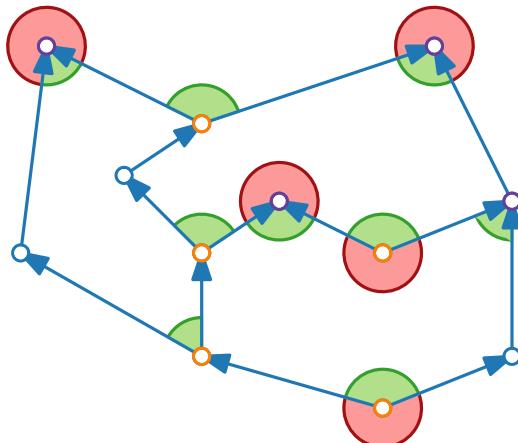
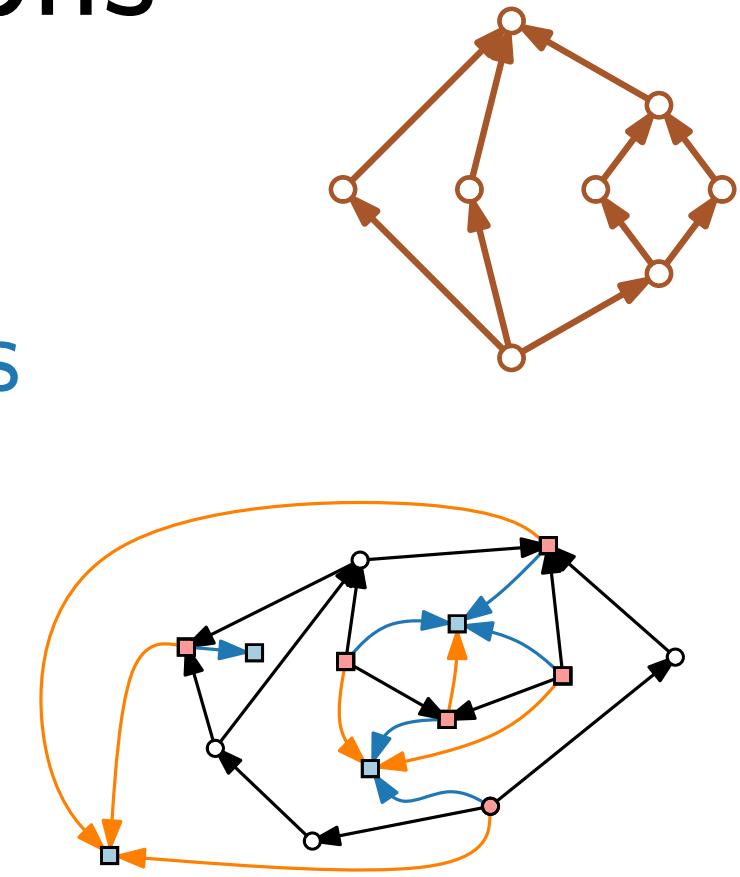


Visualization of Graphs

Lecture 5: Upward Planar Drawings

Part I:
Recognition

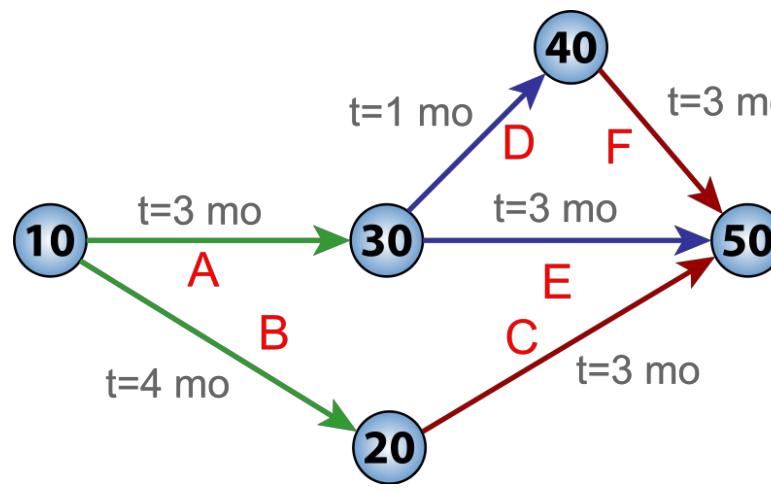
Alexander Wolff



Summer term 2025

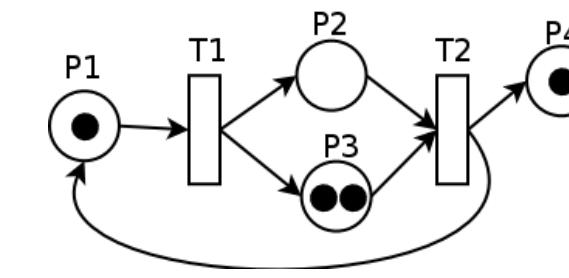
Upward Planar Drawings – Motivation

- What may the direction of edges in a directed graph represent?
 - Time
 - Flow
 - Hierarchy
 - ...
- We aim for drawings where the general direction is preserved.



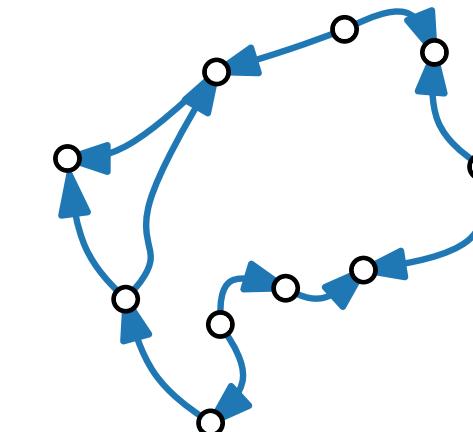
PERT diagram

Program Evaluation and Review Technique (Project management)



Petri net

Place/Transition net
(Modeling languages for distributed systems)



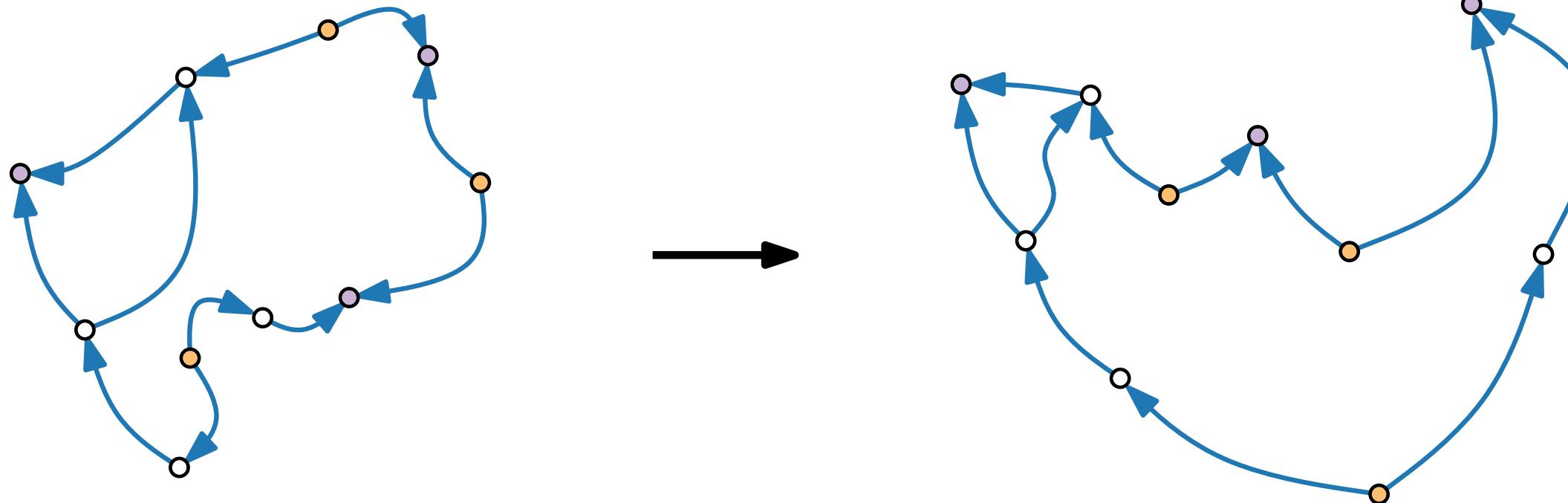
Phylogenetic network

Ancestral trees / networks
(Biology)

Upward Planar Drawings – Definition

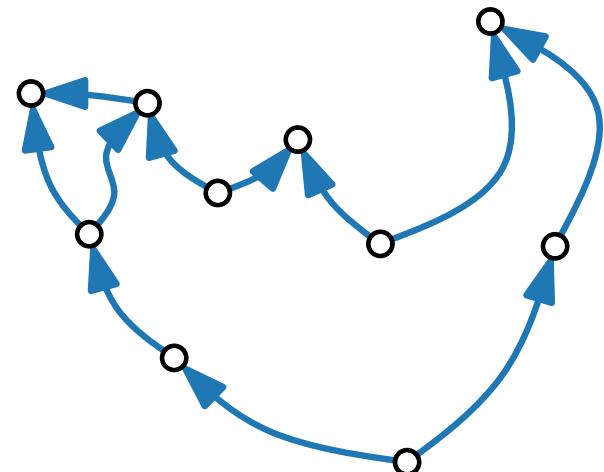
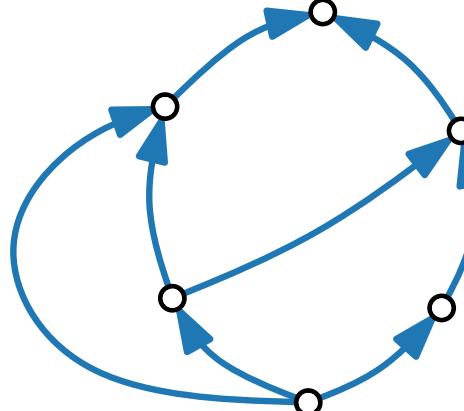
A directed graph (*digraph*) is **upward planar** when it admits a drawing

- that is planar and
- where each edge is drawn as an upward y-monotone curve.

