin{cases} -4 & ext{if } f = f_0 \ +4 & ext{otherwise.} \end{cases}$$

- $\blacksquare E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
For each **vertex** v , the sum of incident angles is 2π .

$$b(v) = 4 \quad \forall v \in V(G)$$

$$\forall (v, f) \in E', v \in V(G), f \in F$$



- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{\mathbf{r}\in H(f)}C(\mathbf{r})=egin{cases} -4 & ext{if } f=f_0\ +4 & ext{otherwise.} \end{cases}$$

- $\blacksquare E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
For each **vertex** v , the sum of incident angles is 2π .

$$b(v) = 4 \quad \forall v \in V(G)$$

$$\forall (v, f) \in E', v \in V(G), f \in F$$

$$\ell(v, f) := \leq X(v, f) \leq = u(v, f)$$

$$\cos t(v, f) =$$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{\mathbf{r}\in H(f)}C(\mathbf{r})=egin{cases} -4 & ext{if } f=f_0\ +4 & ext{otherwise.} \end{cases}$$

- $\blacksquare E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
For each **vertex** v , the sum of incident angles is 2π .

$$b(v) = 4 \quad \forall v \in V(G)$$

$$\forall (v, f) \in E', v \in V(G), f \in F$$

$$\ell(v, f) := 1 \le X(v, f) \le 4 =: u(v, f)$$

$$cost(v, f) =$$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{\mathbf{r}\in H(f)}C(\mathbf{r})=egin{cases} -4 & ext{if } f=f_0\ +4 & ext{otherwise.} \end{cases}$$

- $\blacksquare E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$
For each **vertex** v , the sum of incident angles is 2π .

$$b(v) = 4 \quad \forall v \in V(G)$$

$$\forall (v,f) \in E', v \in V(G), f \in F$$

$$\ell(v,f) := 1 \le X(v,f) \le 4 =: u(v,f)$$

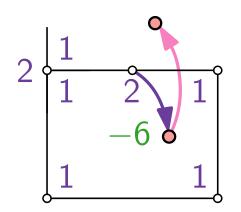
$$\operatorname{cost}(v,f) = 0$$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = egin{cases} -4 & ext{if } f = f_0 \ +4 & ext{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

- $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V(G)$ $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$ (Euler)



$$orall (v,f) \in E', v \in V(G), f \in F$$
 $\qquad \ell(v,f) := 1 \leq X(v,f) \leq 4 =: u(v,f)$ $\qquad \operatorname{cost}(v,f) = 0$ $\qquad \forall (f,g) \in E', f,g \in F$ $\qquad \ell(f,g) := \leq X(f,g) \leq \qquad =: u(f,g)$ $\qquad \operatorname{cost}(f,g) =$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

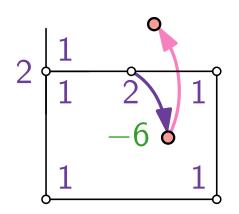
$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

- $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup V$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$
(Euler)



$$\forall (v, f) \in E', v \in V(G), f \in F$$

$$\forall (f,g) \in E', f,g \in F$$

$$\ell(v,f) := 1 \le X(v,f) \le 4 =: u(v,f)$$
 $\operatorname{cost}(v,f) = 0$
 $\forall (f,g) \in E', f,g \in F$
 $\ell(f,g) := 0 \le X(f,g) \le \infty =: u(f,g)$
 $\operatorname{cost}(f,g) =$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

- $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup V$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$
(Euler)

$$\forall (v, f) \in E', v \in V(G), f \in F$$

$$\forall (f,g) \in E', f,g \in F$$

$$\ell(v,f) := 1 \le X(v,f) \le 4 =: u(v,f)$$
 $\operatorname{cost}(v,f) = 0$ $\operatorname{cost}(f,g) \in E', f, g \in F$ $\ell(f,g) := 0 \le X(f,g) \le \infty =: u(f,g)$ $\operatorname{cost}(f,g) = 1$

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

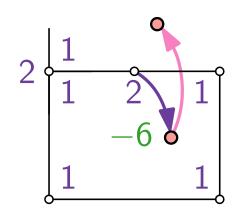
$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

- $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup V$ $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$
(Euler)



$$\forall (v, f) \in E', v \in V(G), f \in F$$

$$\forall (f,g) \in E', f,g \in F$$

$$\ell(v,f):=1 \le X(v,f) \le 4 =: u(v,f)$$
 $\cot(v,f)=0$
 $\ell(f,g):=0 \le X(f,g) \le \infty =: u(f,g)$
 $\cot(f,g)=1$
We model only the number of bends.
Why is it enough?

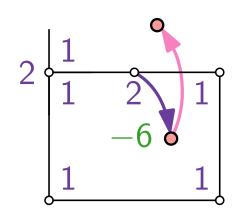
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is 2π .

- $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V(G)$

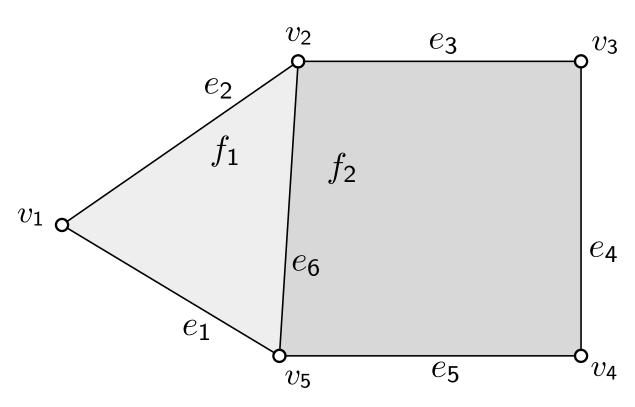
$$b(f) = -2\deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$

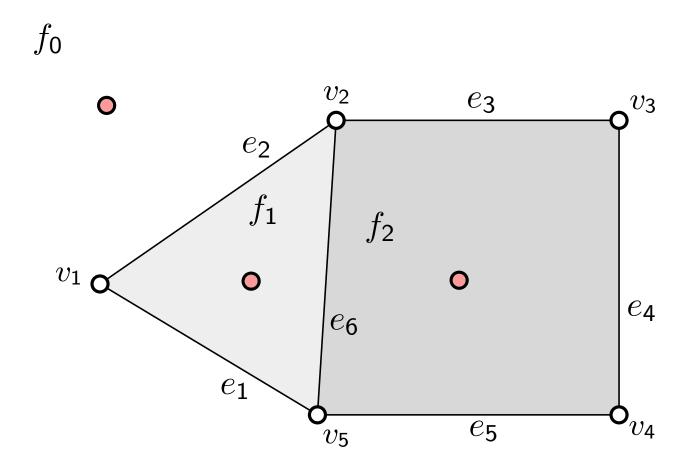


$$\forall (v, f) \in E', v \in V(G), f \in F$$

$$\forall (f,g) \in E', f,g \in F$$

$$\ell(v,f) := 1 \le X(v,f) \le 4 =: u(v,f)$$
 $\cot(v,f) = 0$
 $\ell(f,g) := 0 \le X(f,g) \le \infty =: u(f,g)$
 $\cot(f,g) = 1$
 $\cot(f,g)$

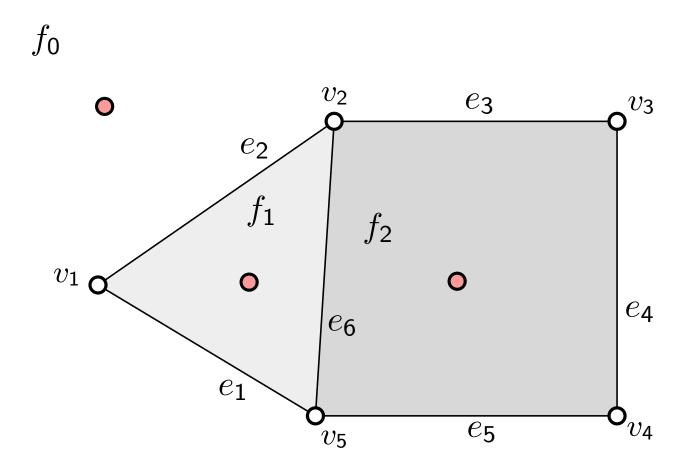




Legend

V(G) C

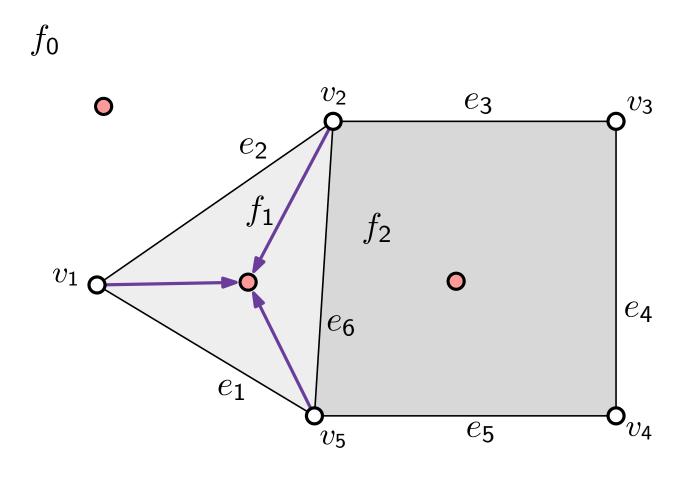
 $F \bullet$



$$V(G)$$
 \circ
 F \bullet

$$\ell/u/cost$$

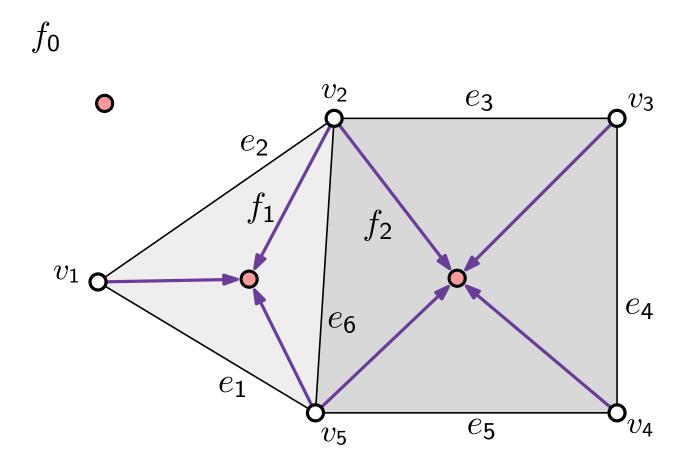
$$V(G) \times F \supset \frac{1/4/0}{\bullet}$$



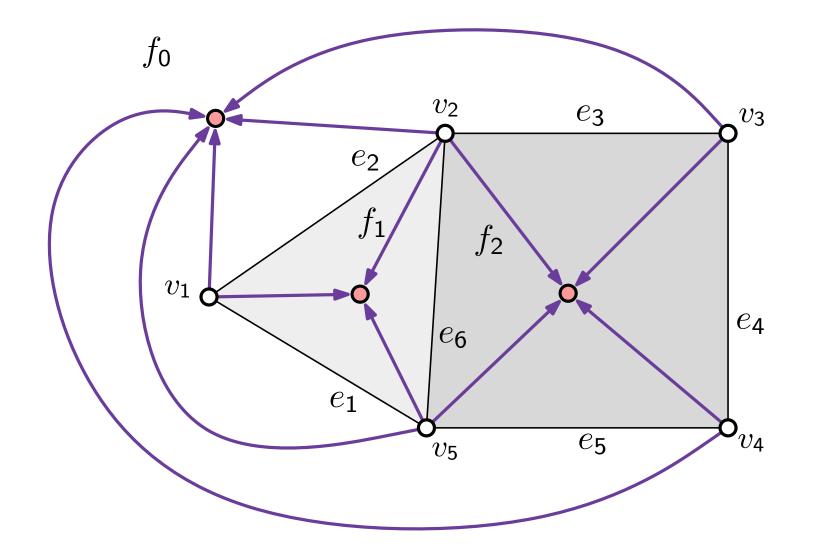
$$V(G)$$
 \circ
 $F \circ$

$$\ell/u/\text{cost}$$

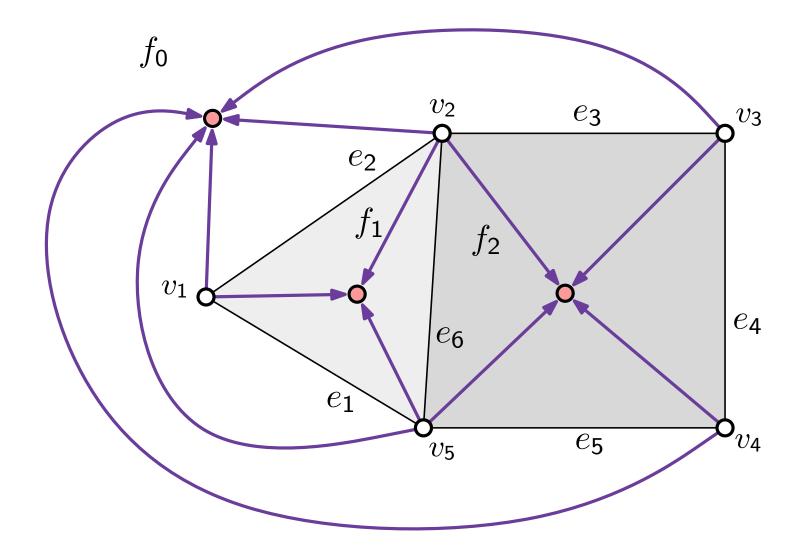
$$V(G) \times F \supset \frac{1/4/0}{2}$$



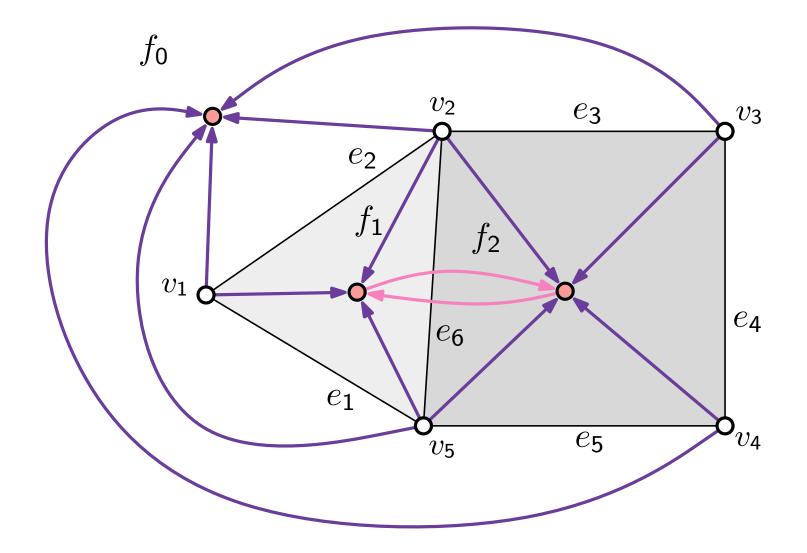
$$V(G)$$
 O F O $\ell/u/\cos t$ $V(G) \times F \supseteq \frac{1/4/0}{2}$



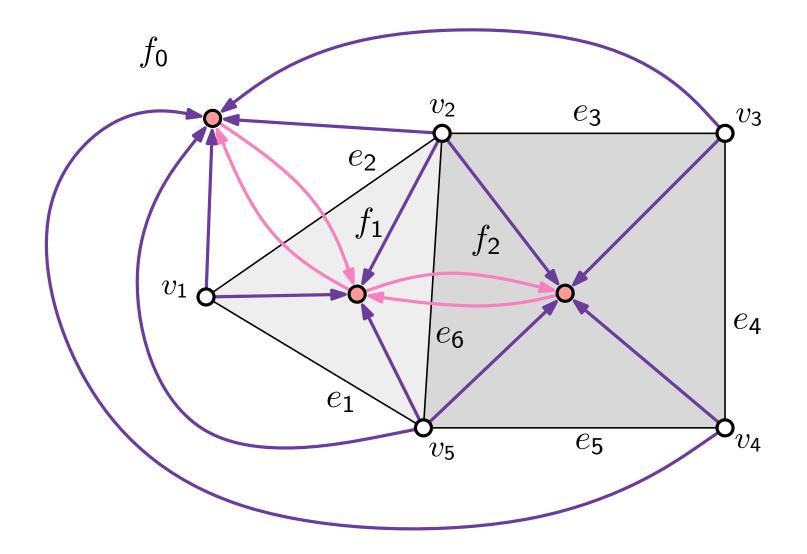
$$V(G)$$
 O F O $\ell/u/\mathrm{cost}$ $V(G) \times F \supseteq \frac{1/4/0}{2}$



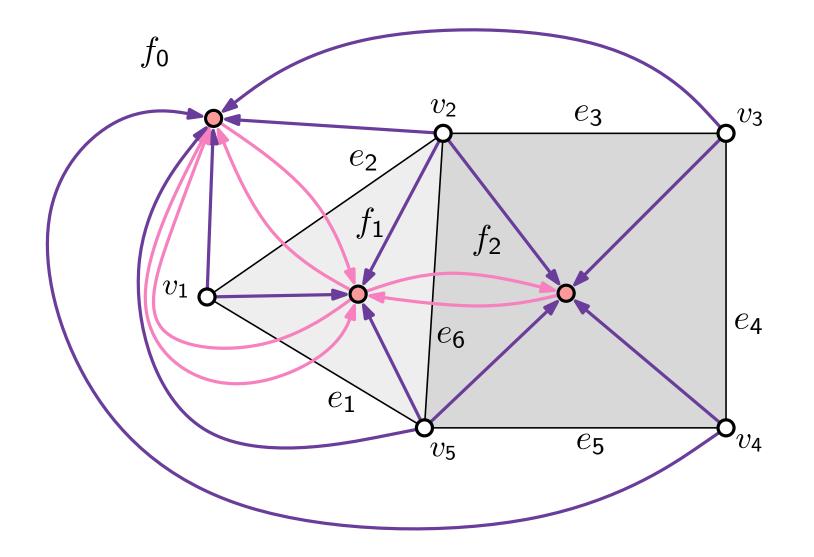
$$V(G)$$
 \circ
 F \bullet
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$



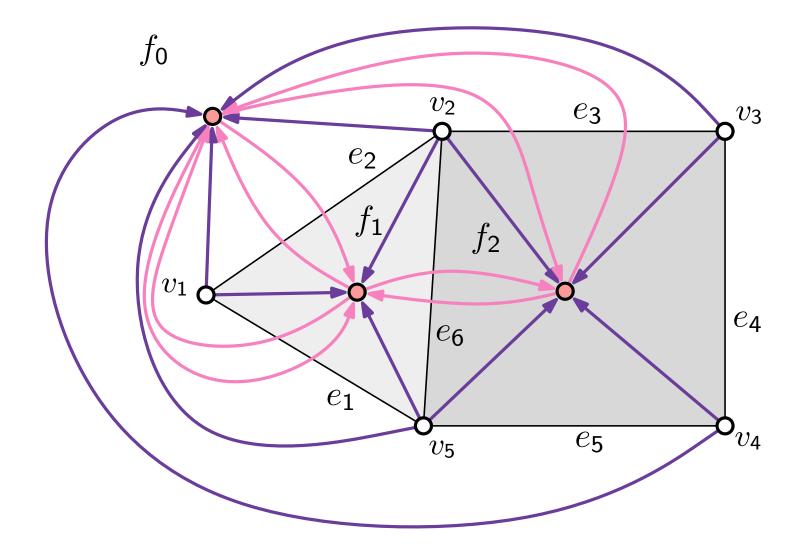
$$V(G)$$
 \circ
 F \bullet
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$



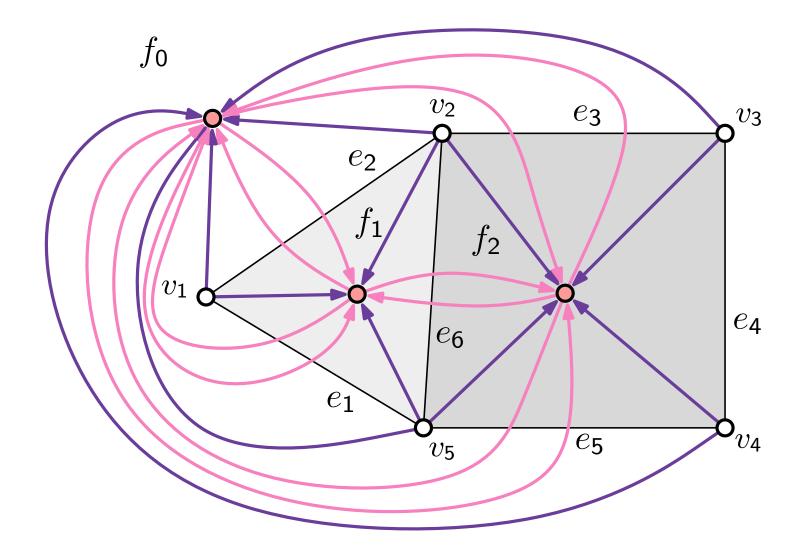
$$V(G)$$
 \circ
 $F \circ$
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$