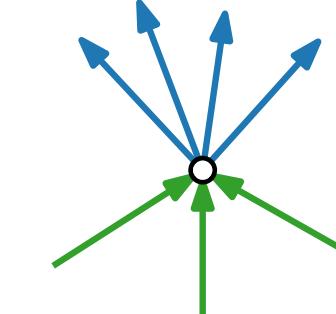


Upward Planarity – Necessary Conditions

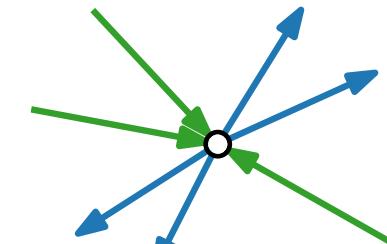
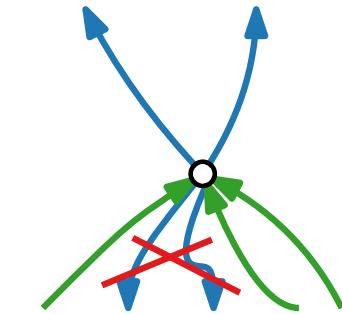
- For an (embedded) digraph to be upward planar, it needs to ...
 - be planar
 - be acyclic
 - have a bimodal embedding
- ... but these conditions are *not sufficient*. → **Exercise**



bimodal vertex



not bimodal



Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G , the following statements are equivalent:

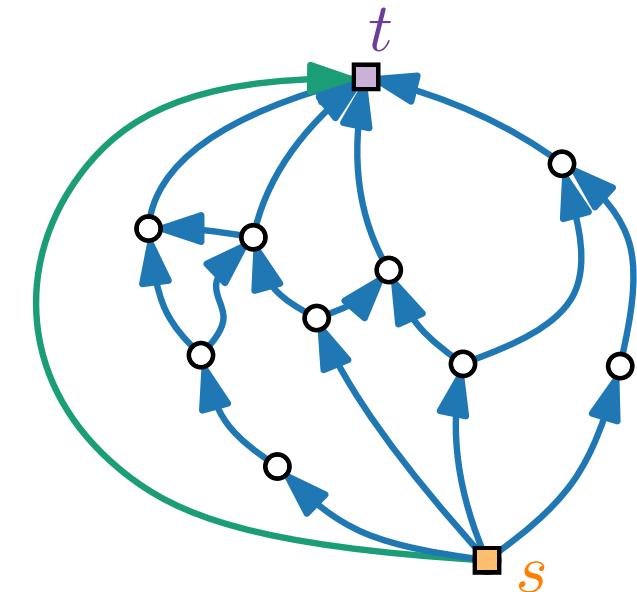
- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Additionally:
Embedded such
that s and t are on
the outer face f_0 .

$\left\{ \begin{array}{l} \text{no crossings} \\ \text{acyclic digraph with} \\ \text{a single source } s \text{ and a single sink } t \end{array} \right.$

or:

Edge (s, t) exists.

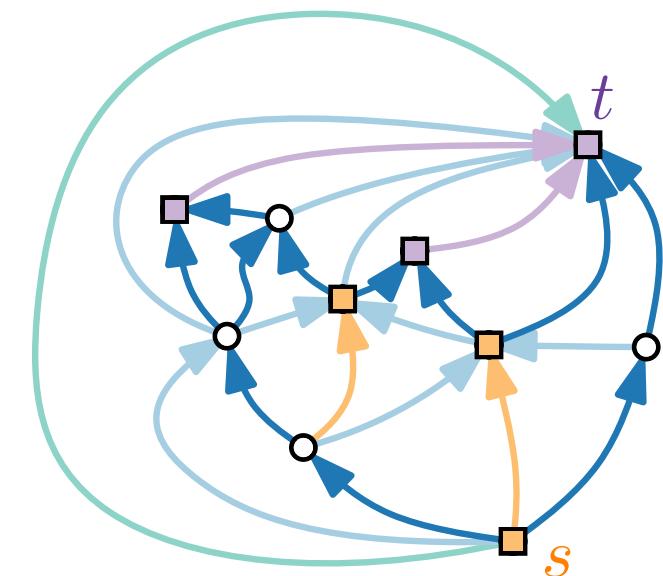


Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G , the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above.

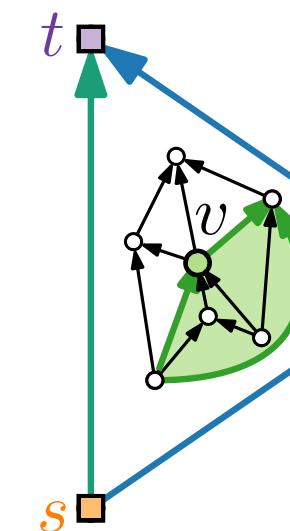
(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can be drawn in pre-specified triangle.

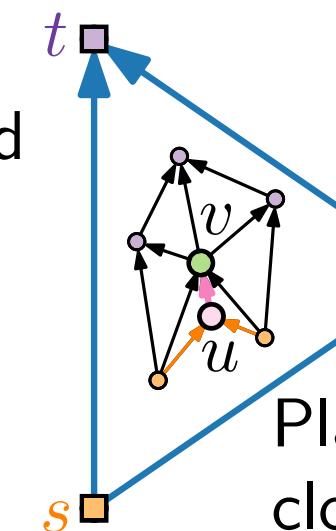
Induction on the number of vertices n .

Case 1:
chord



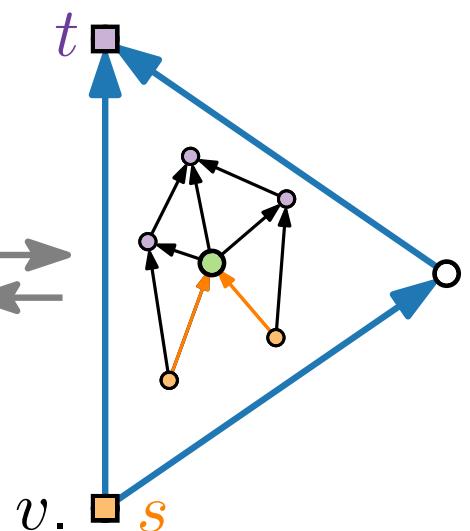
\rightarrow two smaller instances; solve inductively

Case 2:
no chord



Place u close to v .

Idea: Contract uv !



Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

Given a *planar acyclic* digraph G ,
it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994]

Given an *embedded planar* digraph G ,
it can be tested in quadratic time whether G is upward planar.

Corollary.

Given a *triconnected* planar digraph G ,
it can be tested in quadratic time whether G is upward planar.

Theorem.

[Hutton & Lubiw, 1996]

Given an acyclic *single-source* digraph G ,
it can be tested in linear time whether G is upward planar.

The Problem

Fixed Embedding Upward Planarity Testing.

Let G be a plane digraph, let F be the set of faces of G , and let f_0 be the outer face of G .

Test whether G is upward planar (w.r.t. to F and f_0).

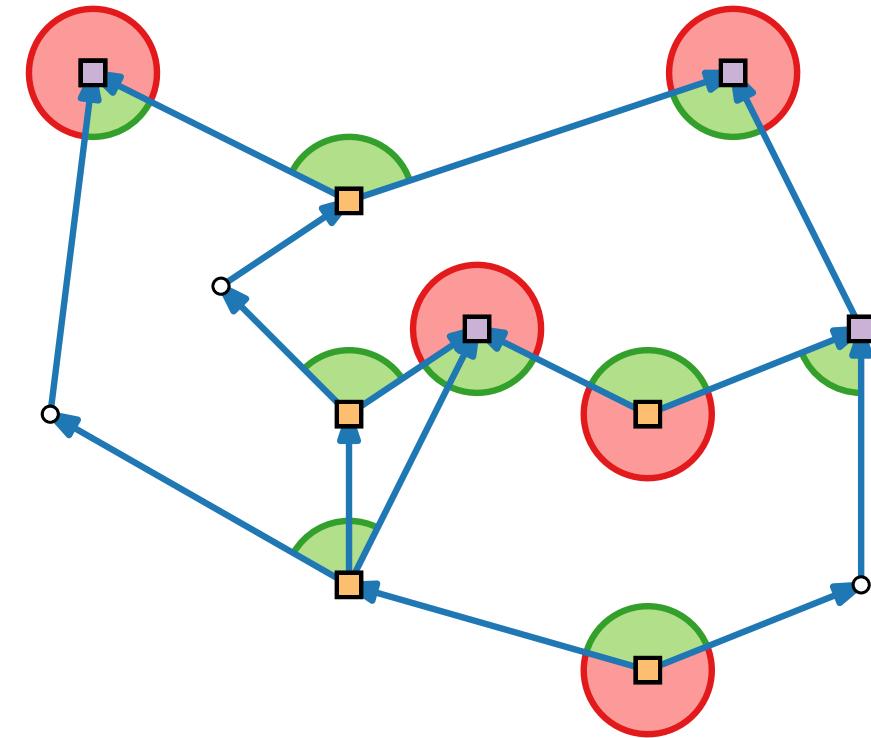
Plan.

- Find a property that any upward planar drawing of G satisfies.
- Formalize this property.
- Specify an algorithm to test this property.

Angles, Local Sources & Sinks

Definitions.

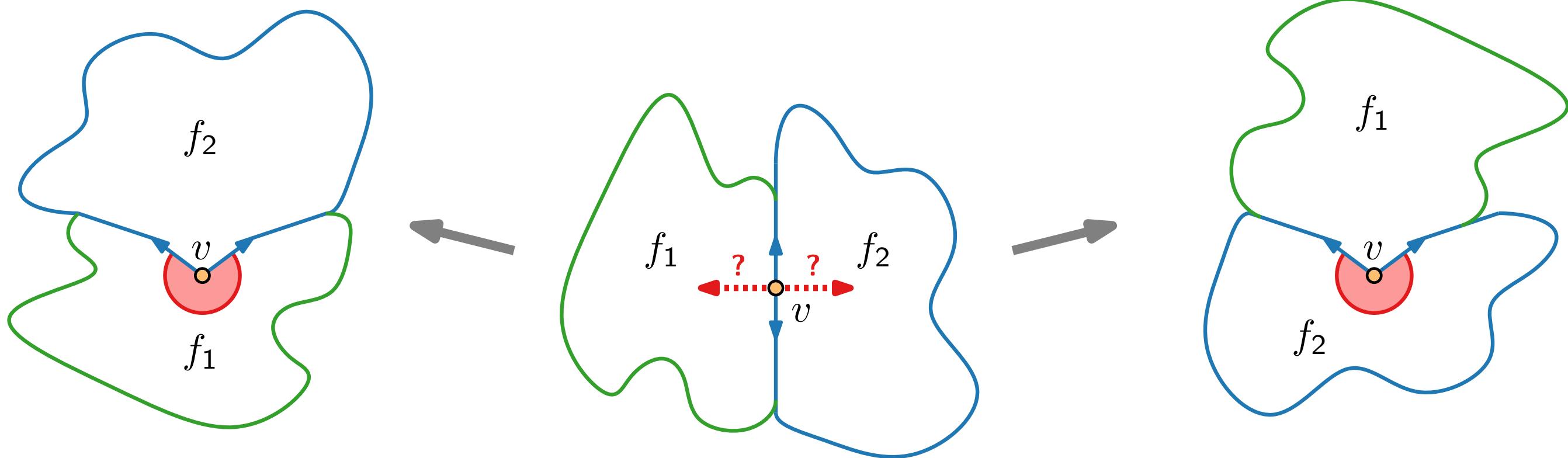
- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f . ← boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.
- $L(v) = \#$ large angles at v
- $L(f) = \#$ large angles in f
- $S(v) = \#$ small angles at v
- $S(f) = \#$ small angles at f
- $A(f) = \#$ **local sources** w.r.t. to f
 $= \#$ **local sinks** w.r.t. to f



Lemma 1.
 $L(f) + S(f) = 2A(f)$

Assignment Problem

- Observe that the **global sources** and **global sinks** have precisely one **large** angle.
- All other vertices have only **small** angles.
- Let v be a **global source** and let it be incident to faces f_1 and f_2 .
- Does v have a **large** angle in f_1 or f_2 ?



Angle Relations

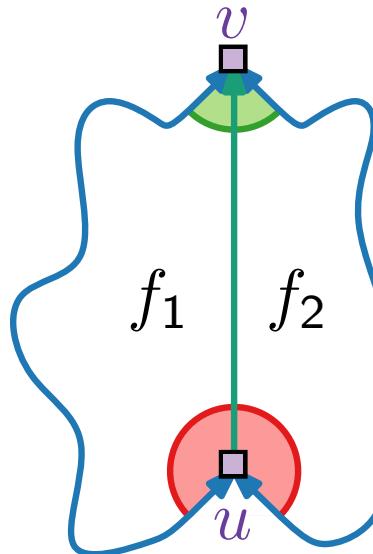
Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

■ $L(f) \geq 1$

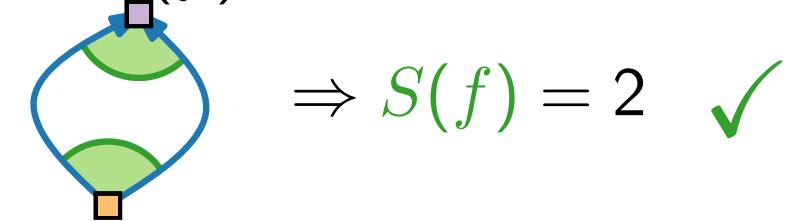
Split f with **edge** from a large angle at a “low” **sink** u to...

■ **sink** v with small angle:



Proof by induction on $L(f)$.

■ $L(f) = 0$



$$\begin{aligned} L(f) - S(f) &= L(f_1) + L(f_2) + 1 \\ &\quad - (S(f_1) + S(f_2) - 1) \\ &= -2 - 2 + 2 = -2 \end{aligned}$$

Angle Relations

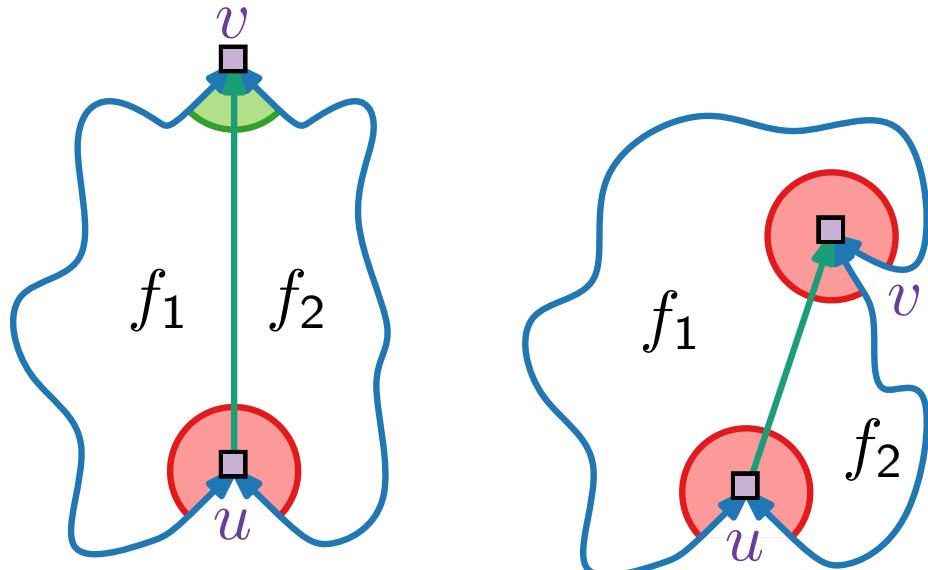
Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

■ $L(f) \geq 1$

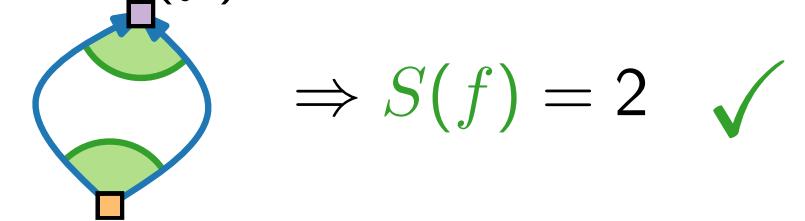
Split f with **edge** from a large angle at a “low” **sink** u to...

■ **sink** v with small/large angle:



Proof by induction on $L(f)$.

■ $L(f) = 0$



$$\begin{aligned} L(f) - S(f) &= L(f_1) + L(f_2) + 1 \\ &\quad - (S(f_1) + S(f_2) - 1) \\ &= -2 - 2 + 2 = -2 \end{aligned}$$

Angle Relations

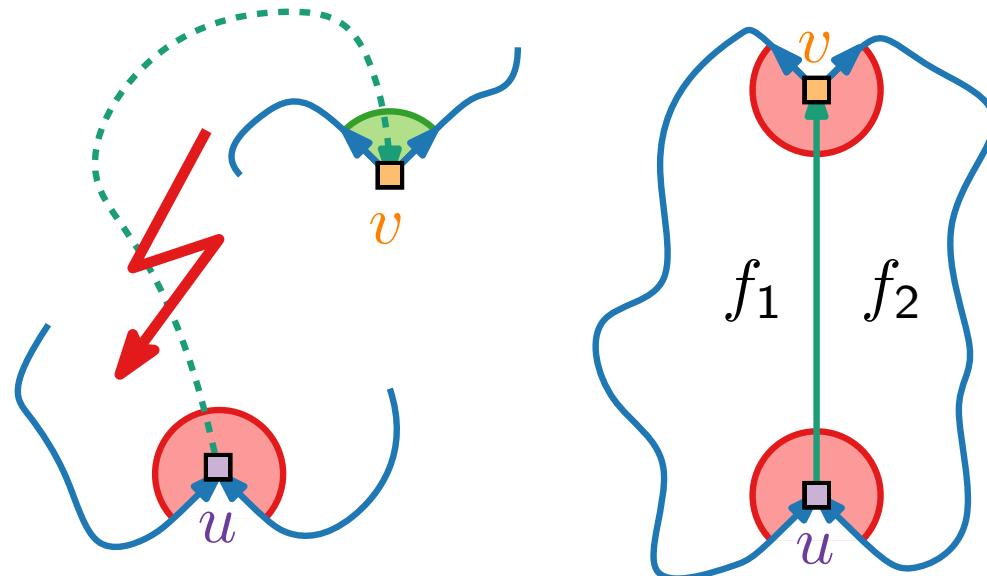
Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

■ $L(f) \geq 1$

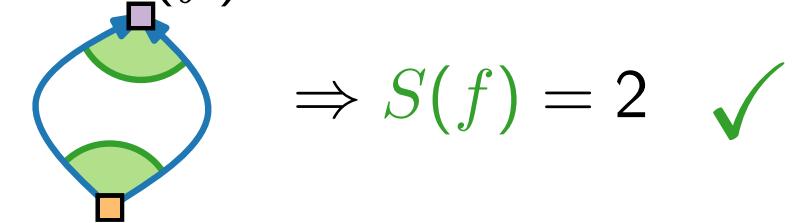
Split f with **edge** from a large angle at a “low” **sink** u to...

■ **source** v with ~~small~~/large angle:



Proof by induction on $L(f)$.