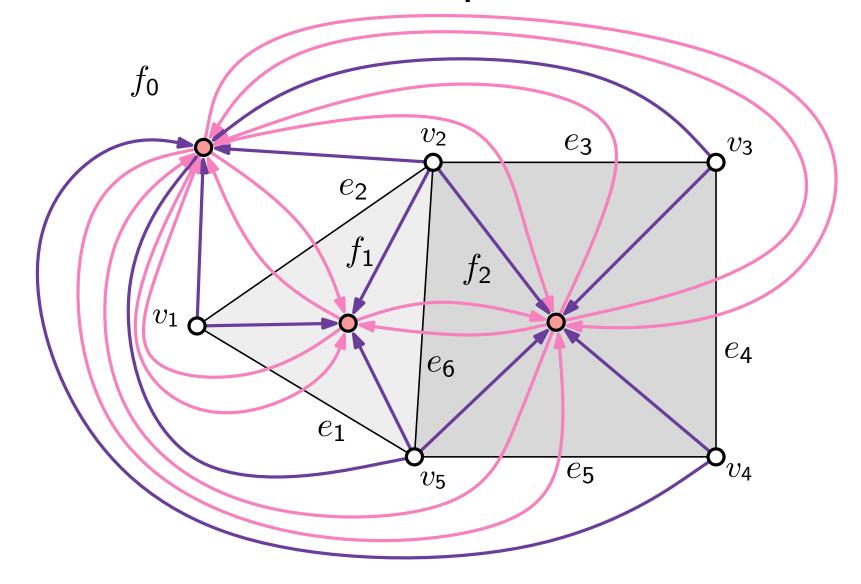
$$V(G)$$
 \circ
 F \bullet
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$



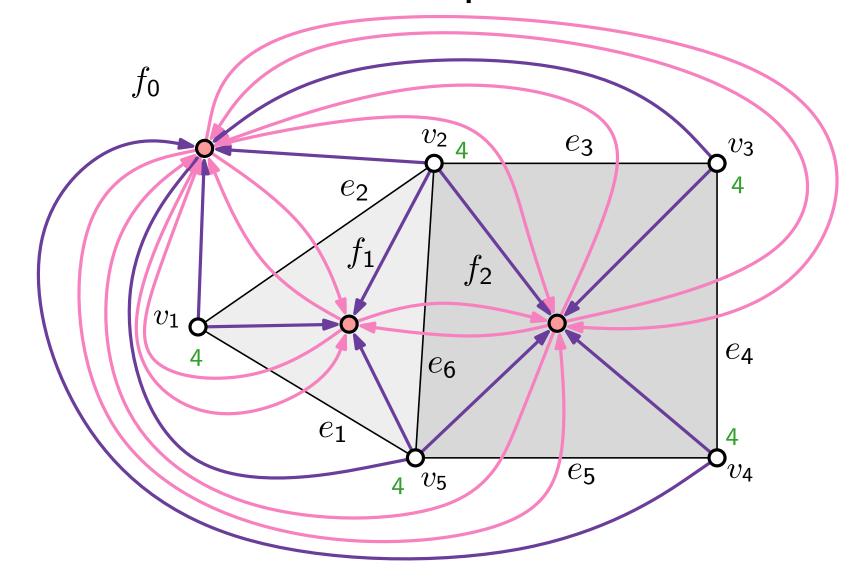
$$V(G)$$
 \circ
 $F \circ$
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$



$$V(G)$$
 \circ
 $F \circ$
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$

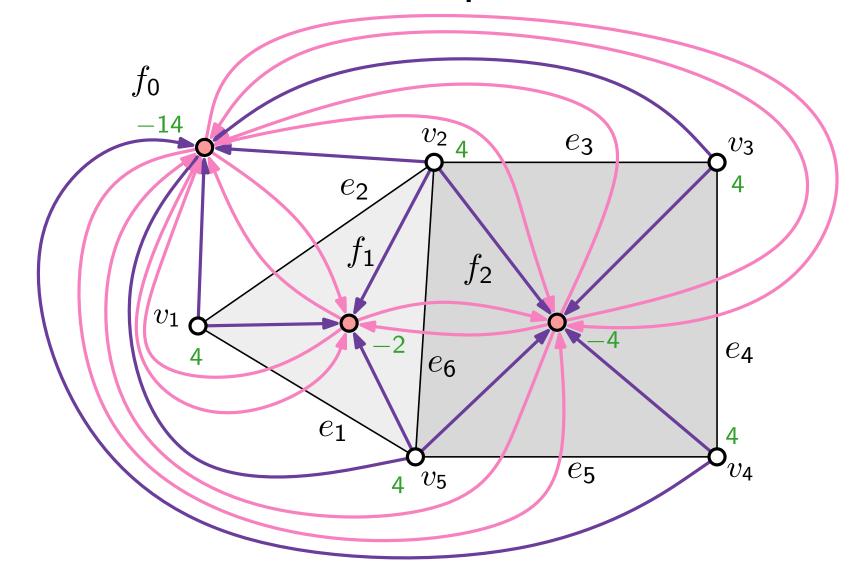


$$V(G)$$
 \circ
 F \bullet
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$



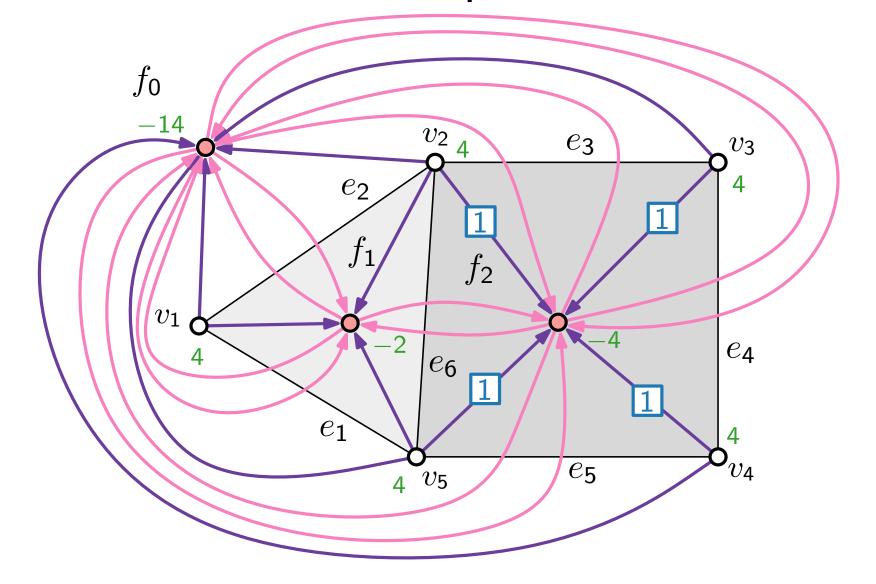
Legend

$$V(G)$$
 \circ
 F \bullet
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$
 $4 = b$ -value



Legend

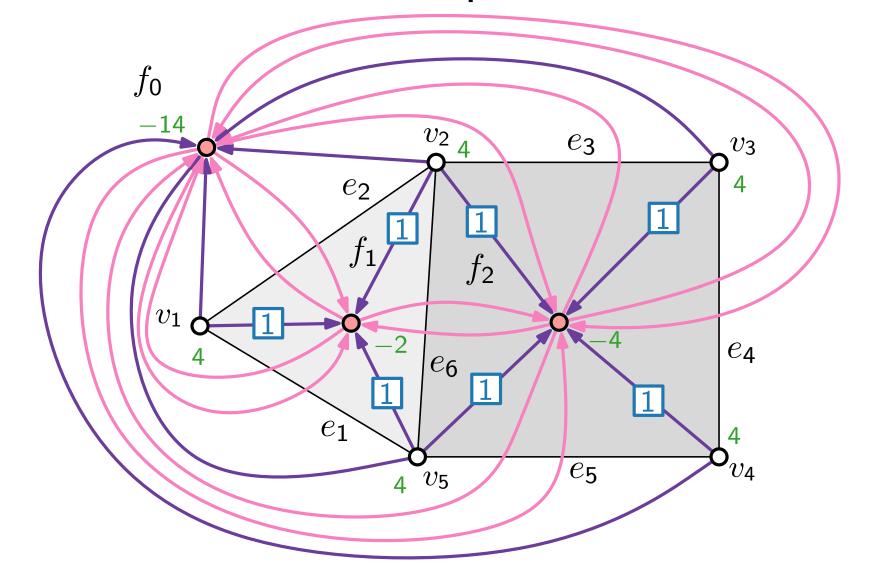
$$V(G)$$
 \circ
 F \bullet
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$
 $4 = b$ -value



Legend

$$V(G)$$
 \circ
 F \bullet
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$

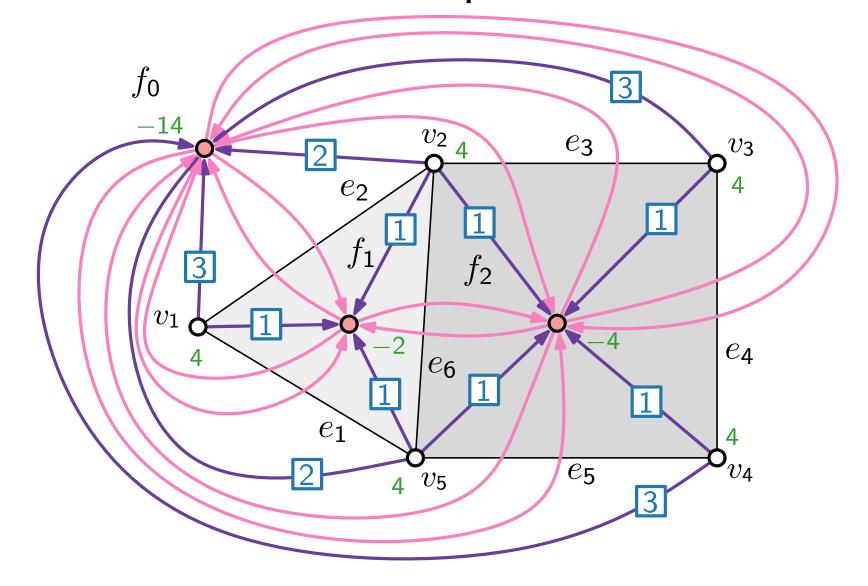
4 = b-value



Legend

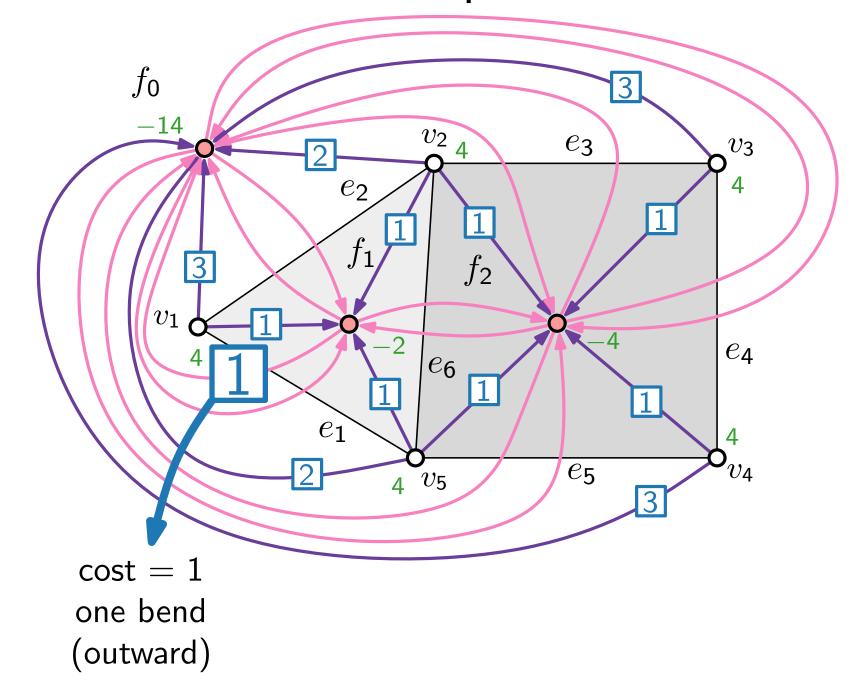
$$V(G)$$
 \circ
 F \bullet
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$

4 = b-value



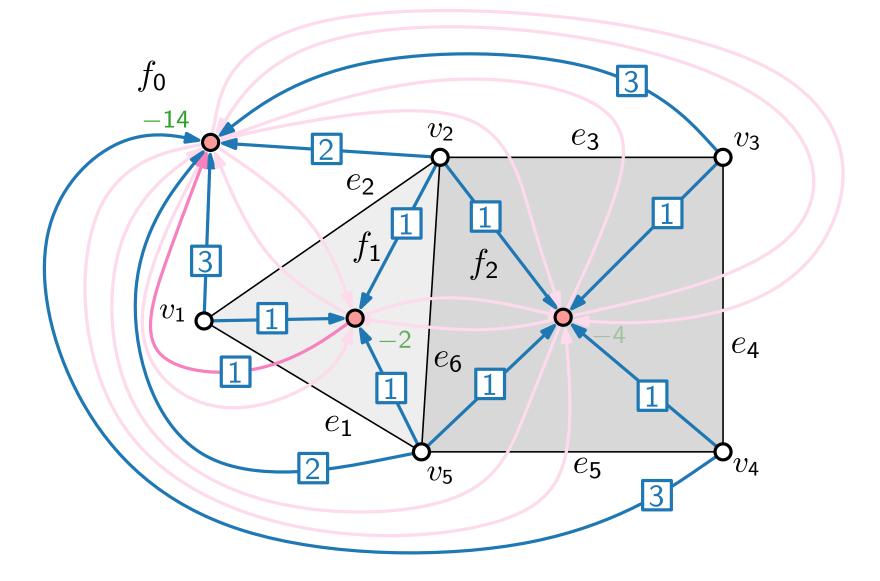
Legend

$$V(G)$$
 \circ
 F \bullet
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$
 $4 = b$ -value



Legend

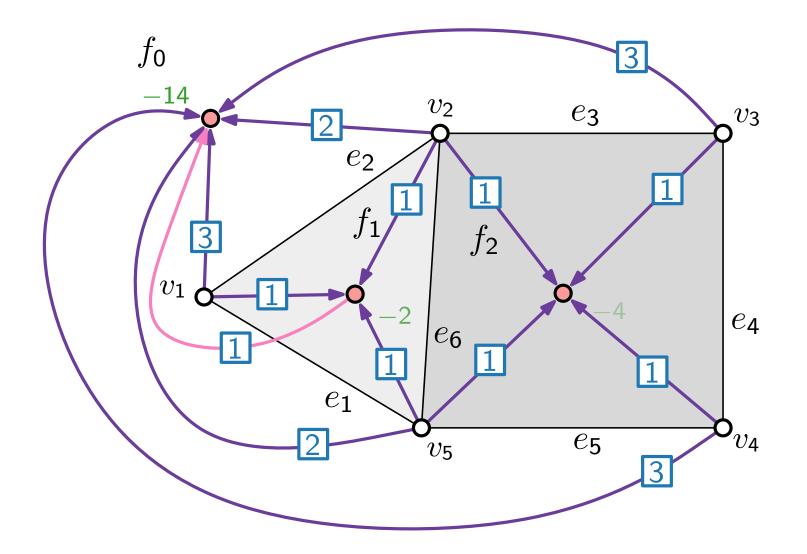
$$V(G)$$
 O F O $\ell/u/\mathrm{cost}$ $V(G) \times F \supseteq \frac{1/4/0}{\bullet}$ $F \times F \supseteq \frac{0/\infty/1}{\bullet}$ $4 = b$ -value



Legend

$$V(G)$$
 \circ
 F \bullet
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$

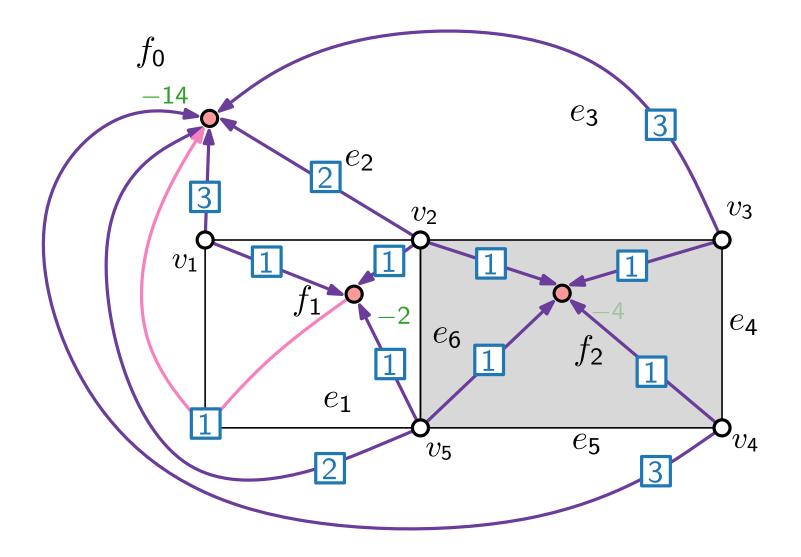
4 = b-value



Legend

$$V(G)$$
 \circ
 F \bullet
 $\ell/u/\mathrm{cost}$
 $V(G) \times F \supseteq \stackrel{1/4/0}{\longrightarrow}$
 $F \times F \supseteq \stackrel{0/\infty/1}{\longrightarrow}$

4 = b-value



Legend

$$V(G)$$
 O F O $\ell/u/\mathrm{cost}$ $V(G) \times F \supseteq \frac{1/4/0}{}$ F $\times F \supseteq \frac{0/\infty/1}{}$ 4 = b -value

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

Proof.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

Proof.

" \Leftarrow ": Given a valid flow X in N(G) of cost k,

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

Proof.

" \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4). (H1) H(G) matches F, f_0

/

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4). (H1) H(G) matches F, f_0

 $\sqrt{}$

(H4) Total angle at each vertex = 2π

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
 - (H1) H(G) matches F, f_0

(H2) Bend order inverted and reversed on opposite sides ✓

(H4) Total angle at each vertex = 2π

- (H1) H(G) corresponds to F, f_0 .
- (H2) For each **edge** $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each **face** f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
 - (H1) H(G) matches F, f_0

- $\sqrt{}$
- (H2) Bend order inverted and reversed on opposite sides ✓
- (H3) Angle sum of $f = \pm 4$

 \checkmark \rightarrow Exercise.

(H4) Total angle at each vertex = 2π

(H2) For each **edge** $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .

(H1) H(G) corresponds to F, f_0 .

(H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = egin{cases} -4 & ext{if } f = f_0 \ +4 & ext{otherwise}. \end{cases}$$

(H4) For each **vertex** v the sum of incident angles is 2π .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

Proof.

" \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.
- Define flow $X: E' \to \mathbb{R}_0^+$.
- lacksquare Show that X is a valid flow and has cost k.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\begin{array}{c} \blacksquare & \ell(v,f) := 1 \leq X(v,f) \leq 4 =: u(v,f) \\ & \cot(v,f) = 0 \\ & \ell(f,g) := 0 \leq X(f,g) \leq \infty =: u(f,g) \\ & \cot(f,g) = 1 \end{array}$$

Proof.

" \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.

- Define flow $X : E' \to \mathbb{R}_0^+$.
- lacksquare Show that X is a valid flow and has cost k.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\begin{array}{c} \blacksquare & \ell(v,f) := 1 \leq X(v,f) \leq 4 =: u(v,f) \\ & \cot(v,f) = 0 \\ & \ell(f,g) := 0 \leq X(f,g) \leq \infty =: u(f,g) \\ & \cot(f,g) = 1 \end{array}$$

Proof.

" \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.

- Define flow $X : E' \to \mathbb{R}_0^+$.
- lacksquare Show that X is a valid flow and has cost k.