■ $L(f) = 0$



$$\begin{aligned} L(f) - S(f) &= L(f_1) + L(f_2) + 2 \\ &\quad - (S(f_1) + S(f_2)) \\ &= -2 - 2 + 2 = -2 \end{aligned}$$

Angle Relations

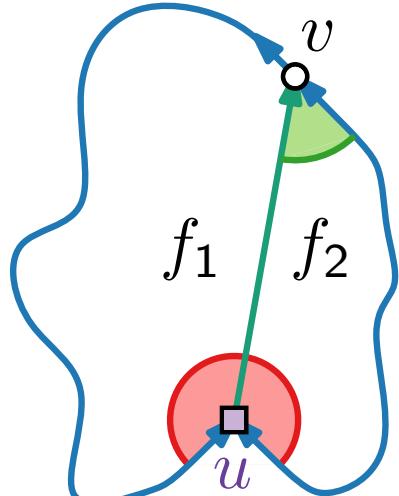
Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

- $L(f) \geq 1$

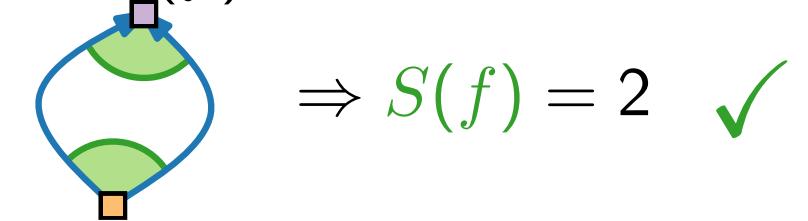
Split f with **edge** from a large angle at a “low” **sink** u to...

- vertex v that is neither source nor sink:



Proof by induction on $L(f)$.

- $L(f) = 0$



$$\begin{aligned} L(f) - S(f) &= L(f_1) + L(f_2) + 1 \\ &\quad - (S(f_1) + S(f_2) - 1) \\ &= -2 - 2 + 2 = -2 \end{aligned}$$

- Otherwise “high” **source** u exists. \rightarrow symmetric
- Similar argument for the outer face f_0 .

Number of Large Angles

Lemma 3.

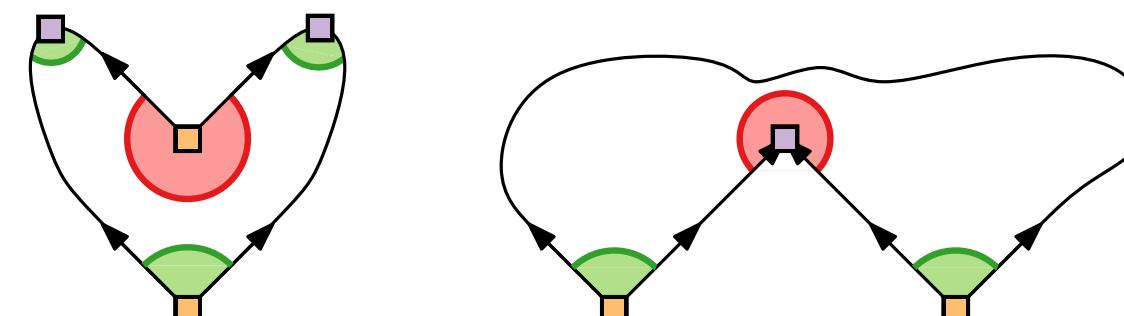
In every upward planar drawing of G , it holds that

- for each vertex v : $L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a global source / sink;} \end{cases}$
- for each face f : $L(f) = \begin{cases} A(f) - 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$

Proof. Lemma 1: $L(f) + S(f) = 2A(f)$

Lemma 2: $L(f) - S(f) = \pm 2.$

$$\Rightarrow 2L(f) = 2A(f) \pm 2.$$



Assignment of Large Angles to Faces

Let S be the set of (global) **sources**, and let T be the set of (global) **sinks**.

Definition.

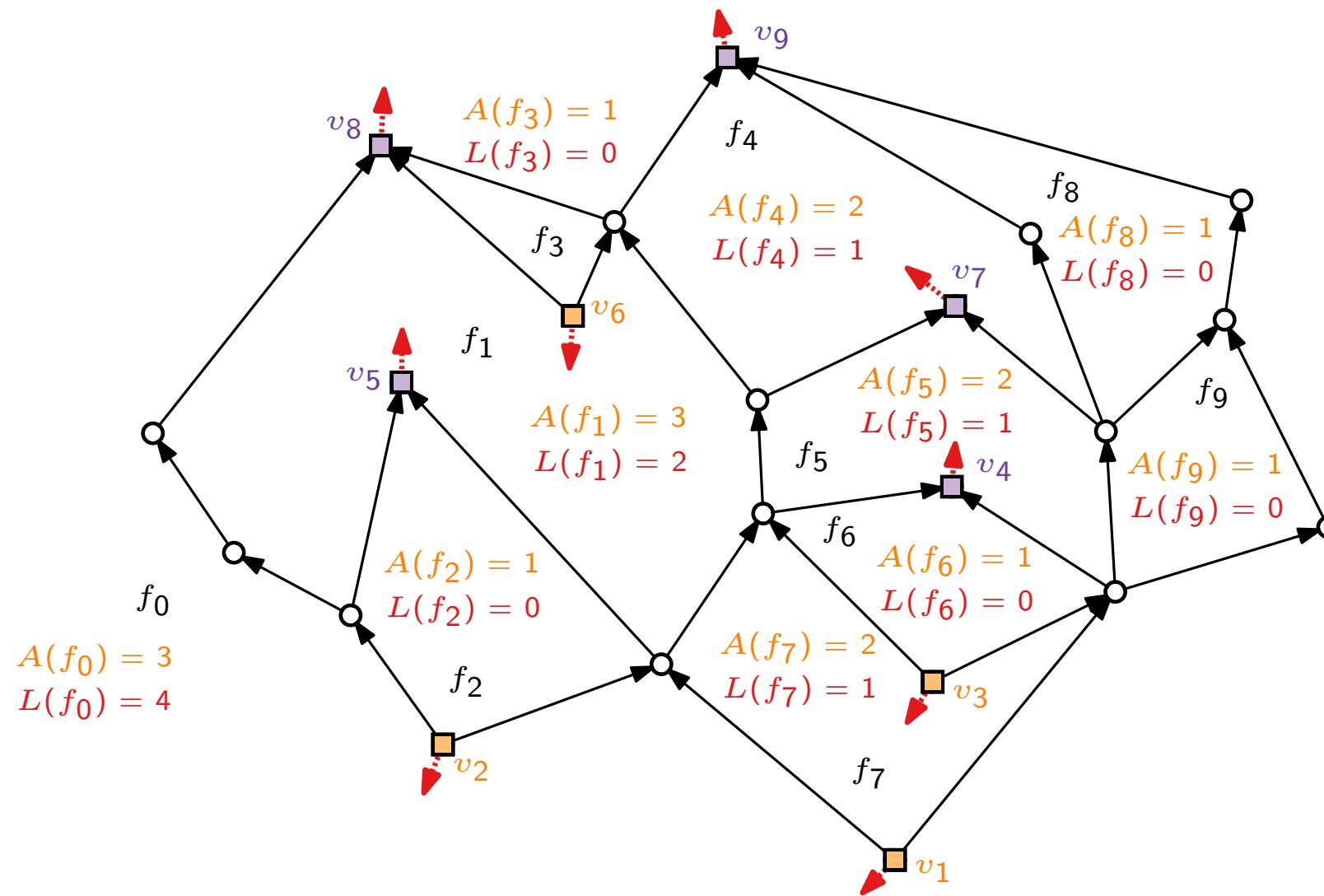
A **consistent assignment** $\Phi: S \cup T \rightarrow F$ is a mapping with

$\Phi: v \mapsto$ incident face, where v forms a **large angle**

such that

$$|\Phi^{-1}(f)| = L(f) = \begin{cases} A(f) - 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$$

Example of Angle-to-Face Assignment



global sources & sinks

$A(f)$ = # local sources/sinks of f

$L(f)$ = # large angles of f

assignment

$\Phi: S \cup T \rightarrow F$

Result Characterization

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

$\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

\Rightarrow : As constructed before.

\Leftarrow : Idea:

- Construct planar st-digraph that is a supergraph of G .
- Apply equivalence from Theorem 1.

G is upward planar $\Leftrightarrow G$ is a spanning subgraph of a planar st-digraph.

$\Leftrightarrow G$ admits a straight-line upward planar drawing.

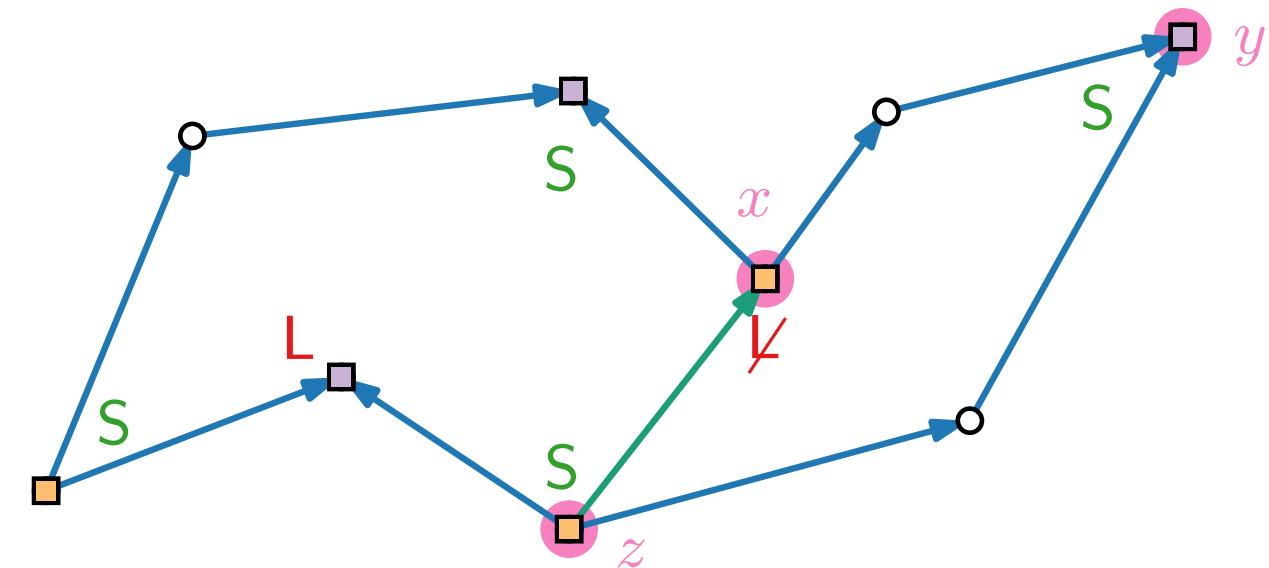
(Note: Proof was constructive!)

Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of \mathbf{L} / \mathbf{S} on local **sources** and **sinks** of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle \text{L, S, S} \rangle$ at vertices x, y, z
- x **source** \Rightarrow insert **edge** (z, x)

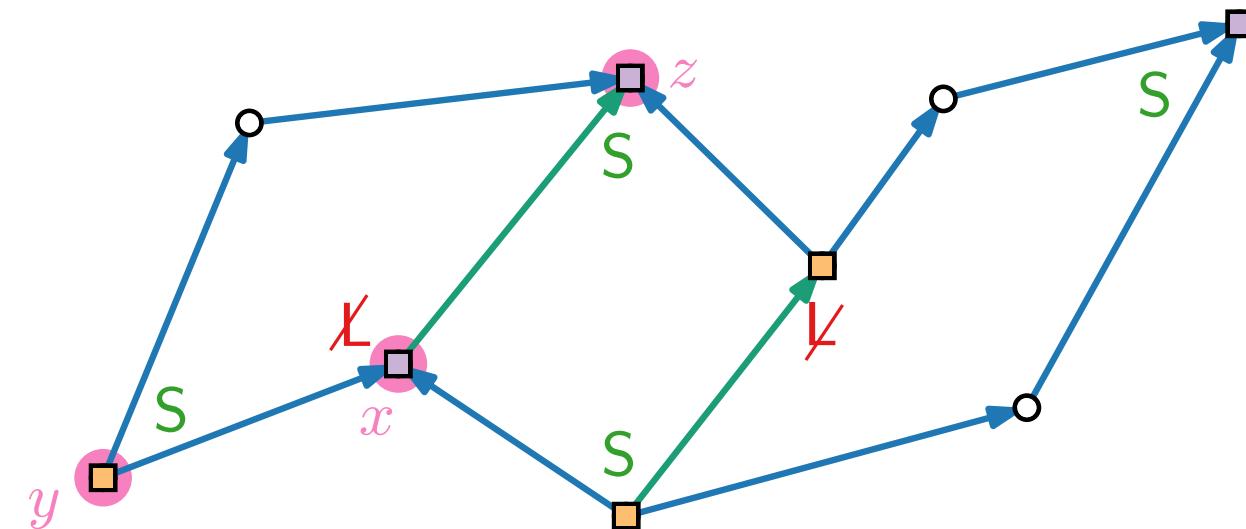


Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :
- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z) .



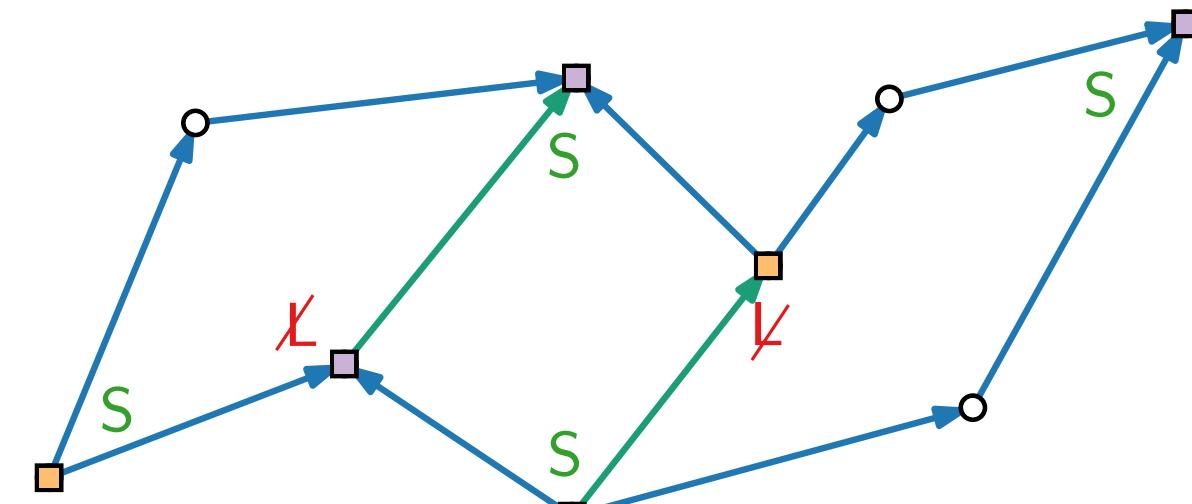
Refinement Algorithm: $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f .

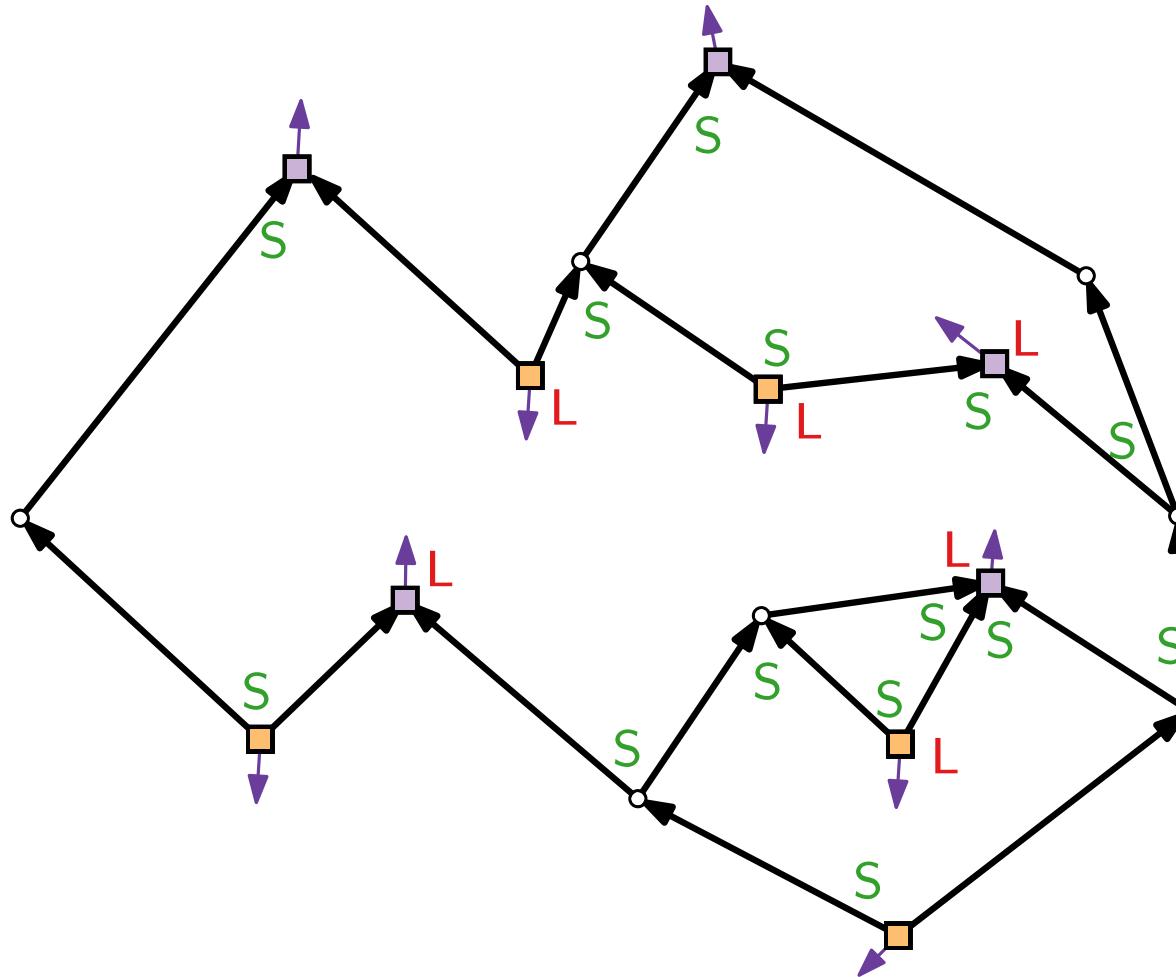
- Goal: Add edges to break **large angles** (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z :
- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z) .
- Refine outer face f_0 similarly.