(N1)
$$X(vf) = 1/2/3/4$$

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\begin{array}{c} \blacksquare & \ell(v,f) := 1 \leq X(v,f) \leq 4 =: u(v,f) \\ & \cot(v,f) = 0 \\ & \ell(f,g) := 0 \leq X(f,g) \leq \infty =: u(f,g) \\ & \cot(f,g) = 1 \end{array}$$

Proof.

" \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.

- Define flow $X : E' \to \mathbb{R}_0^+$.
- \blacksquare Show that X is a valid flow and has cost k.

(N1)
$$X(vf) = 1/2/3/4$$

$$\sqrt{}$$

(N2) $X((fg)_e) = |\delta|_0$, where (e, δ, x) describes edge e in H(f)

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\begin{array}{c} \blacksquare & \ell(v,f) := 1 \leq X(v,f) \leq 4 =: u(v,f) \\ & \cot(v,f) = 0 \\ & \ell(f,g) := 0 \leq X(f,g) \leq \infty =: u(f,g) \\ & \cot(f,g) = 1 \end{array}$$

Proof.

" \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.

- Define flow $X : E' \to \mathbb{R}_0^+$.
- lacksquare Show that X is a valid flow and has cost k.

(N1)
$$X(vf) = 1/2/3/4$$

(N2) $X((fg)_e) = |\delta|_0$, where (e, δ, x) describes edge e in H(f)

 \checkmark

(N3) capacities, deficit/demand coverage

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\ell(v, f) := 1 \le X(v, f) \le 4 =: u(v, f)$$

$$\cot(v, f) = 0$$

$$\ell(f, g) := 0 \le X(f, g) \le \infty =: u(f, g)$$

$$\cot(f, g) = 1$$

Proof.

" \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.

- Define flow $X : E' \to \mathbb{R}_0^+$.
- lacksquare Show that X is a valid flow and has cost k.

(N1)
$$X(vf) = 1/2/3/4$$

(N2) $X((fg)_e) = |\delta|_0$, where (e, δ, x) describes edge e in H(f)

 \checkmark

(N3) capacities, deficit/demand coverage

 \checkmark

 $(N4) \cos t = k$

■ The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

■ The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

■ The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]

The minimum-cost flow problem with integral vertex demands, edge capacities & costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time, where U is max. capacity and C are max. costs.

■ The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]

The minimum-cost flow problem with integral vertex demands, edge capacities & costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time, where U is max. capacity and C are max. costs.

 $m \in O(n)$ for planar graphs

■ The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem.

[van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]

The minimum-cost flow problem with integral vertex demands, edge capacities & costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time, where U is max. capacity and C are max. costs.

 $m \in O(n)$ for planar graphs $C \in \{0,1\}$

■ The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem.

[van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]

The minimum-cost flow problem with integral vertex demands, edge capacities & costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time, where U is max. capacity and C are max. costs.

 $U \in O(n)$ because 2n + 4 bends in total are always sufficient [Storer 1984]

 $m \in O(n)$ for planar graphs $C \in \{0,1\}$

■ The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]

The minimum-cost flow problem with integral vertex demands, edge capacities & costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time, where U is max. capacity and C are max. costs.

 $U \in O(n) \text{ because } 2n+4 \text{ bends in total are always sufficient [Storer 1984]}$ $m \in O(n) \text{ for planar graphs } C \in \{0,1\} \text{ Further, } \log n = n^{\log_n \log n} = n^{\log_\log n/\log n} \in n^{o(1)} \text{ since } \lim_{n \to \infty} \frac{\log\log n}{\log n} = 0$

■ The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem.

[van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]

The minimum-cost flow problem with integral vertex demands, edge capacities & costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time, where U is max. capacity and C are max. costs.

 $U \in O(n) \text{ because } 2n+4 \text{ bends in total are always sufficient [Storer 1984]}$ $m \in O(n) \text{ for planar graphs } C \in \{0,1\} \text{ Further, } \log n = n^{\log_n \log n} = n^{\log\log n/\log n} \in n^{o(1)} \text{ since } \lim_{n \to \infty} \frac{\log\log n}{\log n} = 0$

Corollary.

The combinatorial orthogonal bend minimization problem can be solved in $O(n^{1+o(1)})$ time.

■ The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem.

[van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]

The minimum-cost flow problem with integral vertex demands, edge capacities & costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time, where U is max. capacity and C are max. costs.

 $U \in O(n) \text{ because } 2n+4 \text{ bends in total are always sufficient [Storer 1984]}$ $m \in O(n) \text{ for planar graphs } C \in \{0,1\} \text{ Further, } \log n = n^{\log_n \log n} = n^{\log\log n/\log n} \in n^{o(1)} \text{ since } \lim_{n \to \infty} \frac{\log\log n}{\log n} = 0$

Corollary.

The combinatorial orthogonal bend minimization problem can be solved in $O(n^{1+o(1)})$ time.

Theorem.

[Garg & Tamassia 2001]

Bend minimization without given combinatorial embedding is NP-hard.

Topology – Shape – Metrics

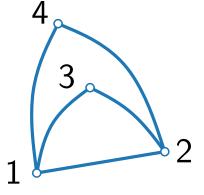
Three-step approach:

$$V(G) = \{v_1, v_2, v_3, v_4\}$$

$$E(G) = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$$

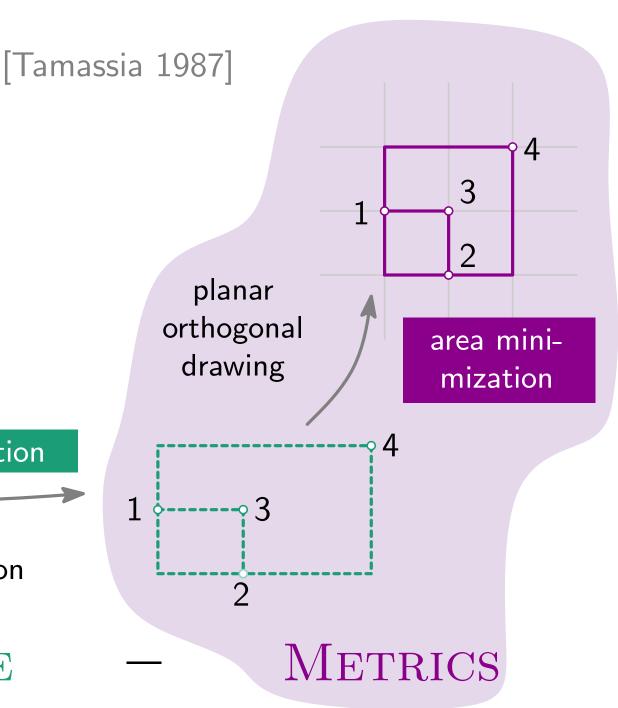
reduce crossings

combinatorial embedding/ planarization



orthogonal representation

bend minimization



TOPOLOGY

Compaction problem.

Given:

Find:

Compaction problem.

Given: \blacksquare Plane graph G with maximum degree 4

Find:

Compaction problem.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Orthogonal representation H(G)

Find:

Compaction problem.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Compaction problem.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

Compaction problem.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees:

Compaction problem.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees:

minimum total edge length

Compaction problem.

Given: \blacksquare Plane graph G with maximum degree 4

lacksquare Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees:

minimum total edge length

minimum area

Compaction problem.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees:

minimum total edge length

minimum area

Properties.

Compaction problem.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees:

minimum total edge length

minimum area

Properties.

bends only on the outer face

Compaction problem.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees:

minimum total edge length

minimum area

Properties.

- bends only on the outer face
- opposite sides of a face have the same length

Compaction problem.

Given: \blacksquare Plane graph G with maximum degree 4

lacktriangle Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees:

minimum total edge length

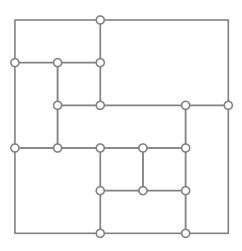
minimum area

Properties.

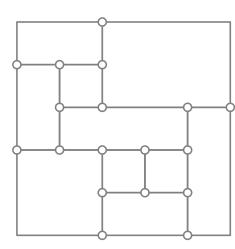
- bends only on the outer face
- opposite sides of a face have the same length

Idea.

■ Formulate flow network for horizontal/vertical compaction

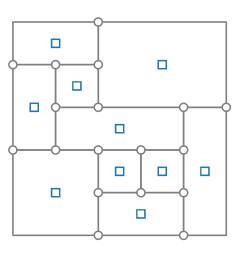


Definition.



Definition.

$$lacksquare W_{\mathsf{hor}} = F \setminus \{f_{\mathsf{0}}\}$$

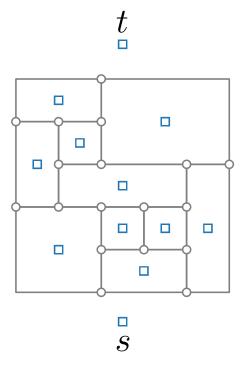


Definition.

Flow Network $N_{\mathsf{hor}} = ((W_{\mathsf{hor}}, E_{\mathsf{hor}}); b; \ell; u; \mathsf{cost})$

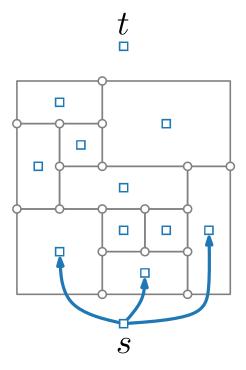
Definition.

- $W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\}$



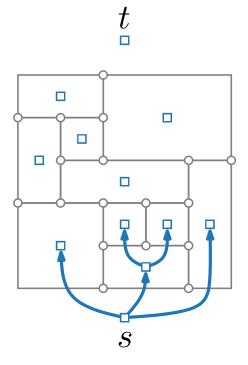
Definition.

- $E_{hor} = \{(f,g) \mid f,g \text{ share a } horizontal \text{ segment and } f \text{ lies } below g\}$



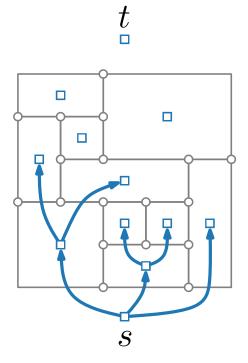
Definition.

- $W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\}$



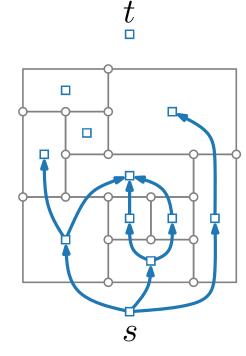
Definition.

- $E_{hor} = \{(f,g) \mid f,g \text{ share a } horizontal \text{ segment and } f \text{ lies } below g\}$



Definition.

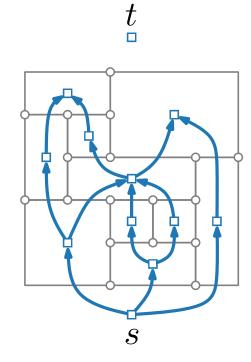
- $E_{hor} = \{(f,g) \mid f,g \text{ share a } horizontal \text{ segment and } f \text{ lies } below g\}$



Definition.

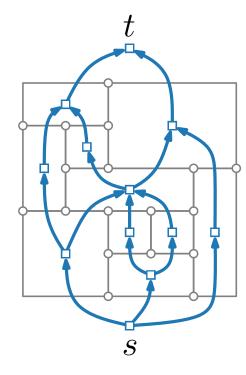
Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

- $E_{hor} = \{(f,g) \mid f,g \text{ share a } horizontal \text{ segment and } f \text{ lies } below g\}$



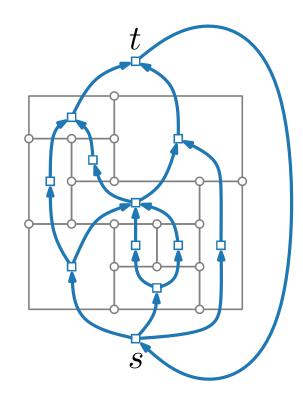
Definition.

- $lacksquare W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s,t\}$



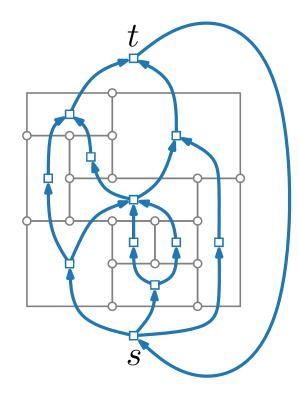
Definition.

- $E_{hor} = \{(f,g) \mid f,g \text{ share a } horizontal \text{ segment and } f \text{ lies } below g\} \cup \{(t,s)\}$



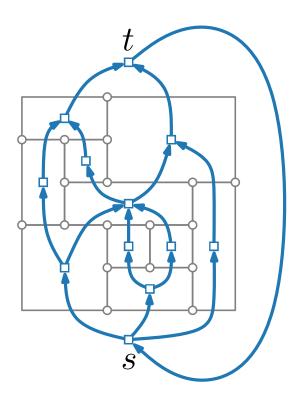
Definition.

- $W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\}$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a } horizontal \text{ segment and } f \text{ lies } below g\} \cup \{(t,s)\}$
- \bullet $\ell(a) = 1 \quad \forall a \in E_{\mathsf{hor}}$



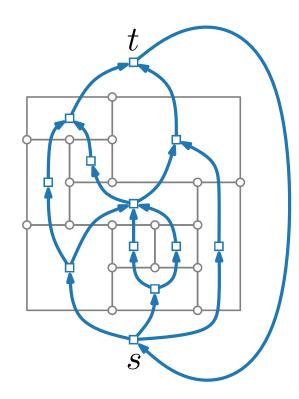
Definition.

- $W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\}$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a } horizontal \text{ segment and } f \text{ lies } below g\} \cup \{(t,s)\}$
- \bullet $\ell(a) = 1 \quad \forall a \in E_{\mathsf{hor}}$
- $u(a) = \infty \quad \forall a \in E_{hor}$



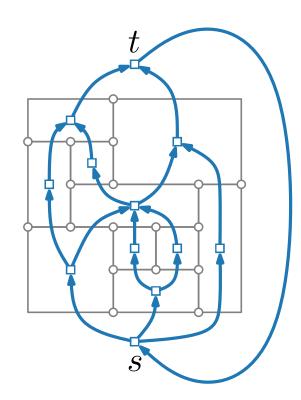
Definition.

- $E_{hor} = \{(f,g) \mid f,g \text{ share a } horizontal \text{ segment and } f \text{ lies } below g\} \cup \{(t,s)\}$
- \bullet $\ell(a) = 1 \quad \forall a \in E_{\mathsf{hor}}$
- $u(a) = \infty \quad \forall a \in E_{hor}$



Definition.

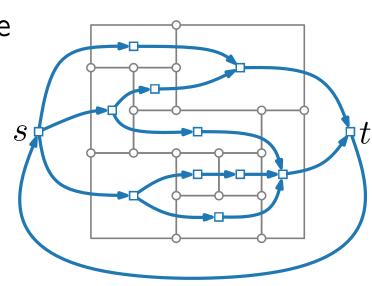
- $E_{hor} = \{(f,g) \mid f,g \text{ share a } horizontal \text{ segment and } f \text{ lies } below g\} \cup \{(t,s)\}$
- \bullet $\ell(a) = 1 \quad \forall a \in E_{\mathsf{hor}}$
- $u(a) = \infty \quad \forall a \in E_{\mathsf{hor}}$
- $b(f) = 0 \quad \forall f \in W_{\mathsf{hor}}$

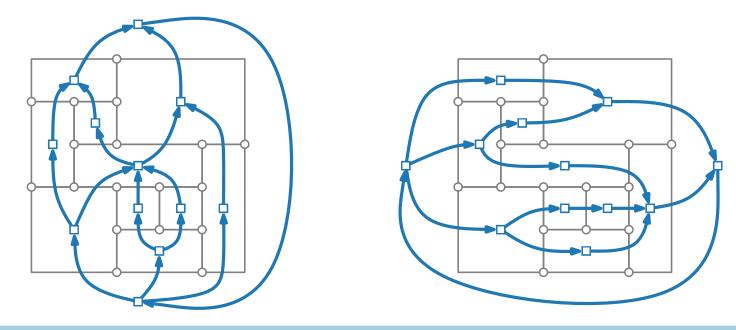


Definition.

Flow Network $N_{\text{ver}} = ((W_{\text{ver}}, E_{\text{ver}}); b; \ell; u; \text{cost})$

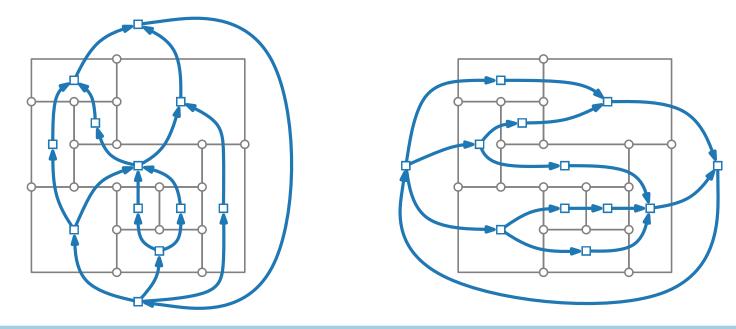
- $W_{\mathsf{ver}} = F \setminus \{f_0\} \cup \{s, t\}$
- $E_{\text{ver}} = \{(f,g) \mid f,g \text{ share a } \textit{vertical} \text{ segment and } f \text{ lies to the } \textit{left} \text{ of } g\} \cup \{(t,s)\}$
- lacklet $\ell(a) = 1 \quad \forall a \in E_{\mathsf{ver}}$
- $u(a) = \infty \quad \forall a \in E_{\text{ver}}$
- $b(f) = 0 \quad \forall f \in W_{\text{ver}}$





Theorem.

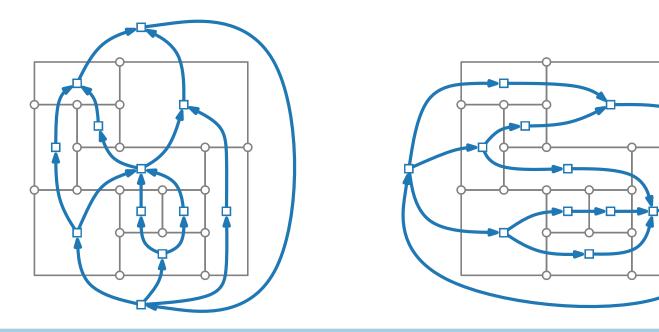
A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.



Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

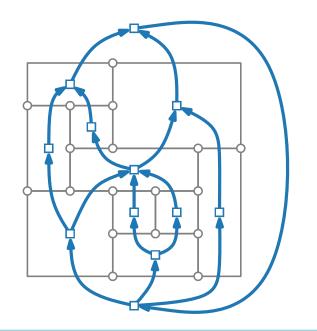


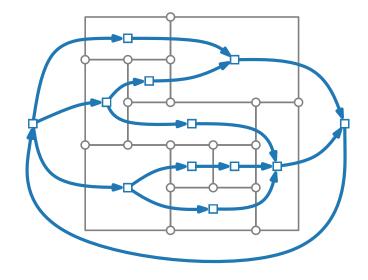
Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

$$\blacksquare |X_{hor}(t,s)|$$
 and $|X_{ver}(t,s)|$?



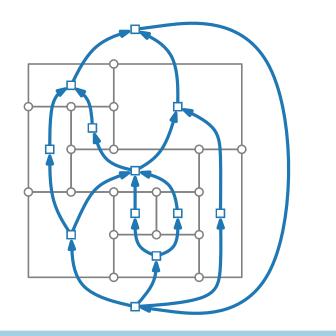


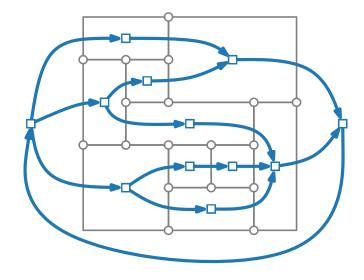
Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

 $\blacksquare |X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$? width and height of the drawing



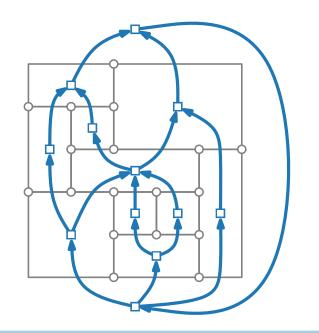


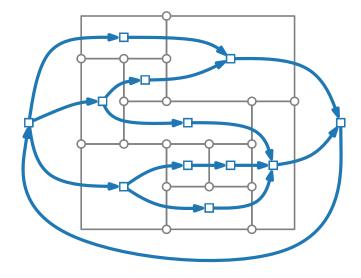
Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

 $\blacksquare |X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$? width and height of the drawing



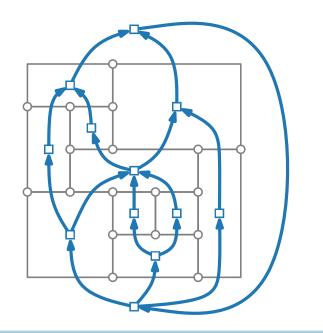


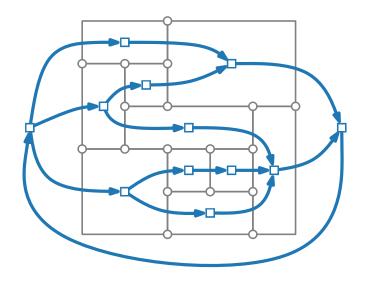
Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

- $\blacksquare |X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$? width and height of the drawing





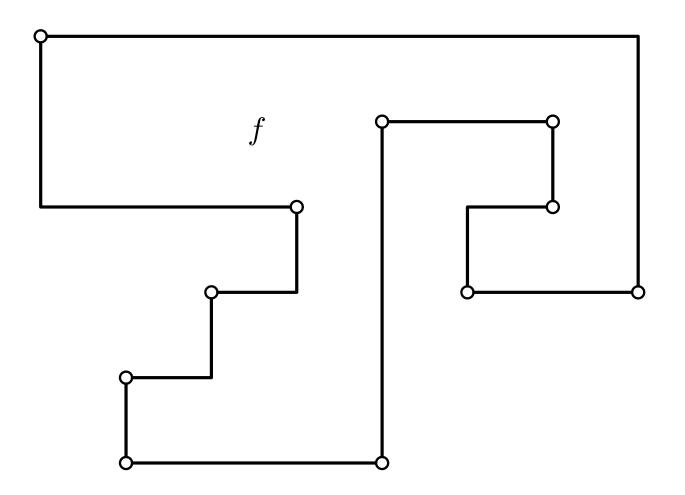
What if not all faces are rectangular?

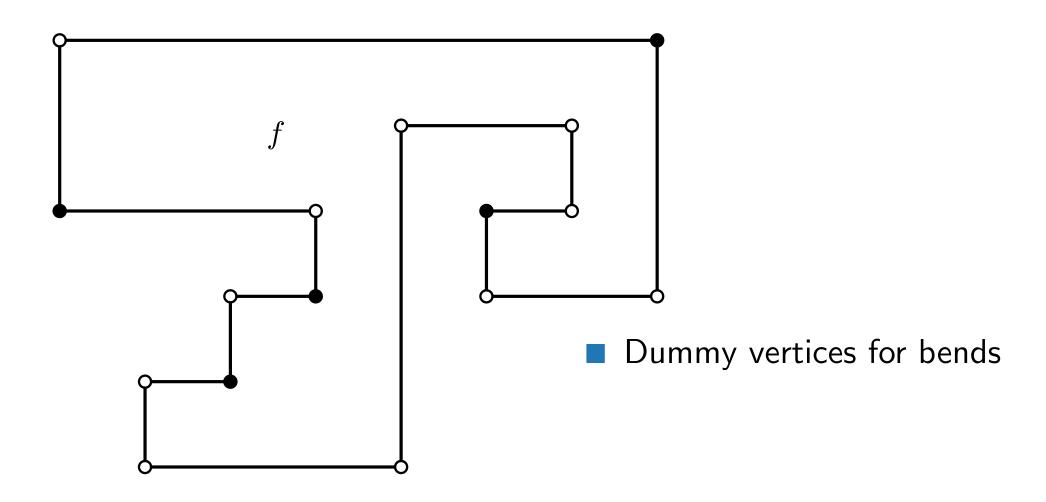
Theorem.

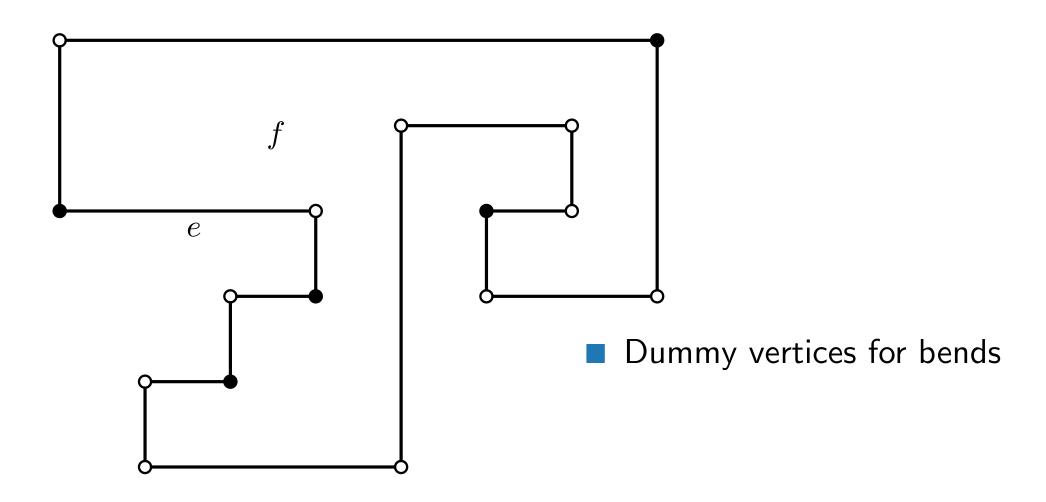
A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

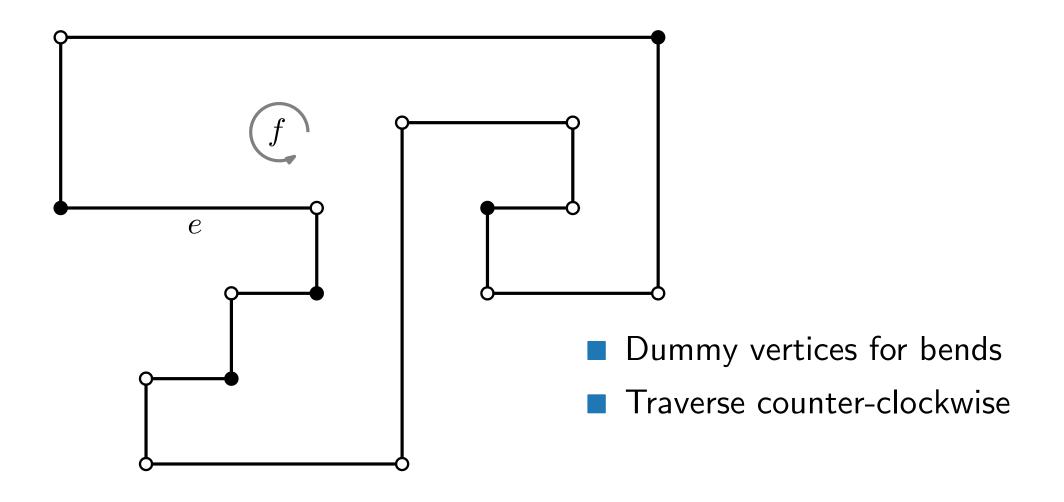
What values of the drawing do the following quantities represent?

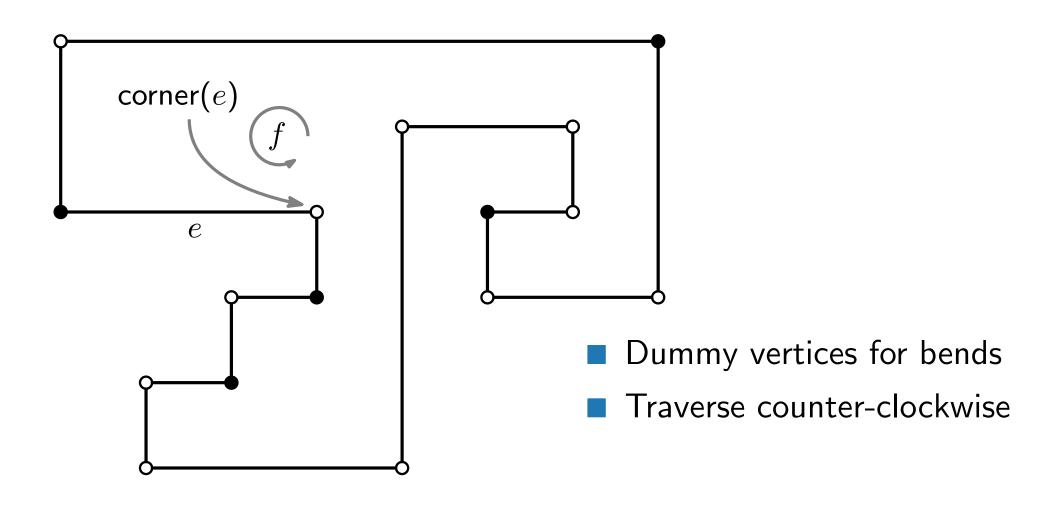
- $\blacksquare |X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$? width and height of the drawing