→ **Exercise**

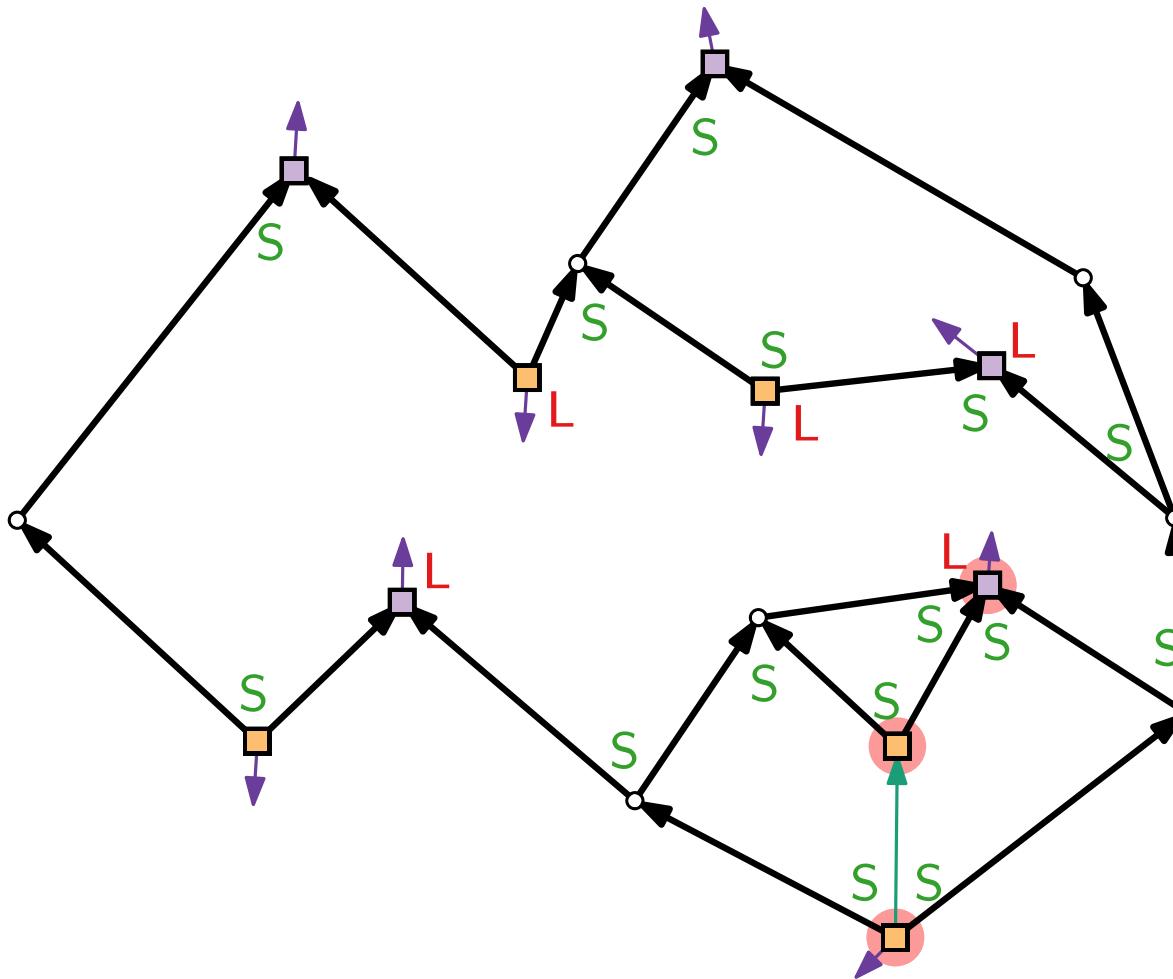


- Refine all faces. $\Rightarrow G$ is contained in a planar st-digraph.
- Planarity, acyclicity, bimodality are invariants under construction.

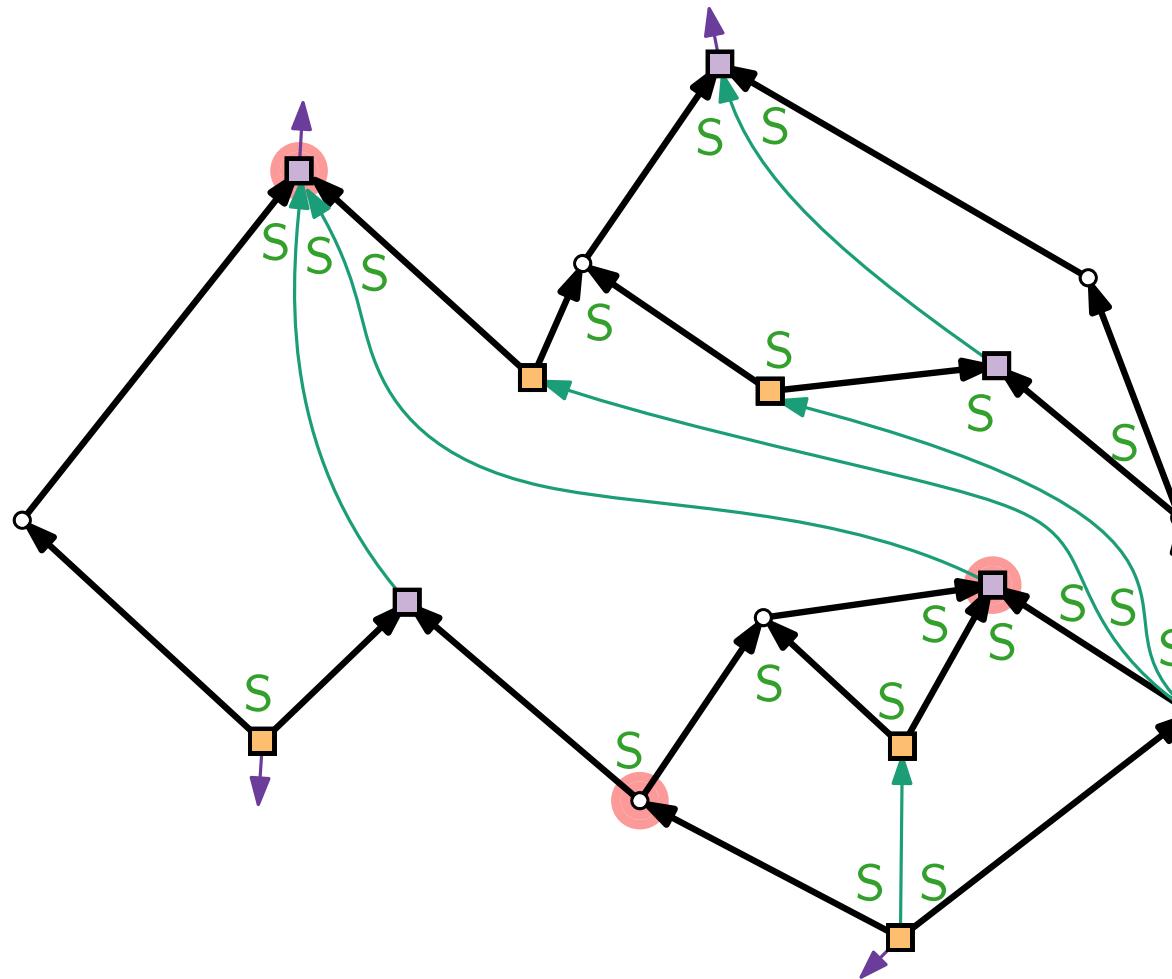
Refinement Example



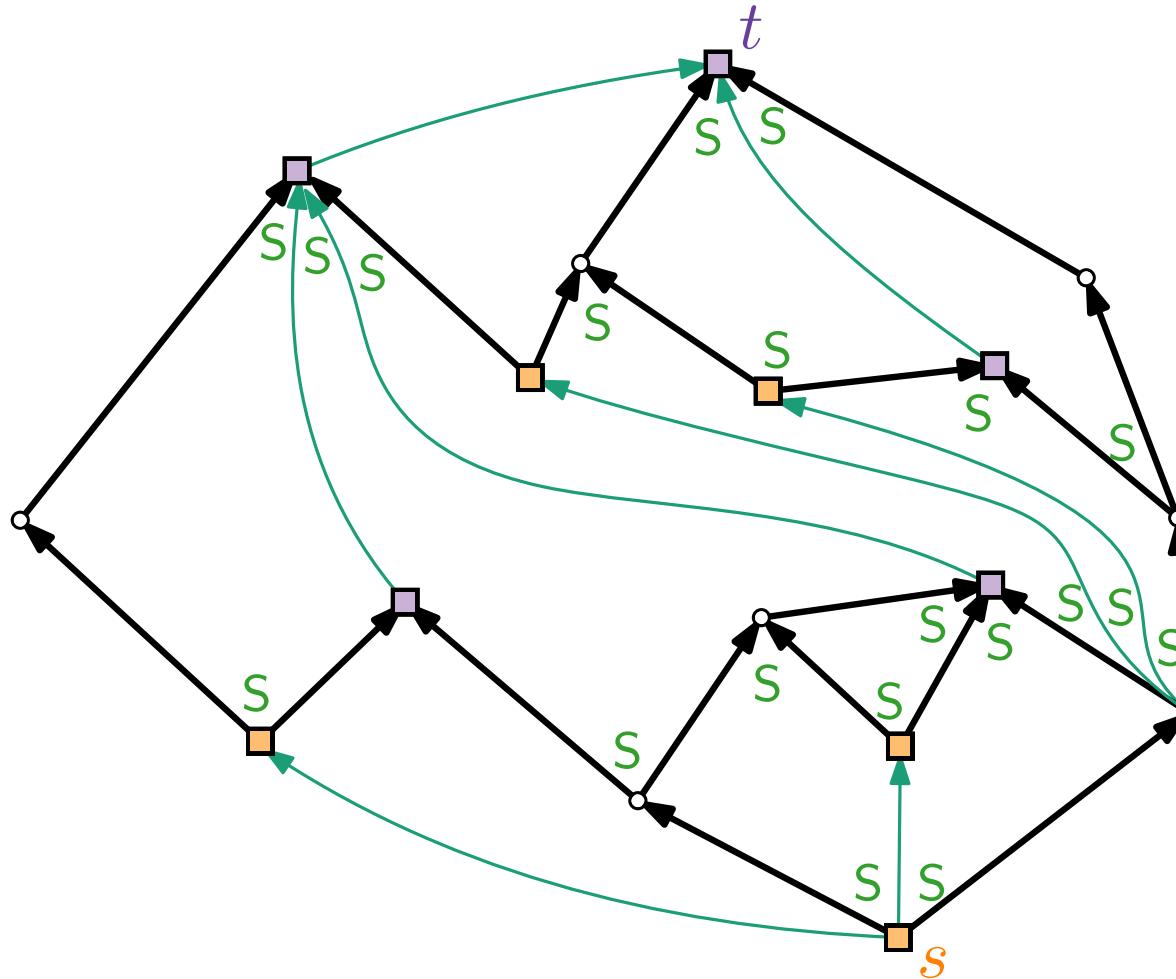
Refinement Example



Refinement Example



Refinement Example



Result Upward Planarity Test

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94]

Given an *embedded* planar digraph G ,
we can test in quadratic time whether G is upward planar.

Proof.

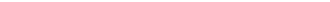
- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
- If G bimodal and Φ exists, refine G to plane st-digraph H .
- Draw H upward planar.
- Deleted edges added in refinement step.