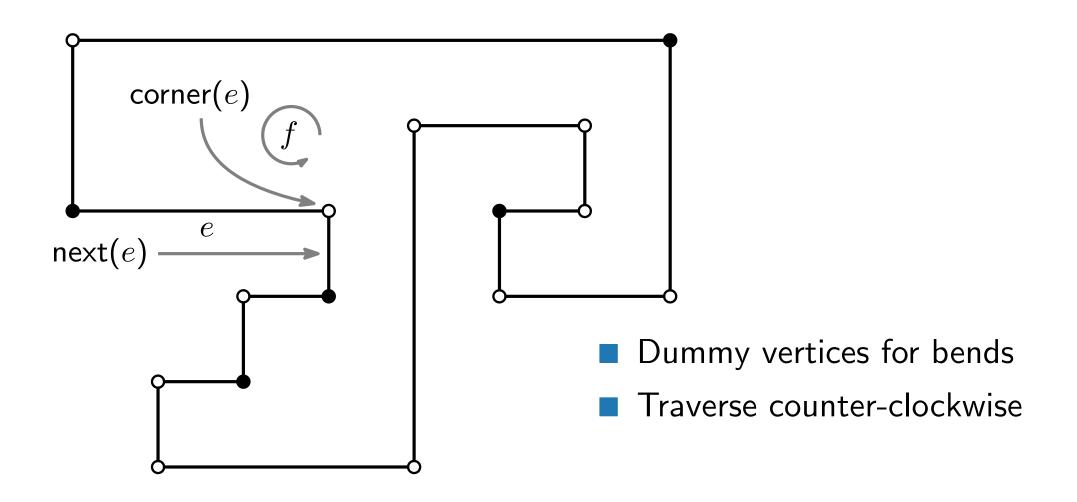


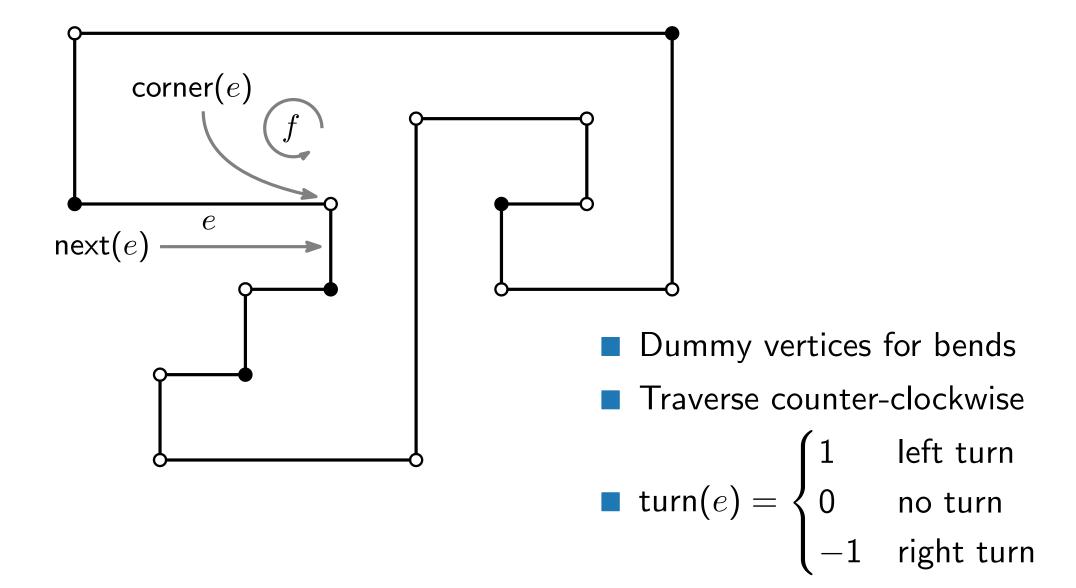


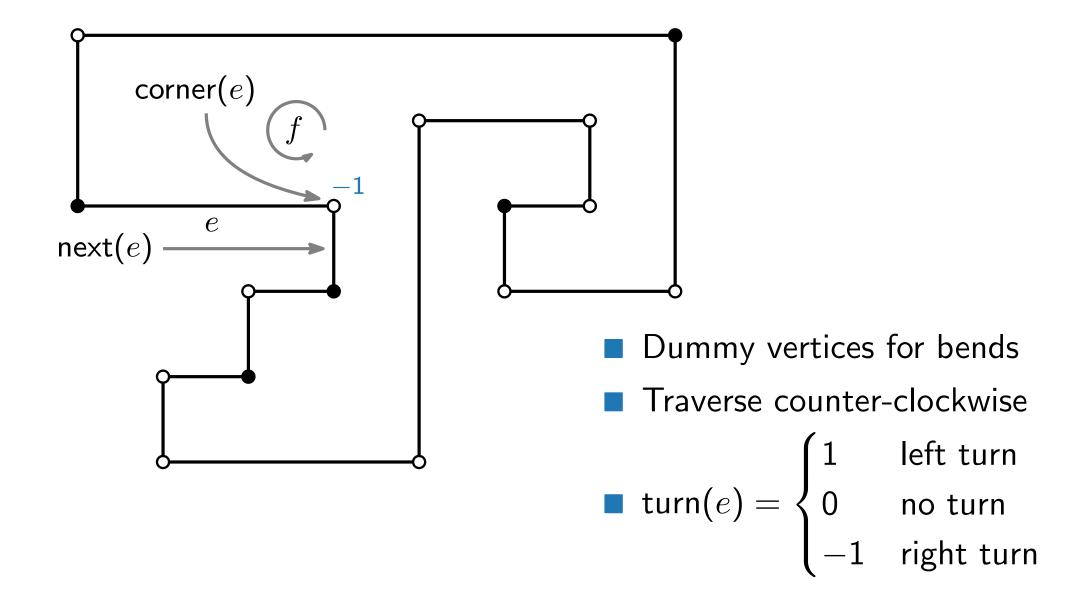


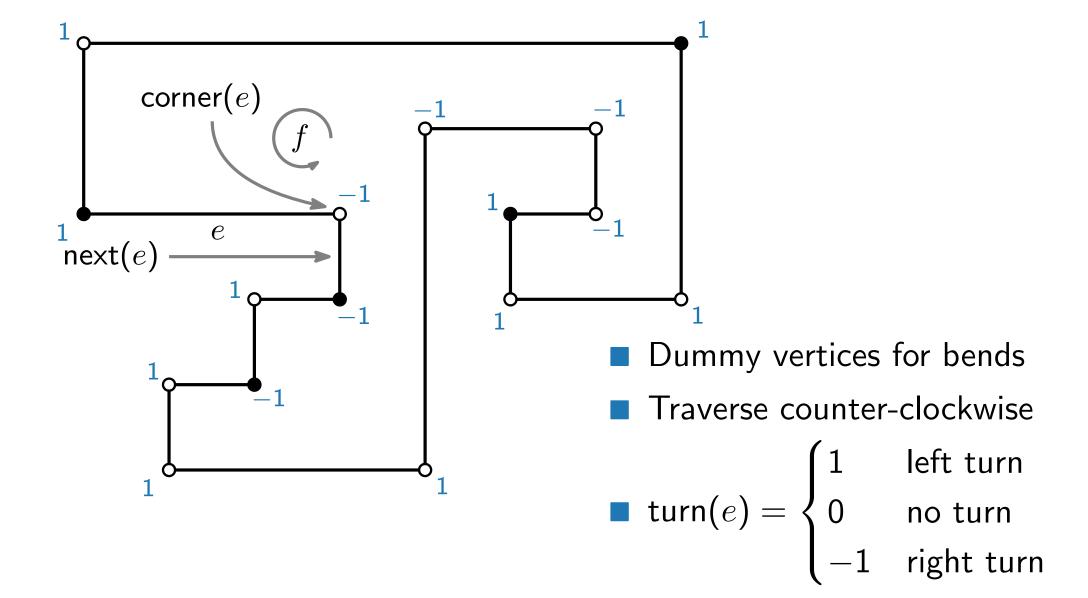


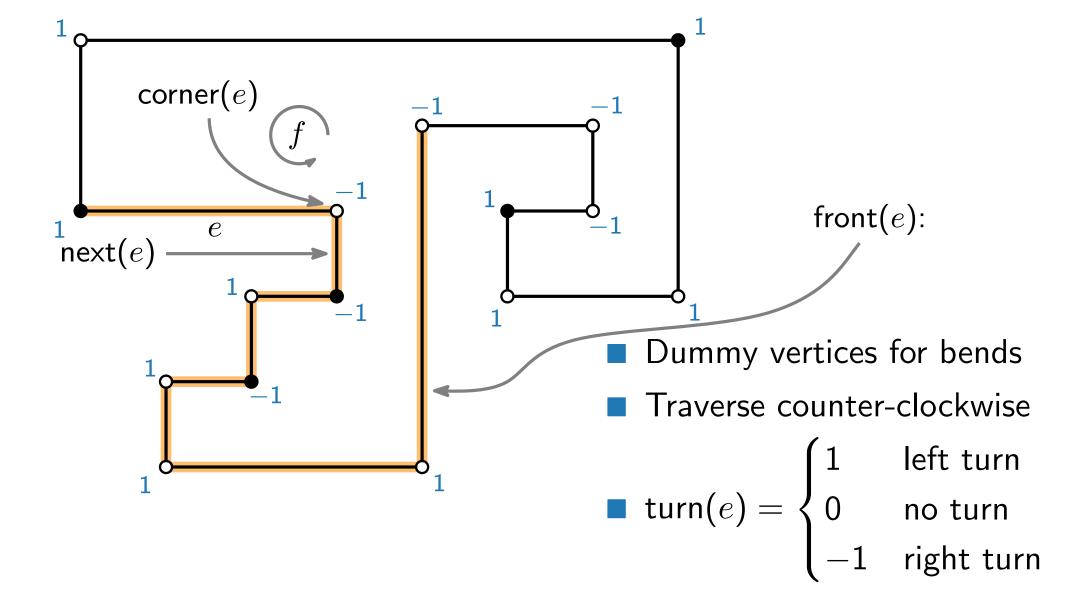


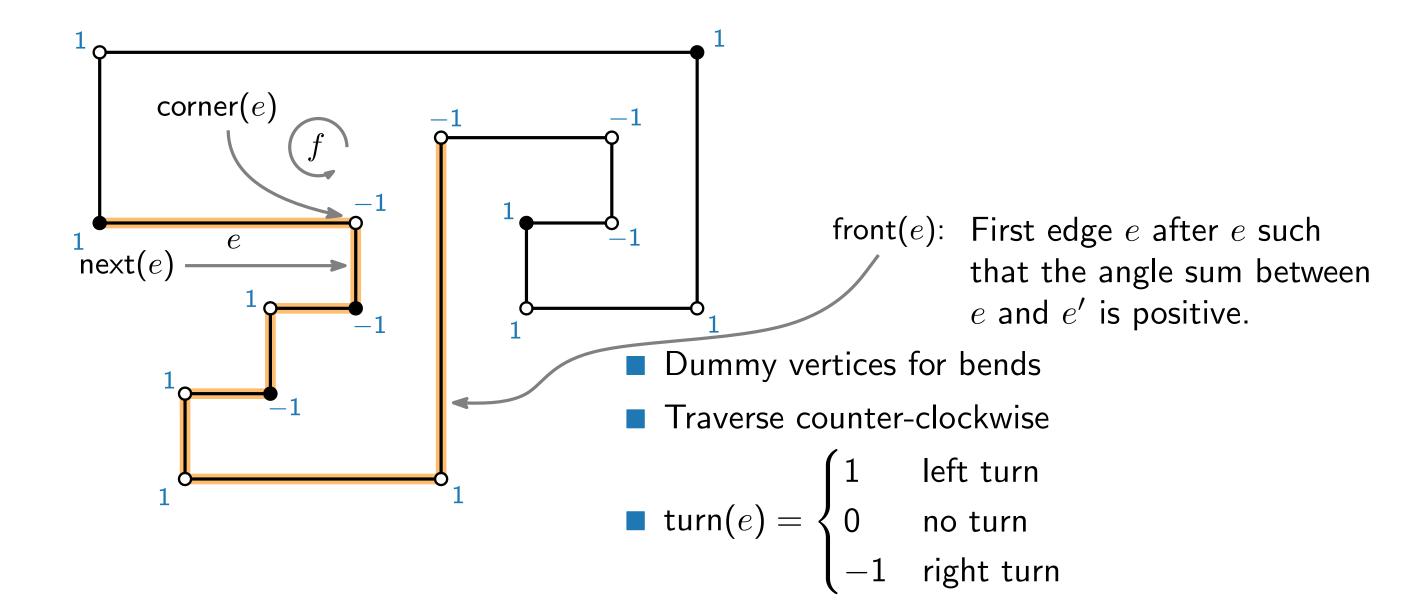




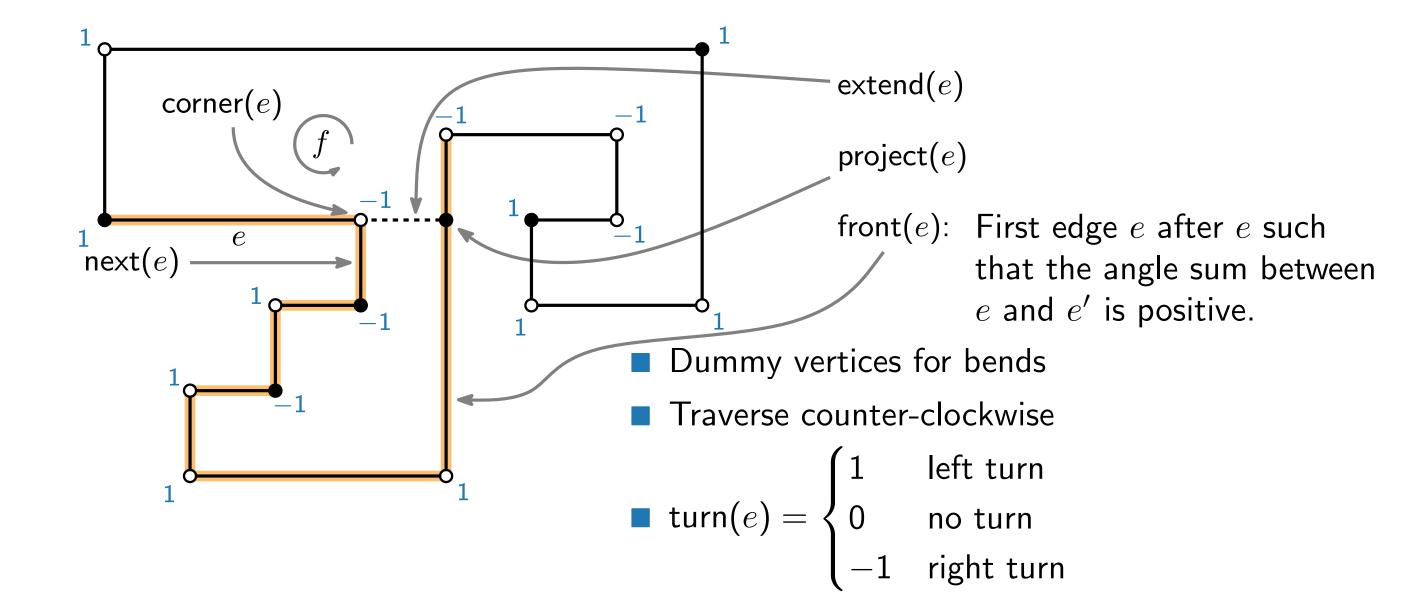


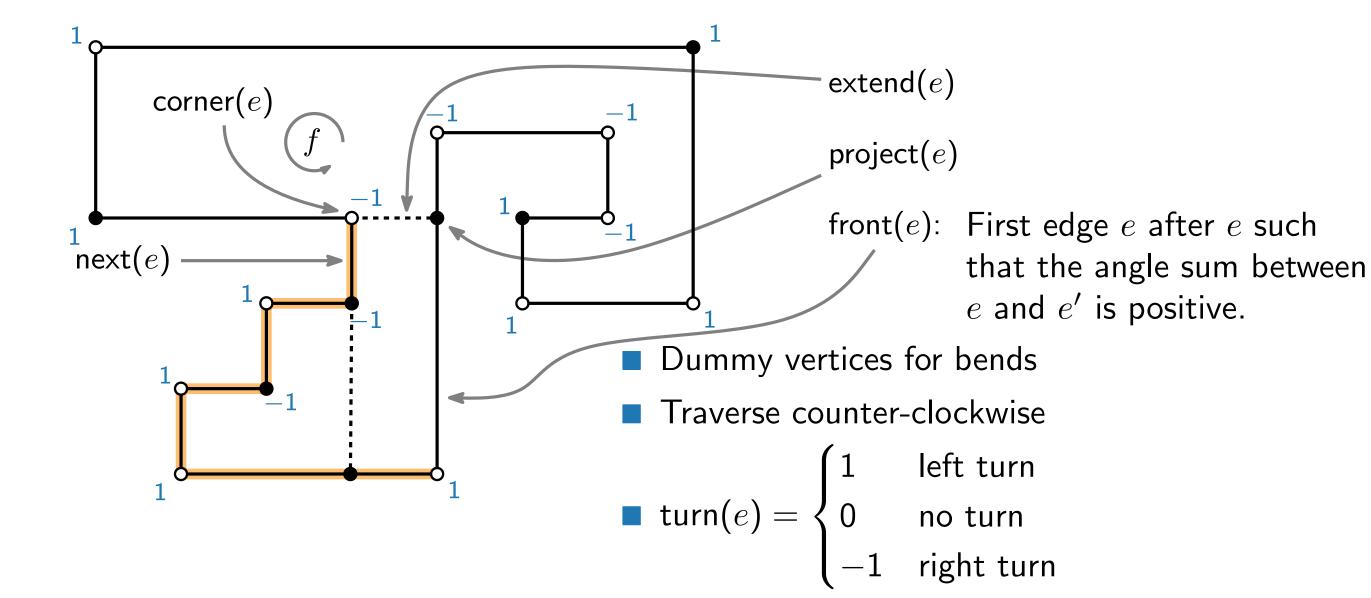


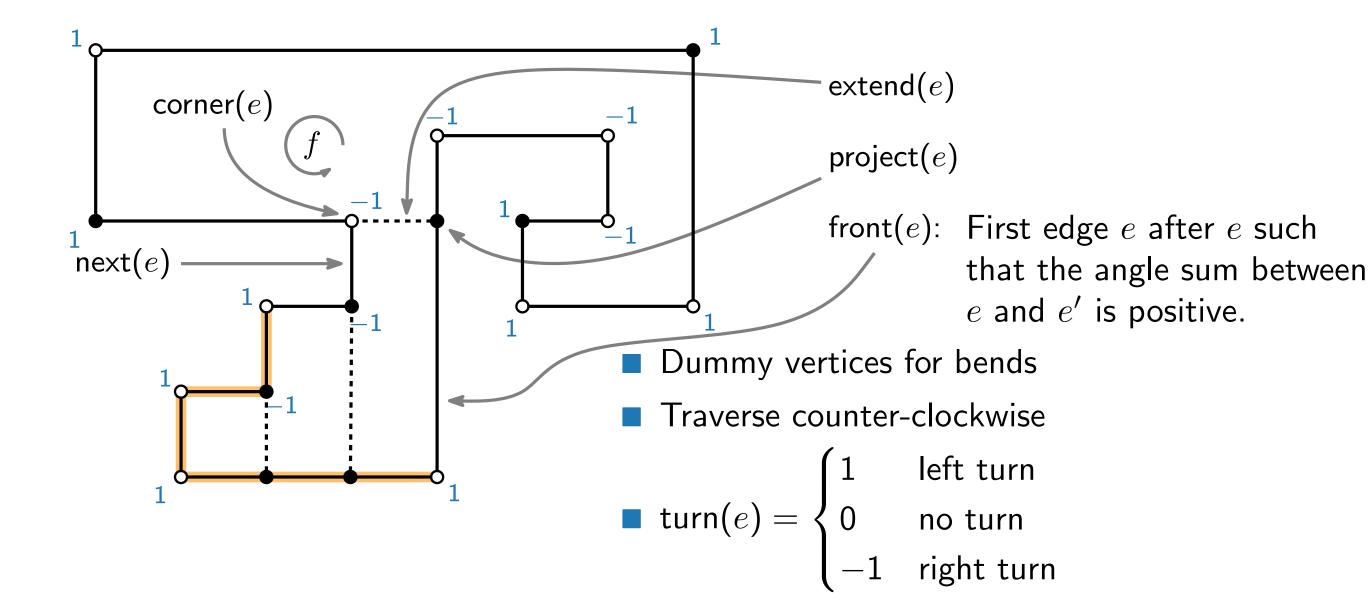


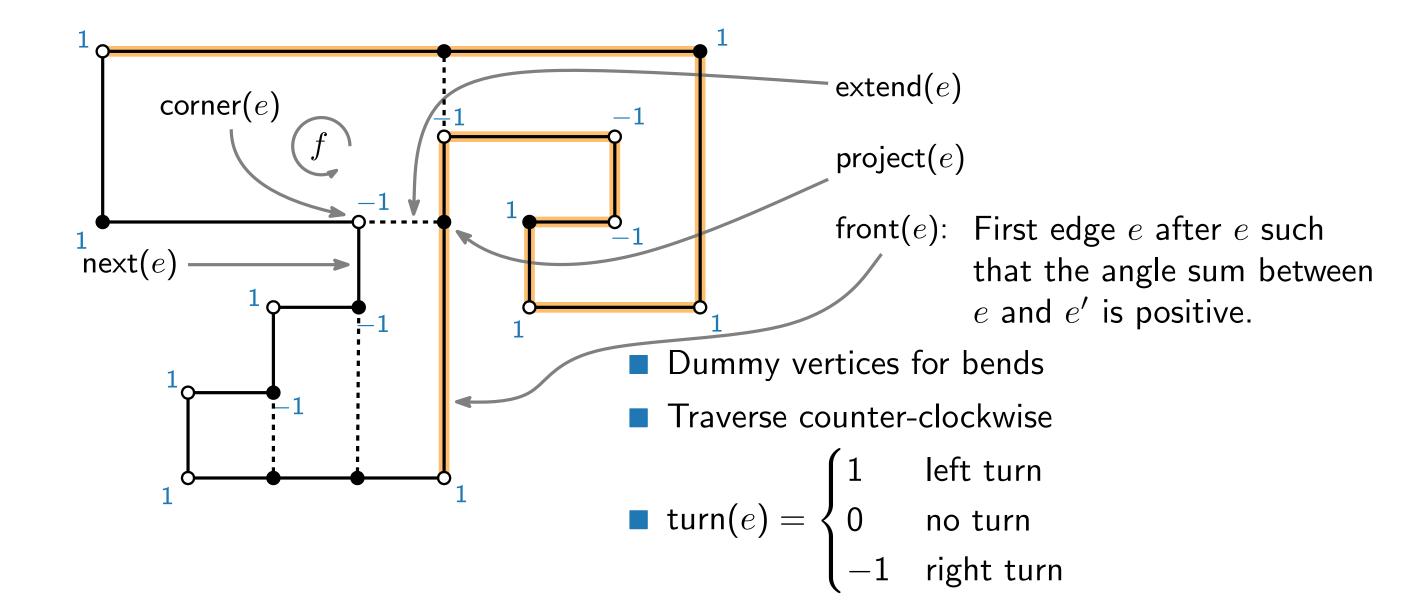


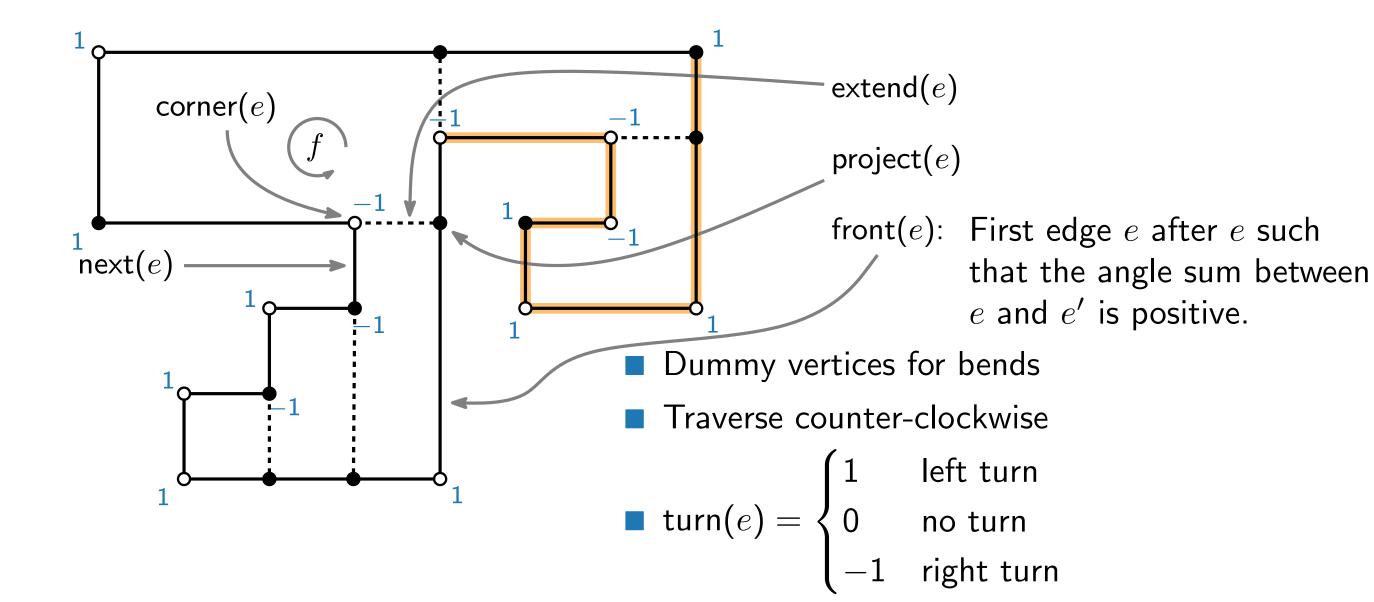


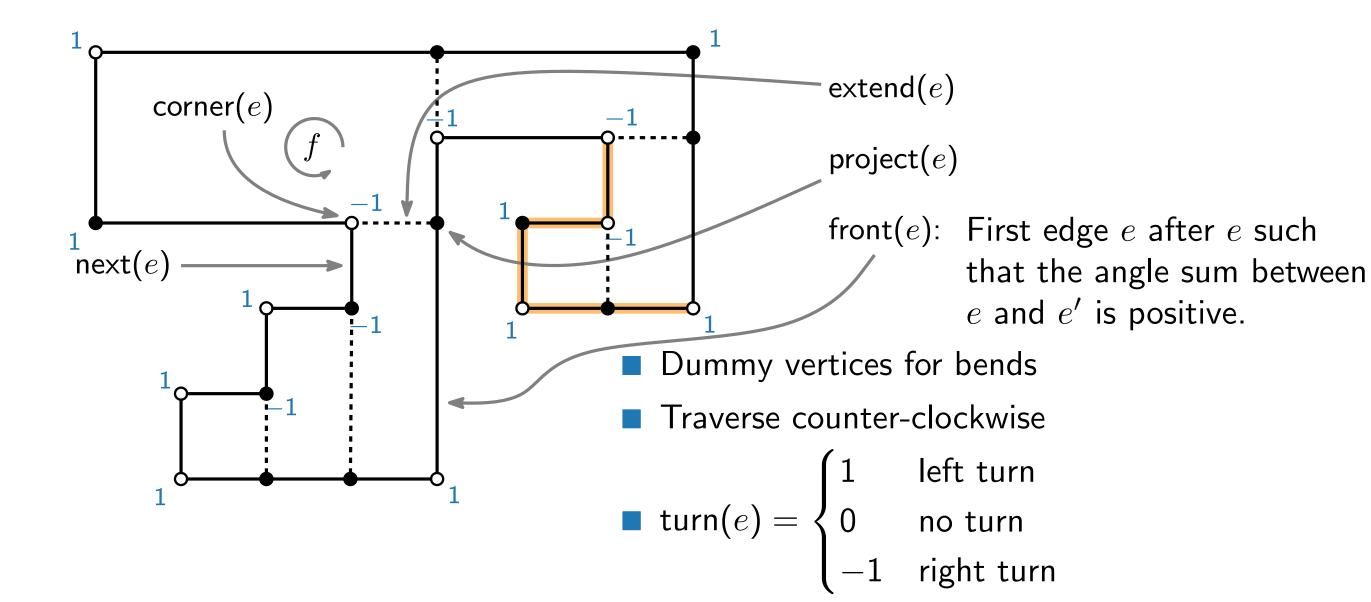


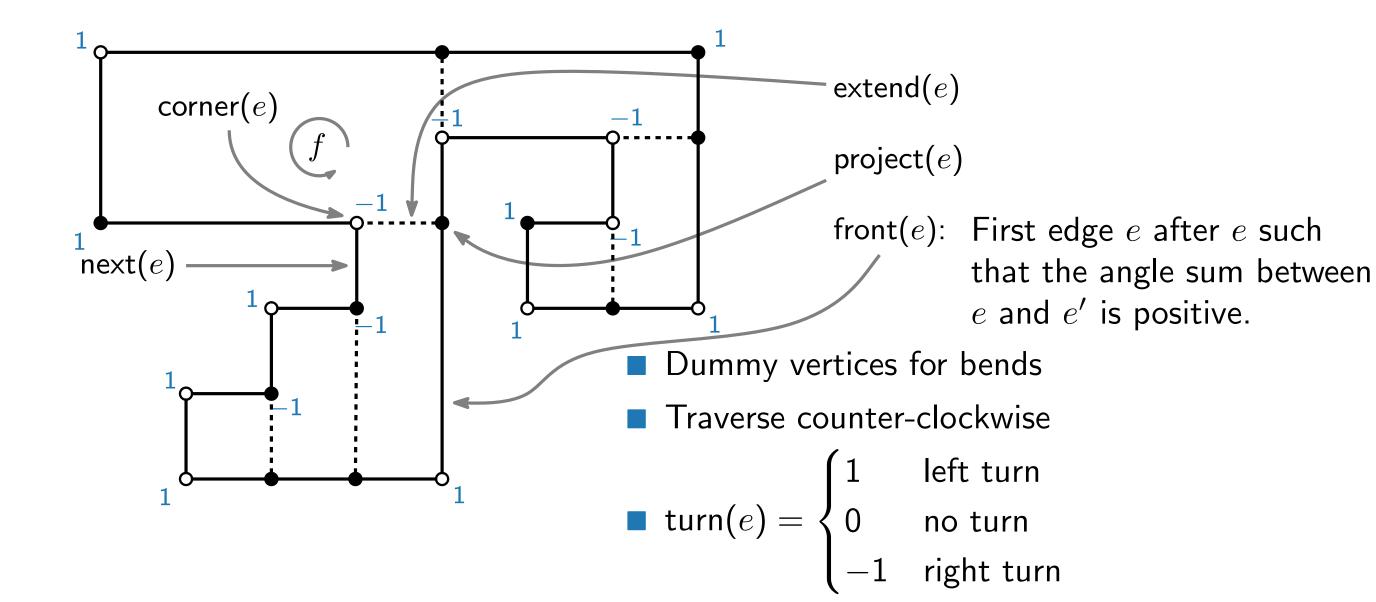


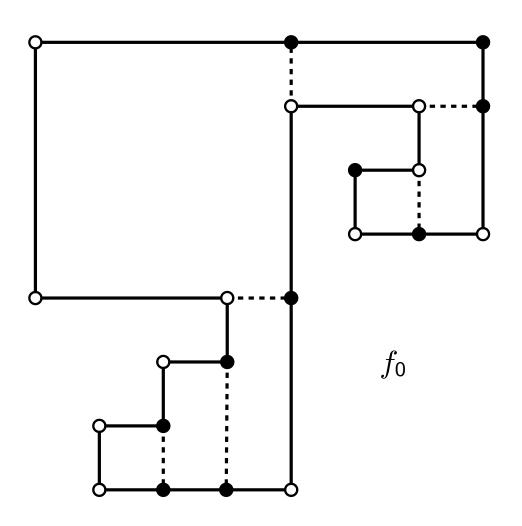


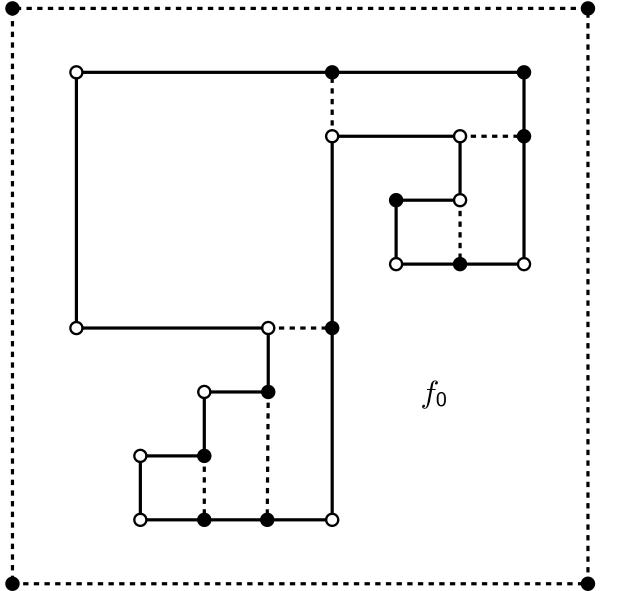




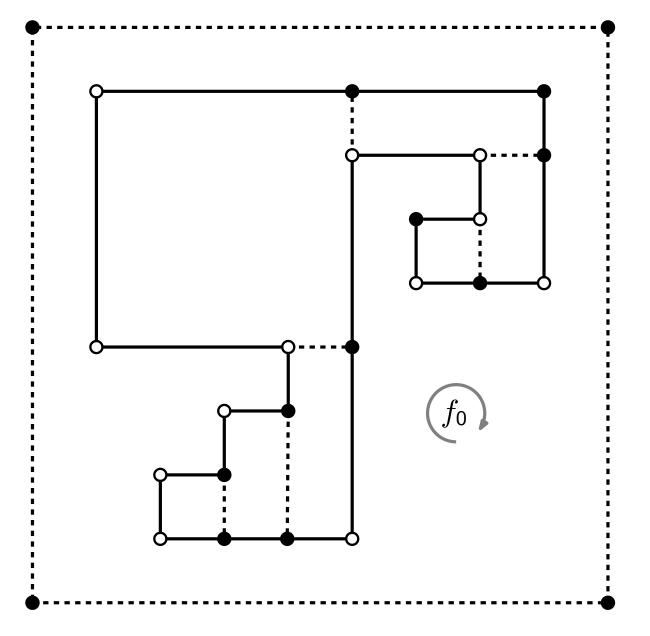




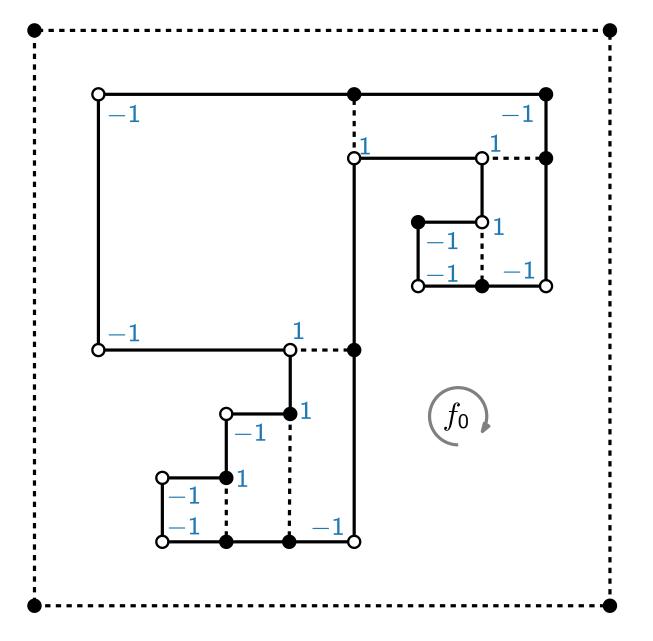




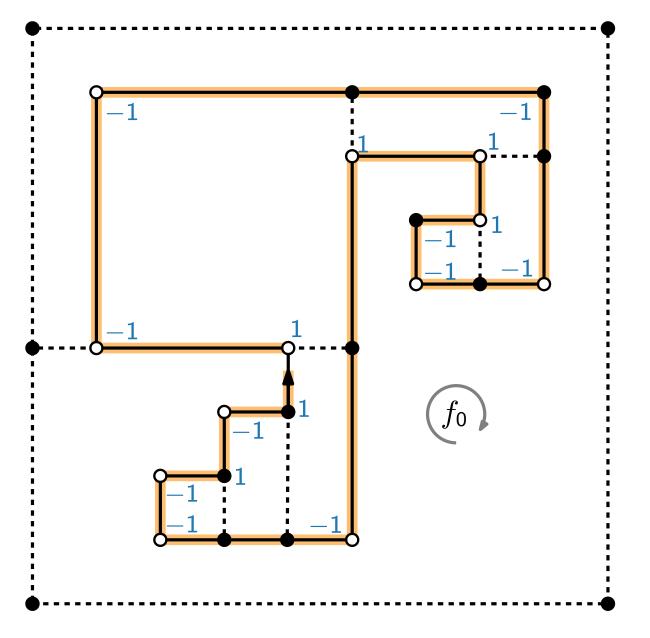
Add an outer rectangle



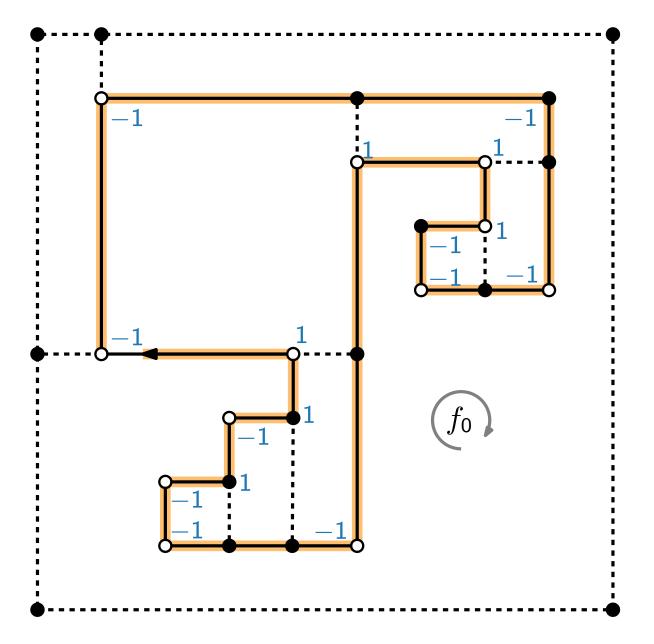
- Add an outer rectangle
- Traverse clockwise



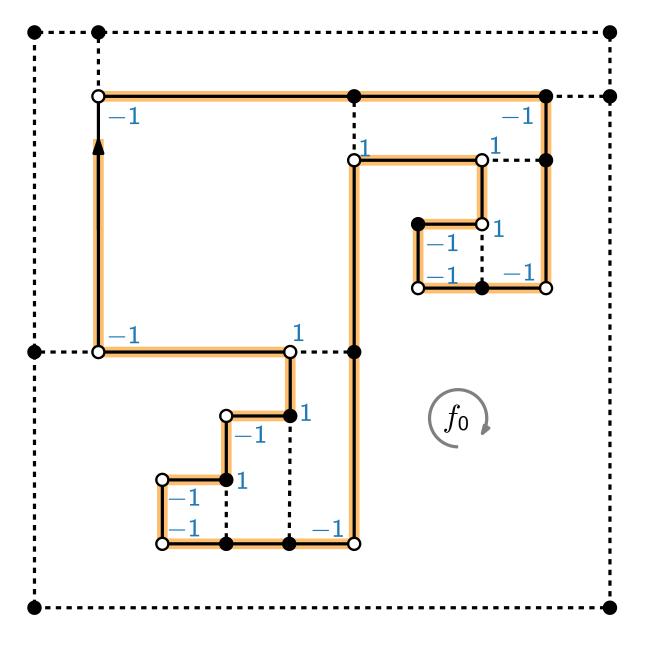
- Add an outer rectangle
- Traverse clockwise



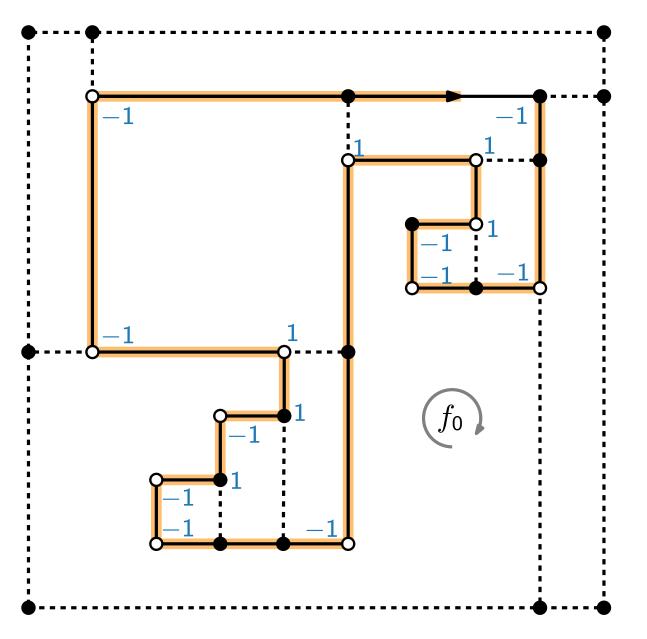
- Add an outer rectangle
- Traverse clockwise



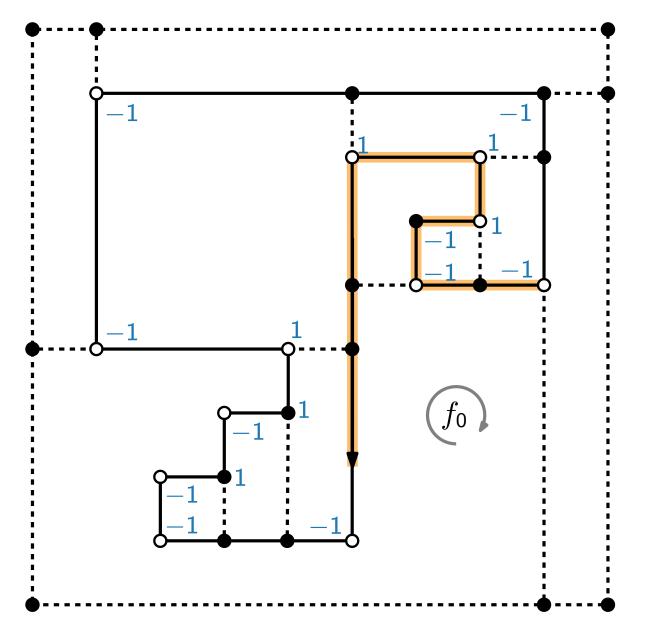
- Add an outer rectangle
- Traverse clockwise



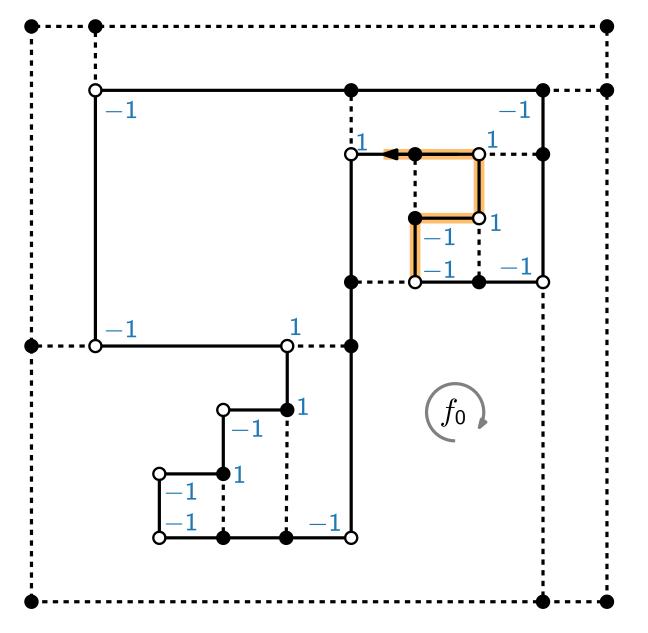
- Add an outer rectangle
- Traverse clockwise



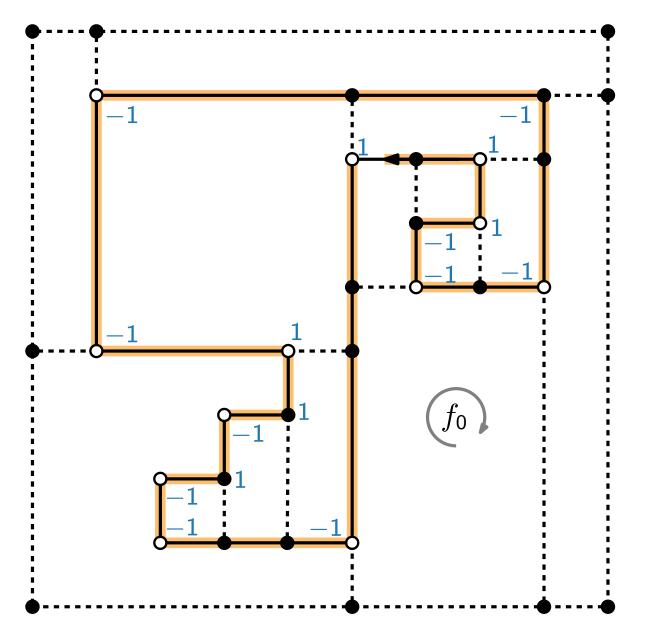
- Add an outer rectangle
- Traverse clockwise



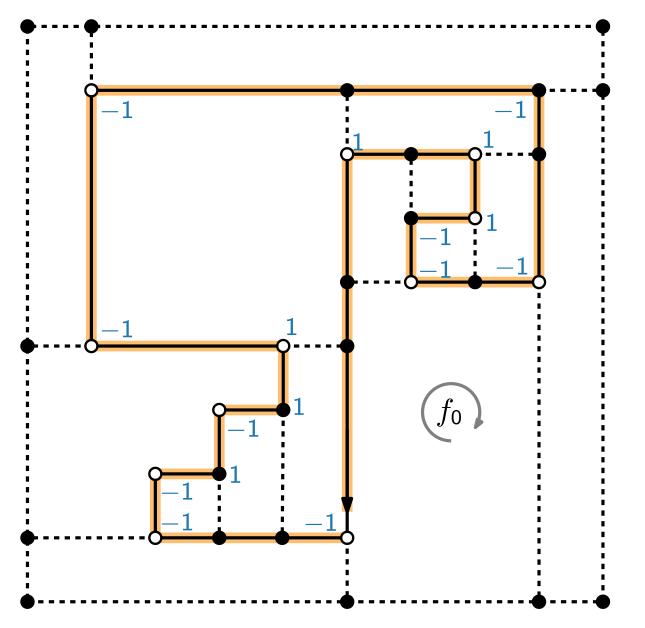
- Add an outer rectangle
- Traverse clockwise



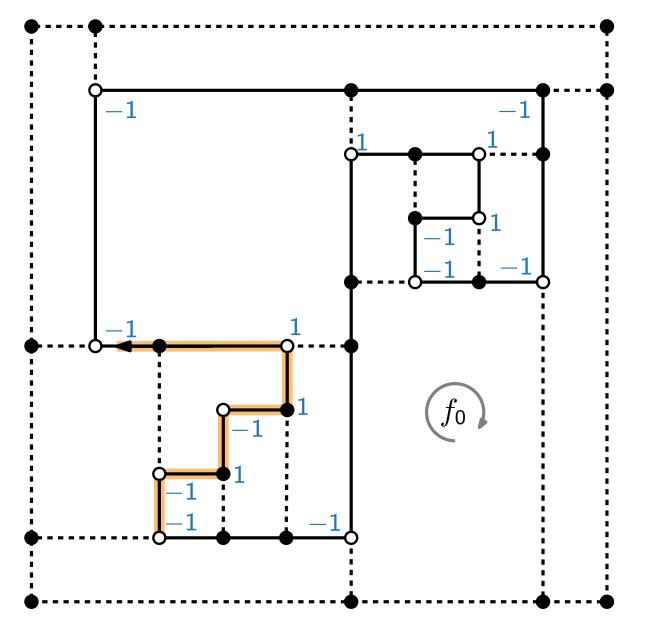
- Add an outer rectangle
- Traverse clockwise



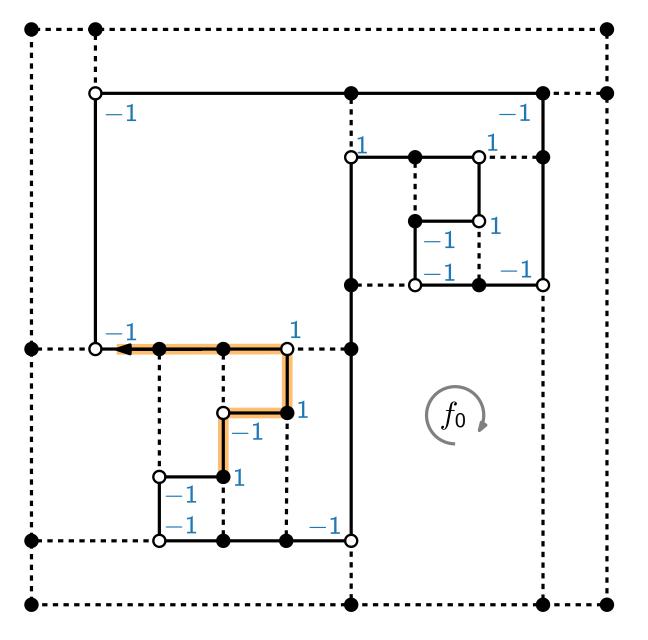
- Add an outer rectangle
- Traverse clockwise



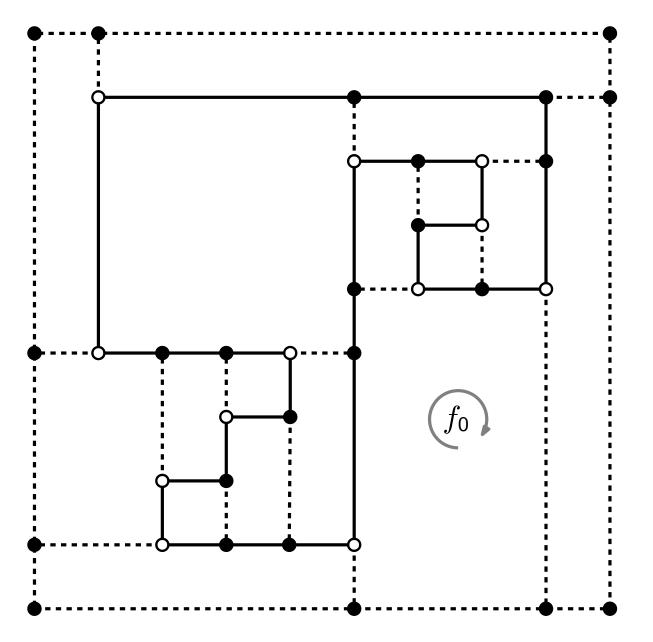
- Add an outer rectangle
- Traverse clockwise



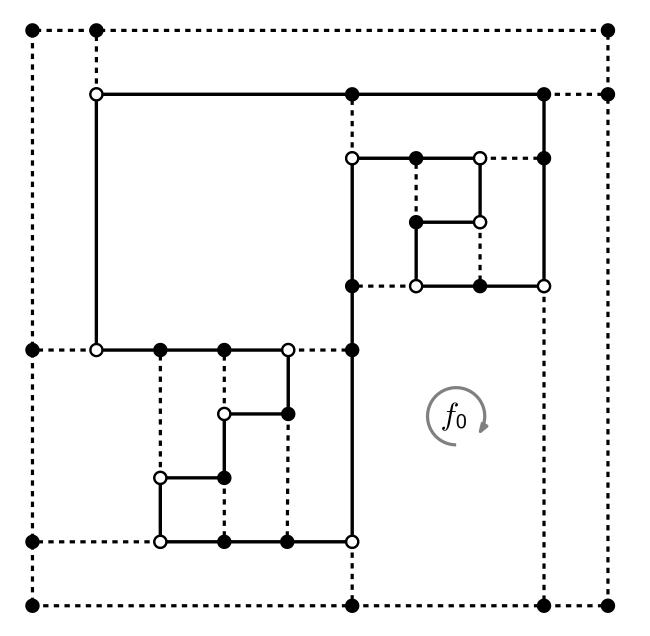
- Add an outer rectangle
- Traverse clockwise



- Add an outer rectangle
- Traverse clockwise

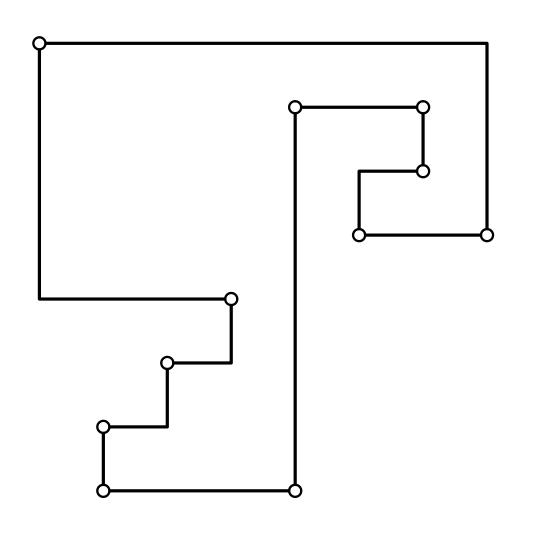


- Add an outer rectangle
- Traverse clockwise

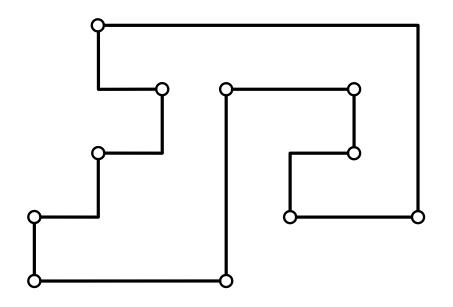


- Add an outer rectangle
- Traverse clockwise

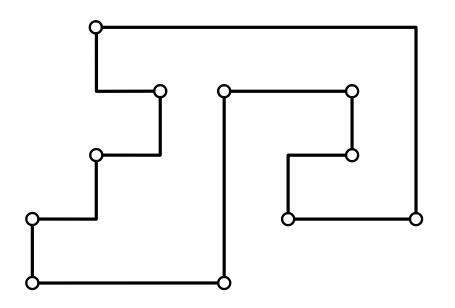
Area minimized?



Area minimized?

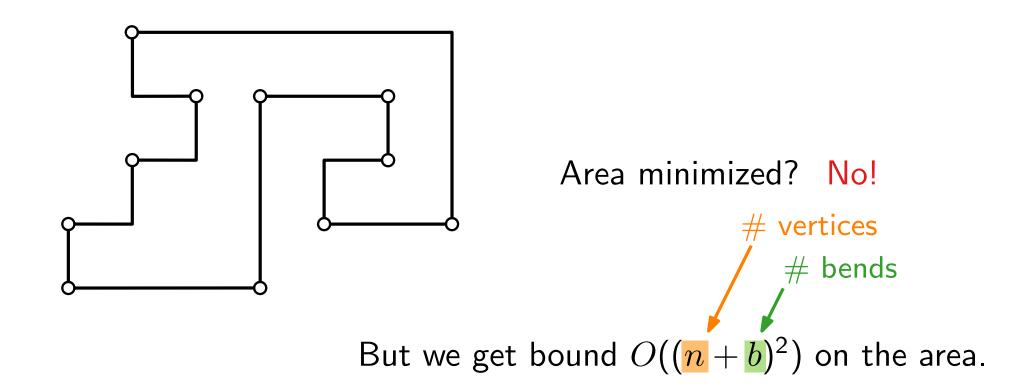


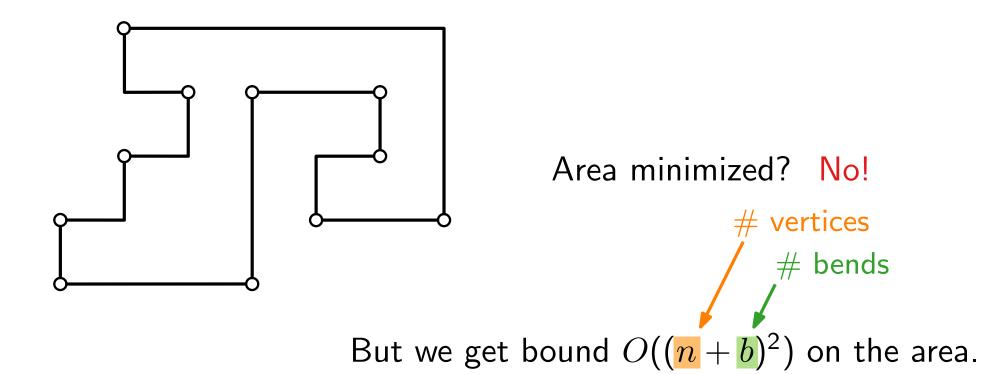
Area minimized? No!



Area minimized? No!

But we get bound $O((n+b)^2)$ on the area.

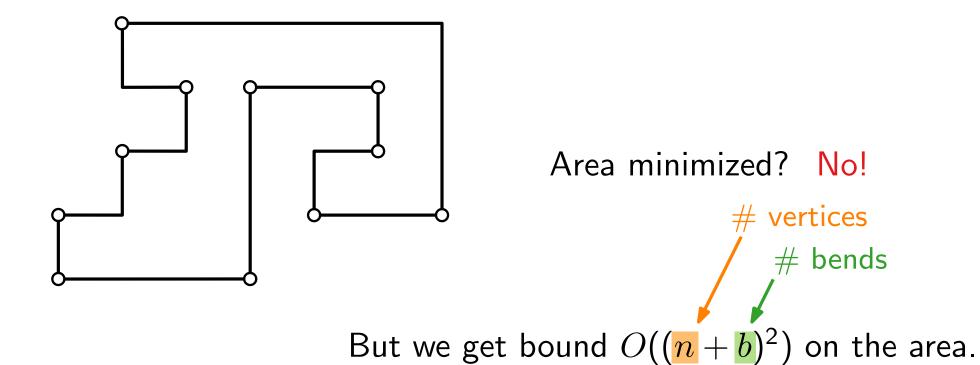




Theorem.

[Patrignani 2001]

Compaction for a given orthogonal representation is NP-hard in general.



Theorem.

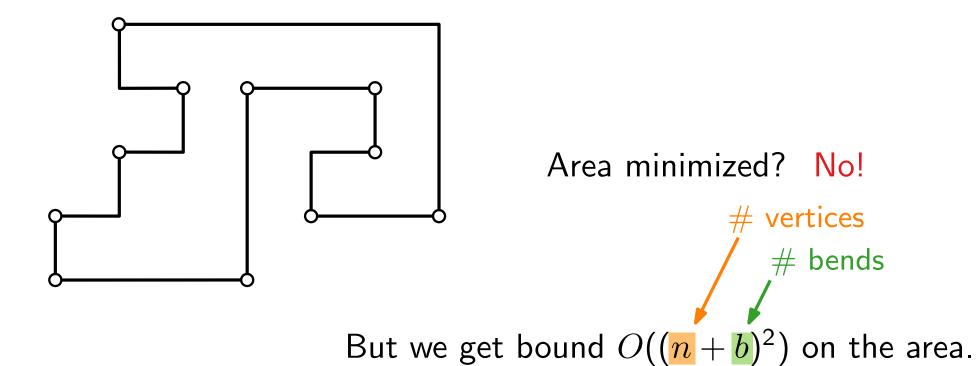
[Patrignani 2001]

Compaction for a given orthogonal representation is NP-hard in general.

Theorem.

[EFKSSW 2022]

Compaction is NP-hard even for orthogonal representations of *cycles*.



Theorem.

[Patrignani 2001]

Compaction for a given orthogonal representation is NP-hard in general.

Theorem.

[EFKSSW 2022]

Compaction is NP-hard even for orthogonal representations of *cycles*.

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

 \blacksquare set of n Boolean variables $X = \{x_1, x_2, \dots, x_n\}$

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

- \blacksquare set of n Boolean variables $X = \{x_1, x_2, \dots, x_n\}$
- \blacksquare m clauses C_1, C_2, \ldots, C_m

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

- \blacksquare set of n Boolean variables $X = \{x_1, x_2, \dots, x_n\}$
- m clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from X,

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

- \blacksquare set of n Boolean variables $X = \{x_1, x_2, \dots, x_n\}$
- m clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from X, e.g., $C_1 = x_1 \vee \neg x_2 \vee x_3$

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

- \blacksquare set of n Boolean variables $X = \{x_1, x_2, \dots, x_n\}$
- m clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from X, e.g., $C_1 = x_1 \vee \neg x_2 \vee x_3$
- Boolean formula $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

- \blacksquare set of n Boolean variables $X = \{x_1, x_2, \dots, x_n\}$
- m clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from X, e.g., $C_1 = x_1 \vee \neg x_2 \vee x_3$
- Boolean formula $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$

Question: Is there an assignment of truth values to the variables in X such that Φ is true?

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

- \blacksquare set of n Boolean variables $X = \{x_1, x_2, \dots, x_n\}$
- m clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from X, e.g., $C_1 = x_1 \vee \neg x_2 \vee x_3$
- Boolean formula $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$

Question: Is there an assignment of truth values to the variables in X such that Φ is true?

Idea of the reduction:

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

- \blacksquare set of n Boolean variables $X = \{x_1, x_2, \dots, x_n\}$
- m clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from X, e.g., $C_1 = x_1 \vee \neg x_2 \vee x_3$
- Boolean formula $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$

Question: Is there an assignment of truth values to the variables in X such that Φ is true?

Idea of the reduction:

lacksquare Given SAT instance $\Phi\Rightarrow$ construct a plane graph G and a orthogonal description H(G)

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

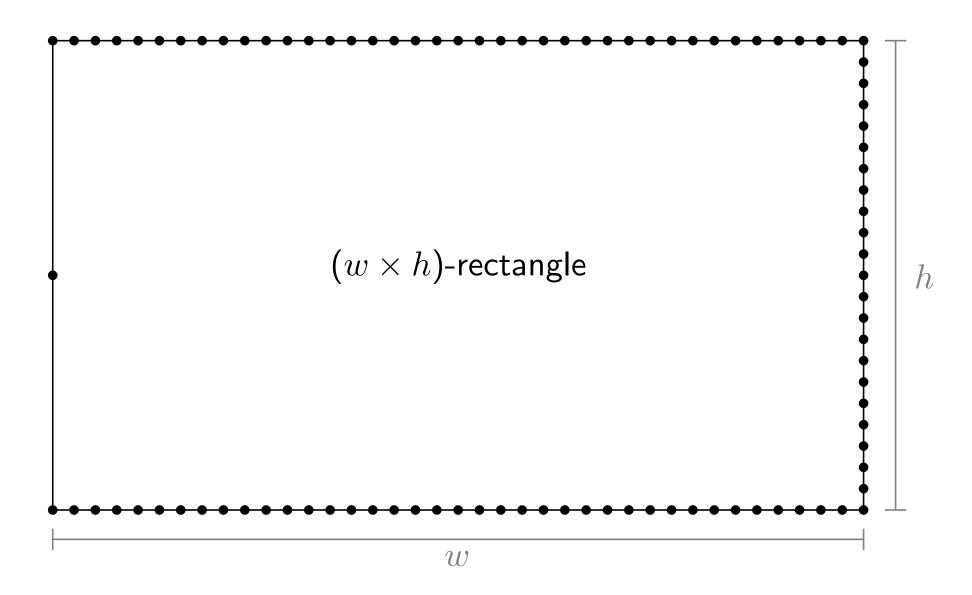
In an instance of the SAT problem we have:

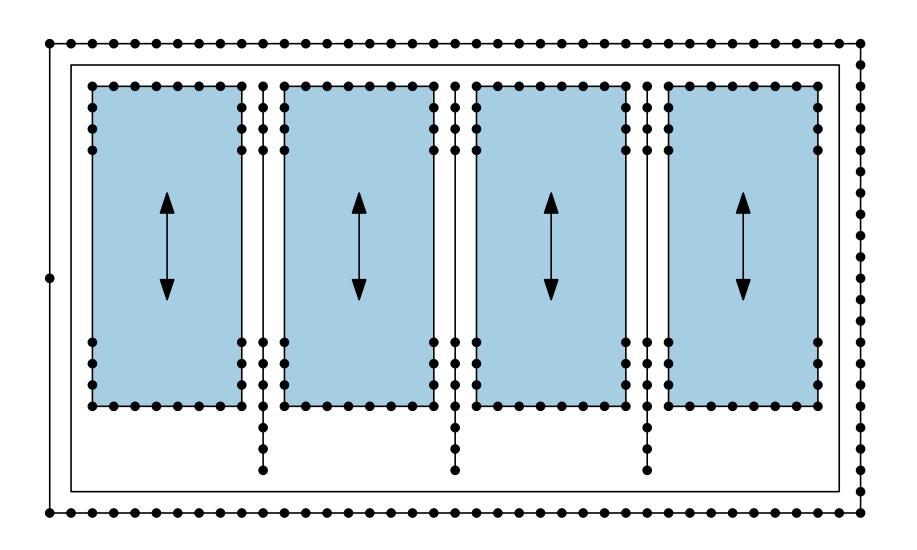
- \blacksquare set of n Boolean variables $X = \{x_1, x_2, \dots, x_n\}$
- m clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from X, e.g., $C_1 = x_1 \vee \neg x_2 \vee x_3$
- Boolean formula $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$

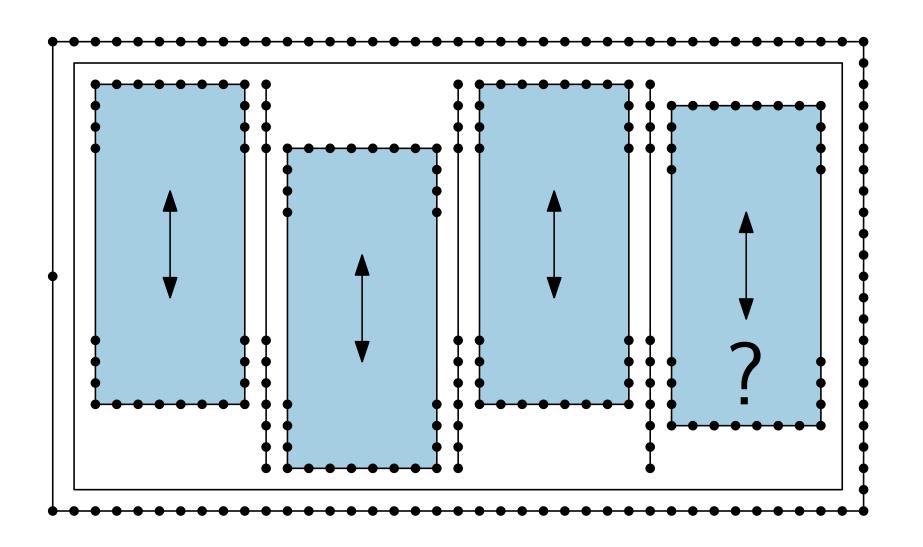
Question: Is there an assignment of truth values to the variables in X such that Φ is true?

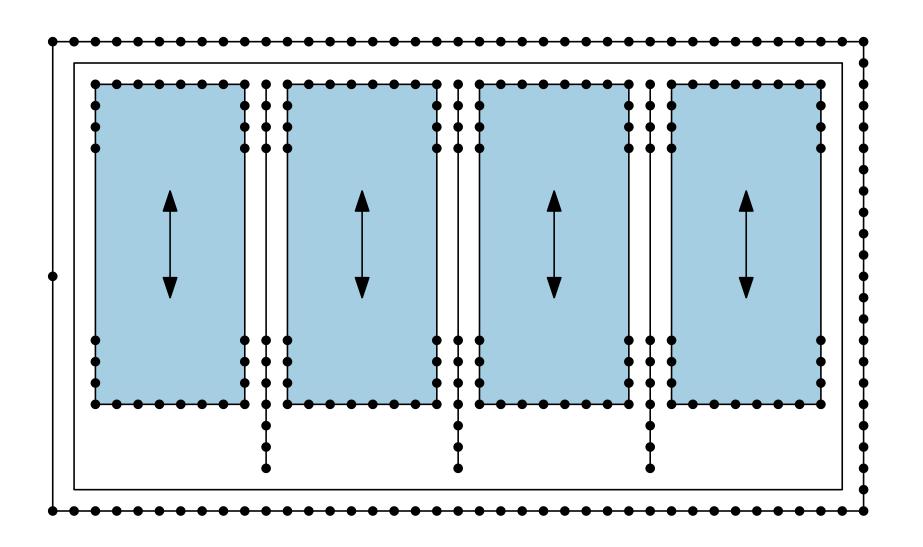
Idea of the reduction:

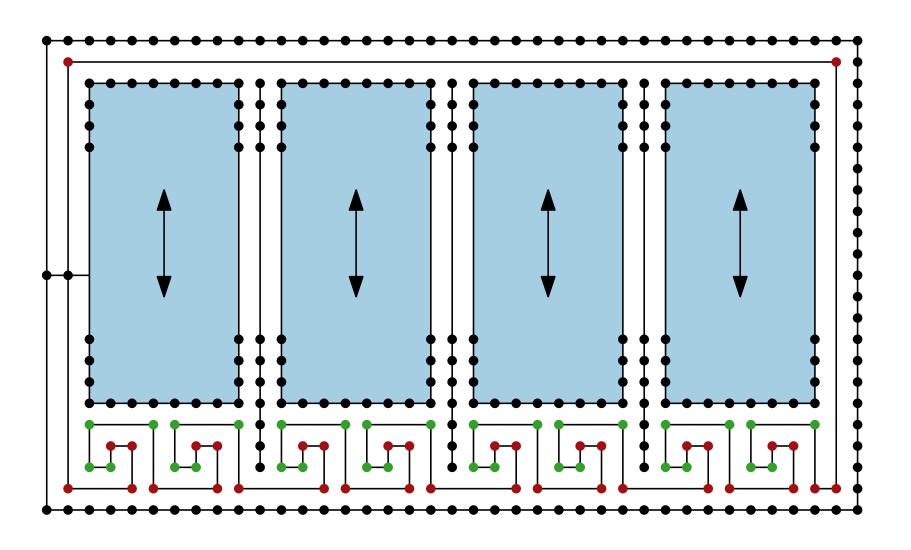
- lacktriangle Given SAT instance $\Phi\Rightarrow$ construct a plane graph G and a orthogonal description H(G)
- lacksquare lacksquare is satisfiable $\Leftrightarrow G$ can be drawn w.r.t. H(G) in area K for some specific number K

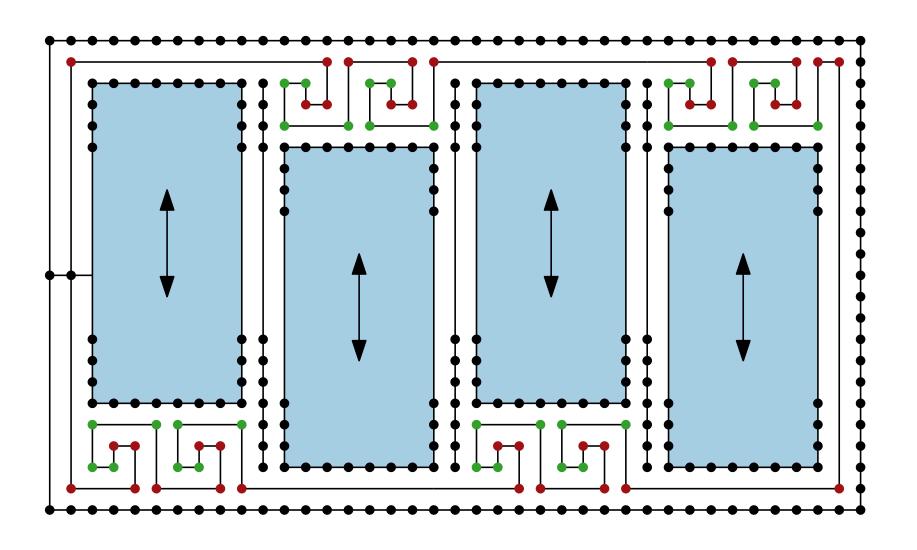


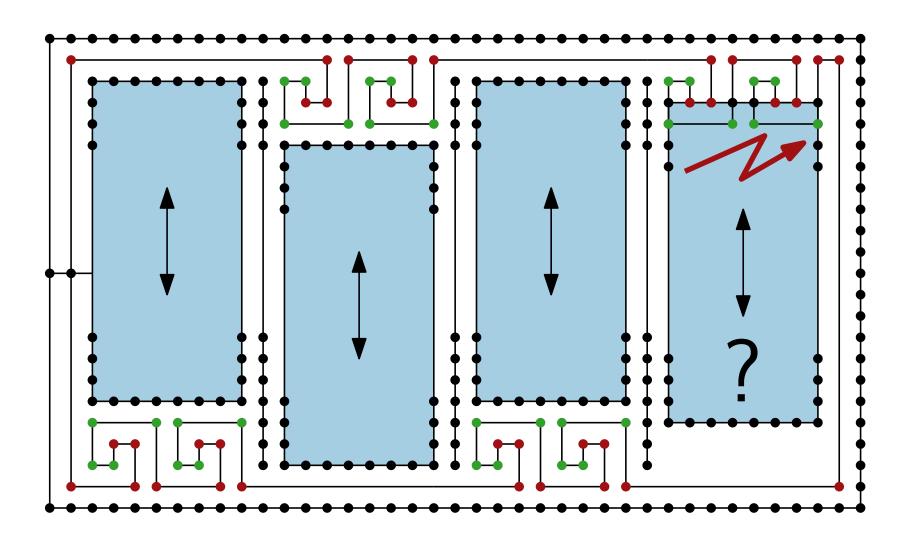


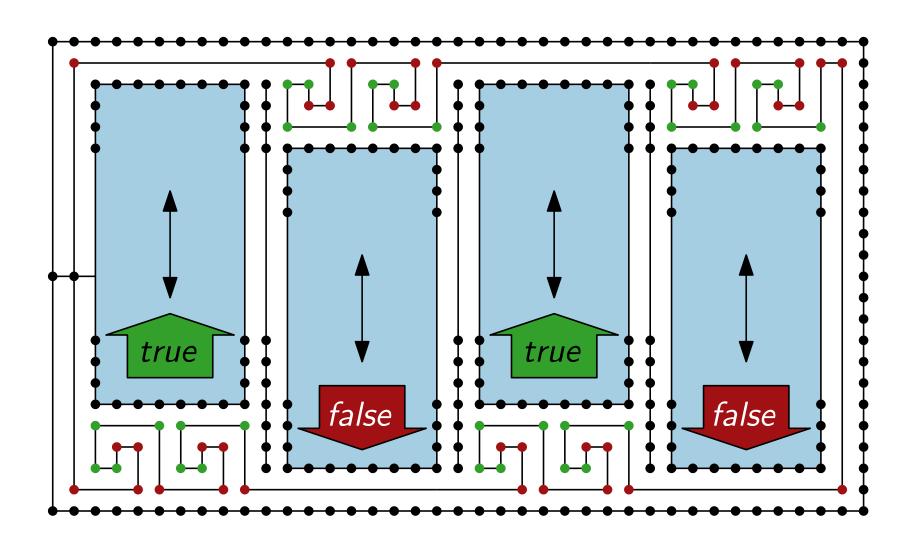


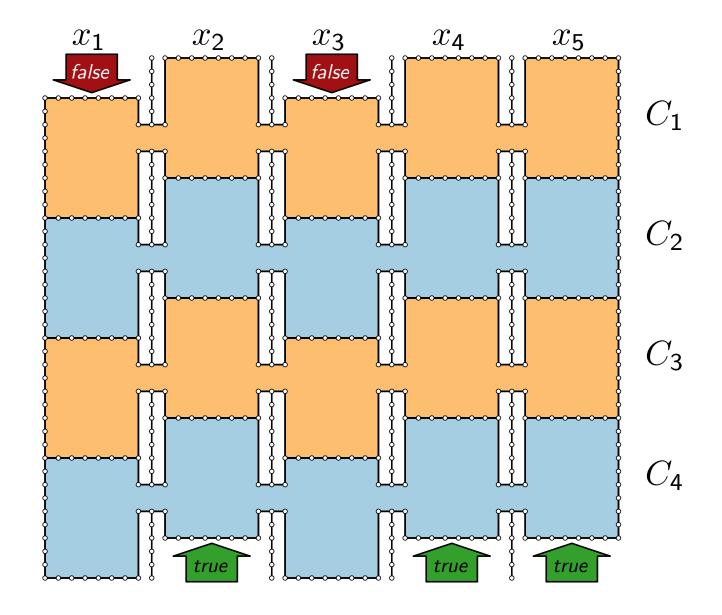


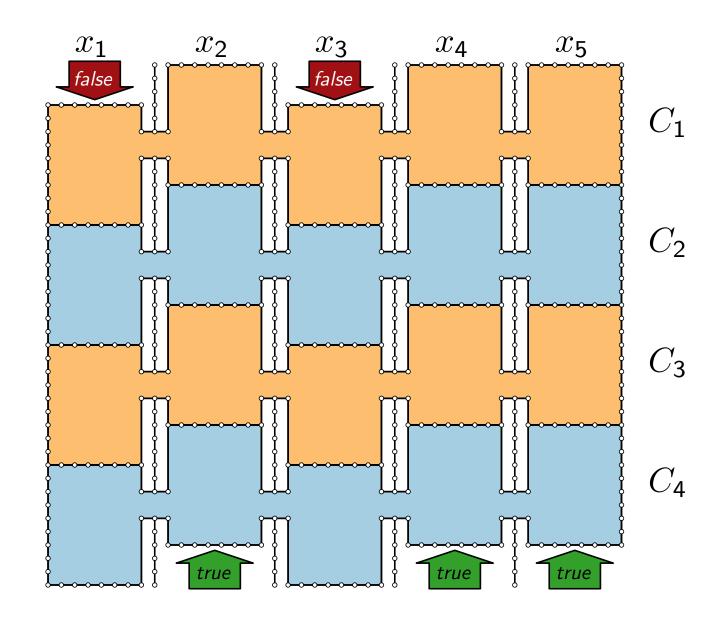












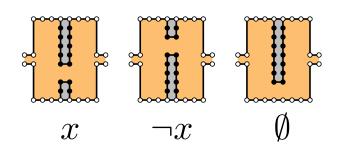
Example:

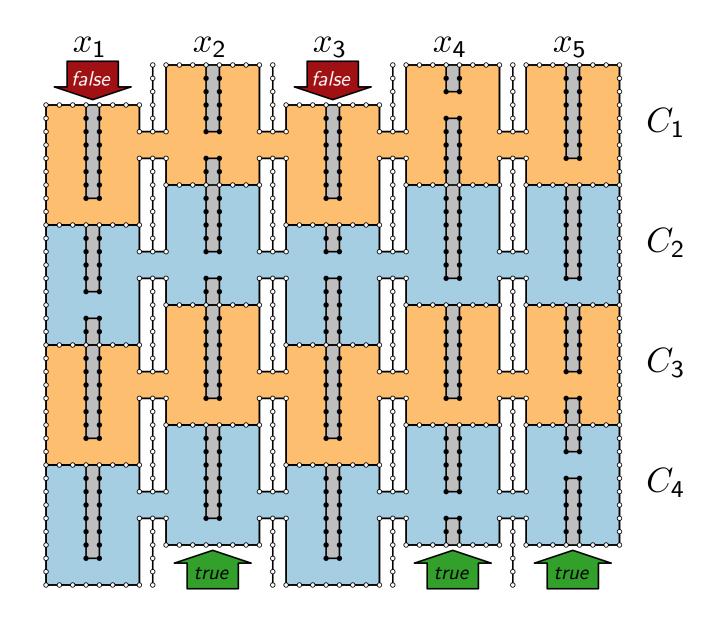
$$C_1 = x_2 \lor \neg x_4$$

$$C_2 = x_1 \lor x_2 \lor \neg x_3$$

$$C_3 = x_5$$

$$C_4 = x_4 \lor \neg x_5$$





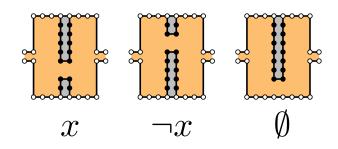
Example:

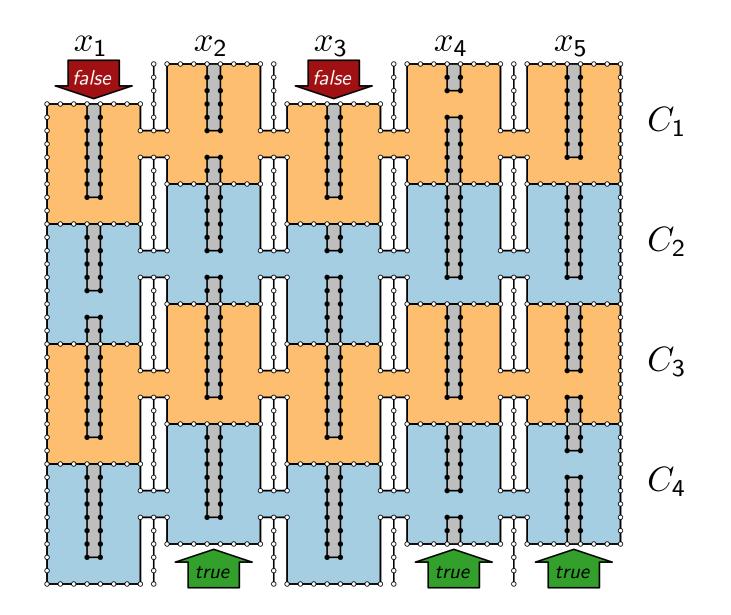
$$C_1 = x_2 \lor \neg x_4$$

$$C_2 = x_1 \lor x_2 \lor \neg x_3$$

$$C_3 = x_5$$

$$C_4 = x_4 \lor \neg x_5$$





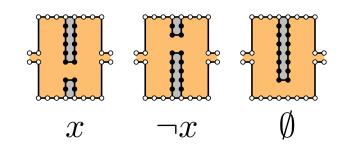
Example:

$$C_1 = x_2 \lor \neg x_4$$

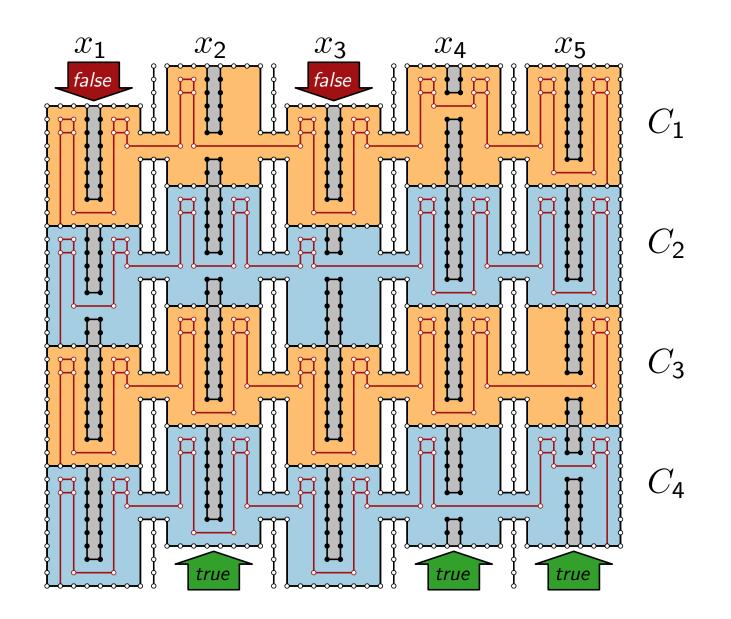
$$C_2 = x_1 \lor x_2 \lor \neg x_3$$

$$C_3 = x_5$$

$$C_4 = x_4 \lor \neg x_5$$



insert (2n-1)-chain through each clause



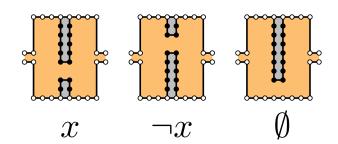
Example:

$$C_1 = x_2 \lor \neg x_4$$

$$C_2 = x_1 \lor x_2 \lor \neg x_3$$

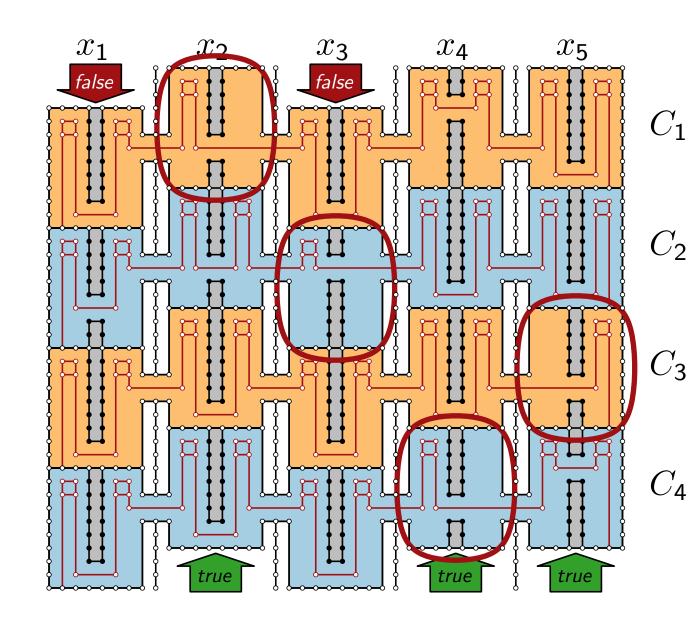
$$C_3 = x_5$$

$$C_4 = x_4 \lor \neg x_5$$



FIRREREN

insert (2n-1)-chain through each clause



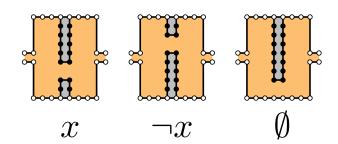
Example:

$$C_1 = x_2 \lor \neg x_4$$

$$C_2 = x_1 \lor x_2 \lor \neg x_3$$

$$C_3 = x_5$$

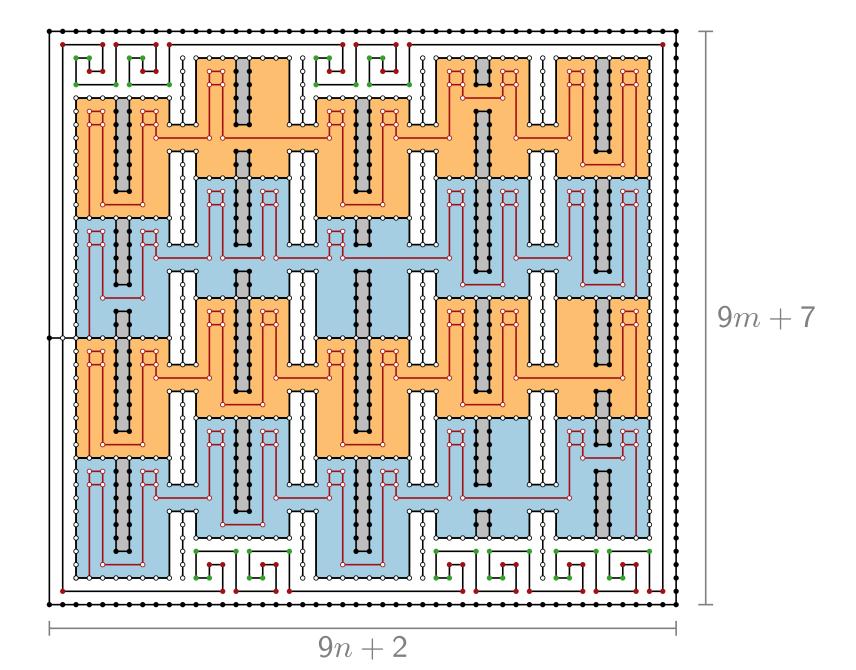
$$C_4 = x_4 \lor \neg x_5$$



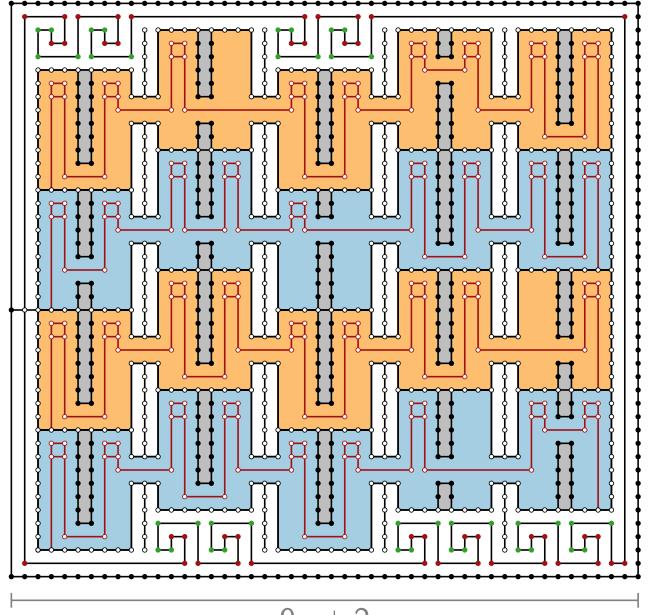
insert (2n-1)-chain through each clause

ightarrow for every clause, there needs to be ≥ 1 "gap of a literal" to be on the same height as the "tunnel" to the next literal

Complete Reduction



Complete Reduction

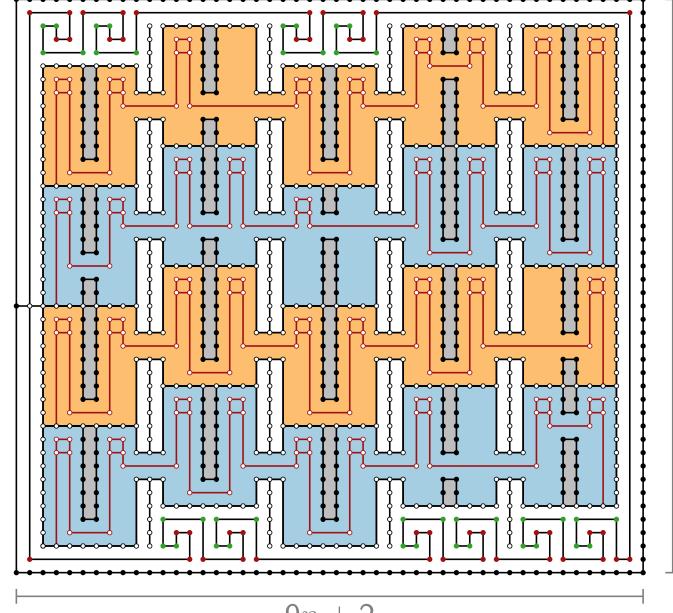


Pick
$$K = (9n + 2) \times (9m + 7)$$

$$9m + 7$$

$$9n + 2$$

Complete Reduction



Pick
$$K = (9n + 2) \times (9m + 7)$$

$$9m + 7$$

Then:

G under H(G) has an orthogonal drawing in area K

Φ satisfiable

9n + 2

Literature

- [GD Ch. 5] for detailed explanation
- [Tamassia 1987] "On embedding a graph in the grid with the minmum number of bends" Original paper on flow for bend minimization.
- [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023] "A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow" State-of-the-art algorithm for solving the minimum-cost flow problem (published recently in the proceedings of the FOCS 2023 conference).
- [Patrignani 2001] "On the complexity of orthogonal compaction" NP-hardness proof for orthogonal representation of planar max-degree-4 graphs.
- [Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff 2022] "Minimum rectilinear polygons for given angle sequences": Compacting cycles is NP-hard.
- [Antić, Liotta, Masařík Ortali, Pfretzschner, Stumpf, Wolff, Zink 2025] "Unbent Collections of Orthogonal Drawings": It is NP-hard to find two drawings such that each edge is straight in one and the total number of bends is minimum.