Finding a Consistent Assignment

Idea. Flow $(v, f) = 1$

from global source / sink v to the incident face f its large angle gets assigned to.

nodes of flow network

 supplies/demands of nodes

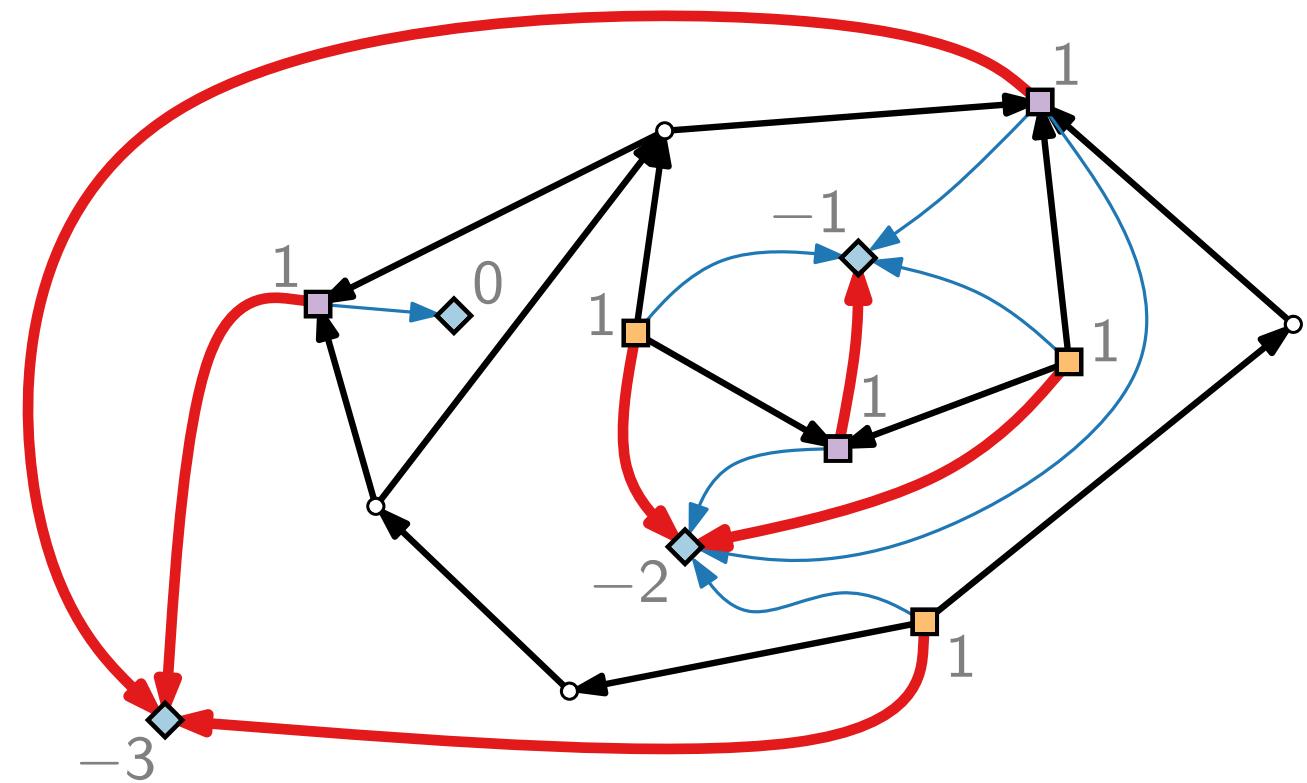
Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $W = \{v \in V(G) \mid v \text{ source or sink}\} \cup F(G)$
- $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$\blacksquare \quad b(w) = \begin{cases} 1 & \forall w \in W \cap V(G) \\ -(A(w) - 1) & \forall w \in F(G) \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$$

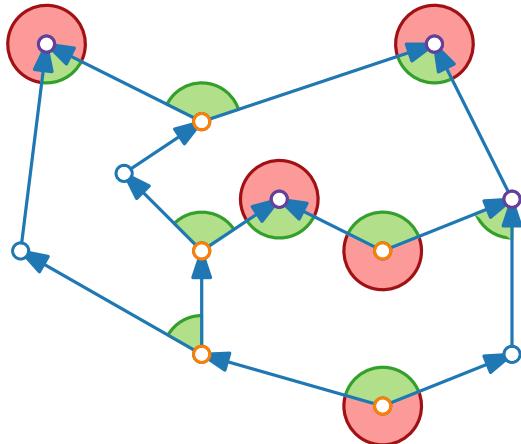
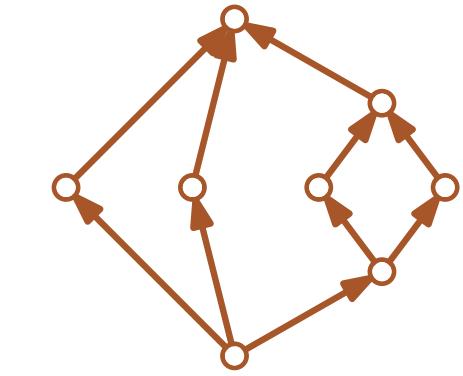
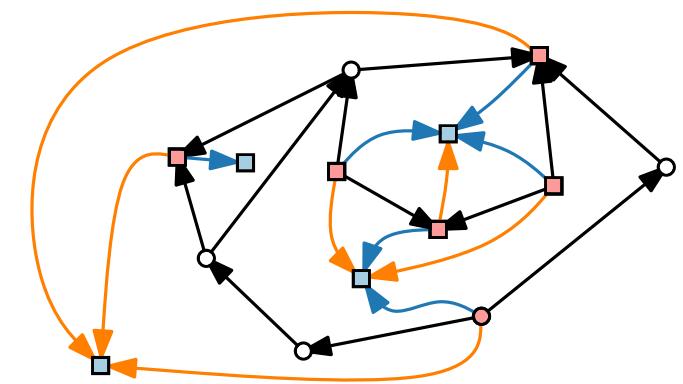
Example



Visualization of Graphs

Lecture 5: Upward Planar Drawings

Part II: Series-Parallel Graphs



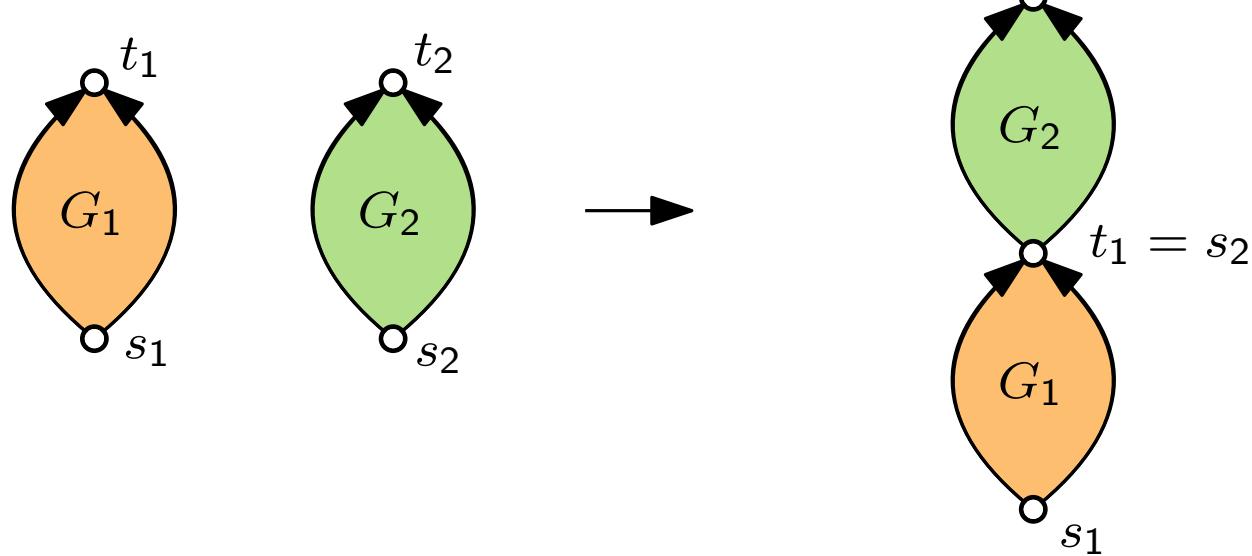
Series-Parallel Graphs

A graph G is **series-parallel** if

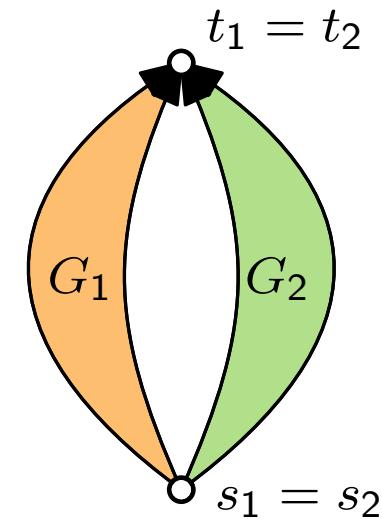
- it contains a single (directed) edge (s, t) , or
- it consists of two series-parallel graphs G_1, G_2 with sources s_1, s_2 and sinks t_1, t_2 that are combined using one of the following rules:

*Convince yourself
that series-parallel
graphs are (upward)
planar!*

Series composition



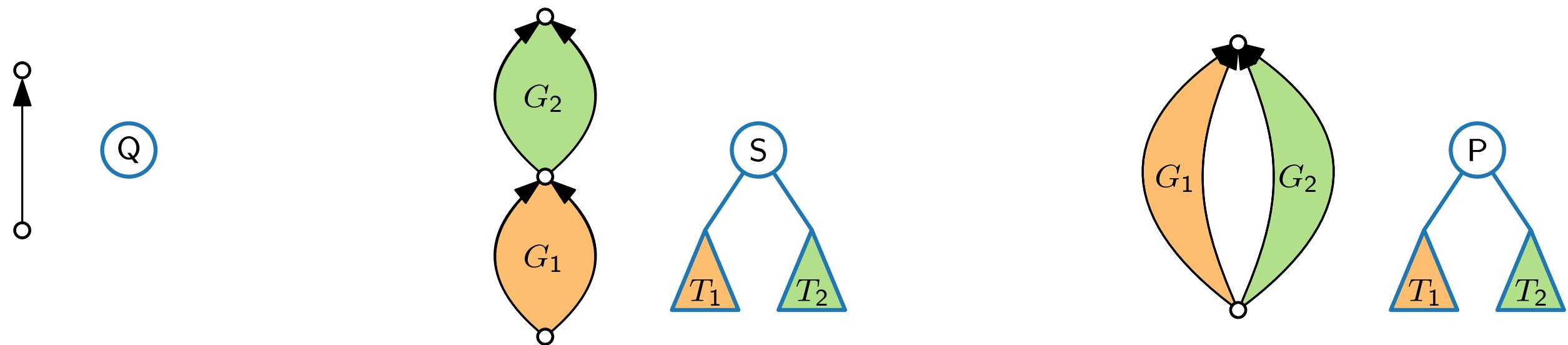
Parallel composition



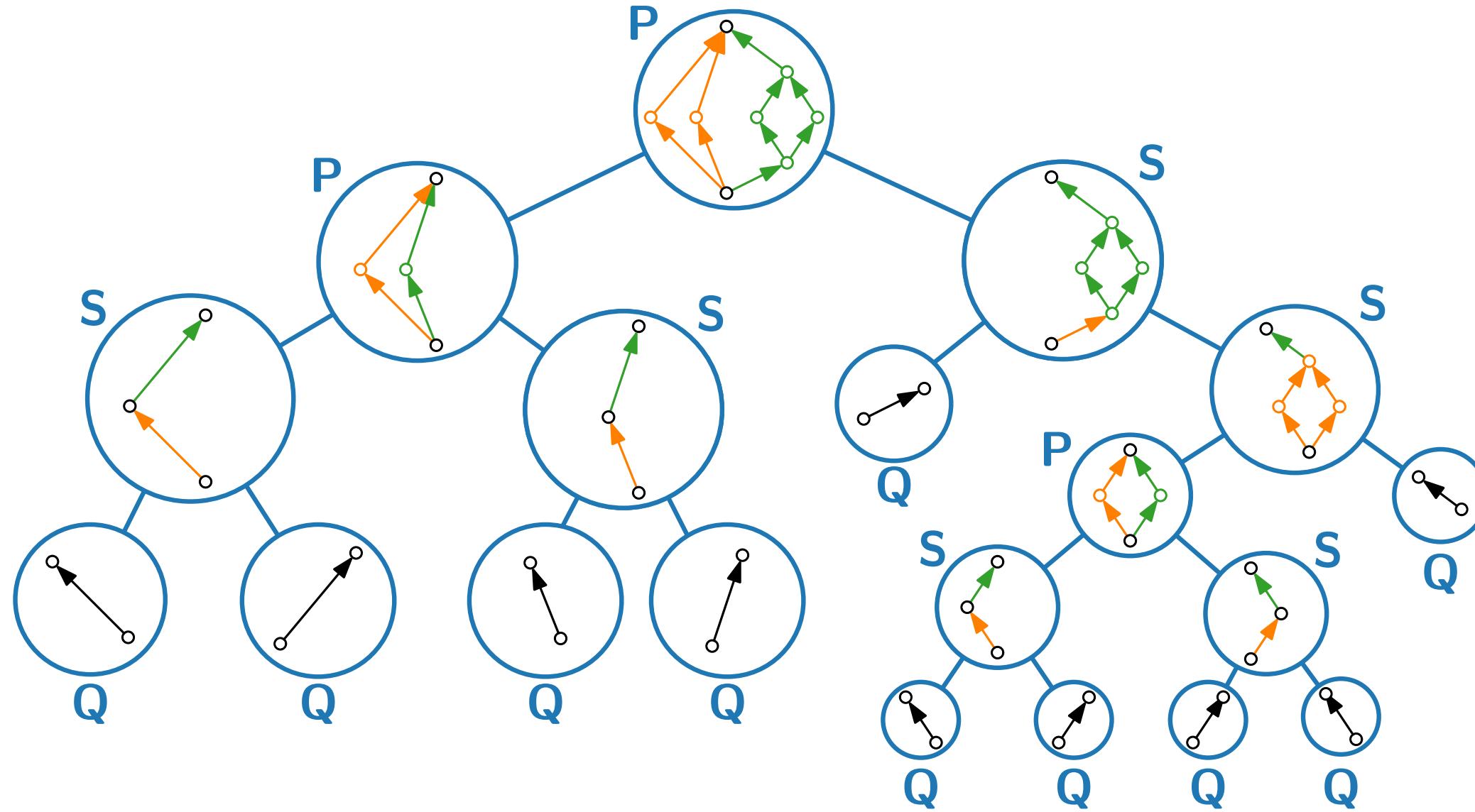
Series-Parallel Graphs – Decomposition Tree

A **decomposition tree** of G is a binary tree T with nodes of three types: **S**, **P** and **Q**.

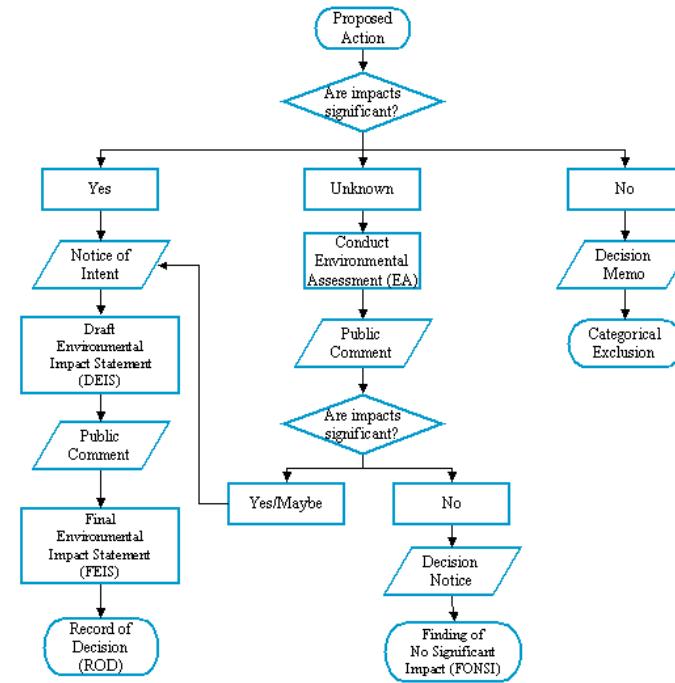
- A **Q**-node represents a single edge.
- An **S**-node represents a series composition;
its children T_1 and T_2 represent G_1 and G_2 .
- A **P**-node represents a parallel composition;
its children T_1 and T_2 represent G_1 and G_2



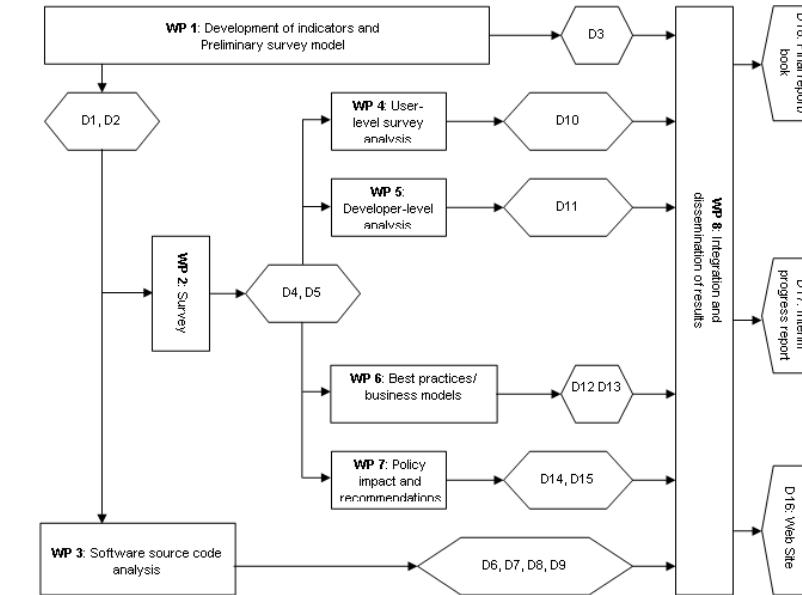
Series-Parallel Graphs – Decomposition Example



Series-Parallel Graphs – Applications



Flowcharts



PERT-Diagrams

(Program Evaluation and Review Technique)

Computational complexity:

Series-parallel graphs often admit linear-time algorithms for problems that are NP-hard in general, e.g., minimum maximal matching, maximum independent set, Hamiltonian completion.

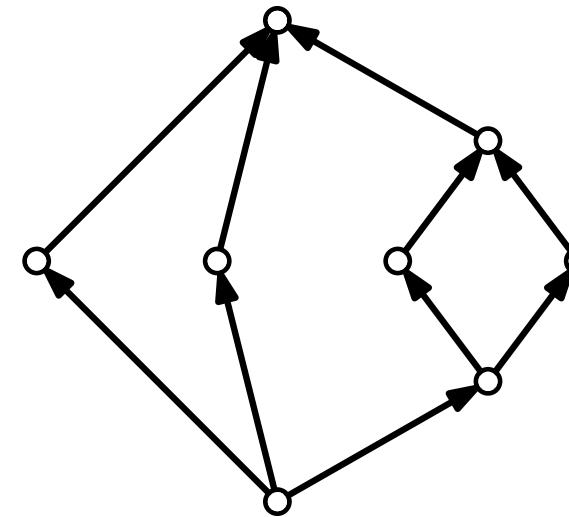
Series-Parallel Graphs – Drawing Style

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics to optimize

- Area
- Symmetry



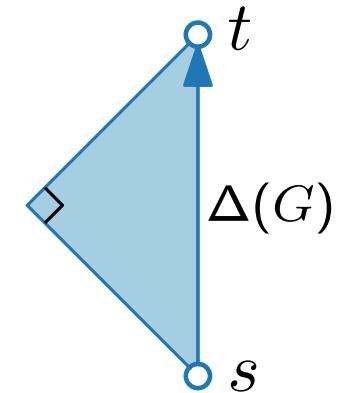
Series-Parallel Graphs – Straight-Line Drawings

Divide-and-conquer algorithm using the decomposition tree

- Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

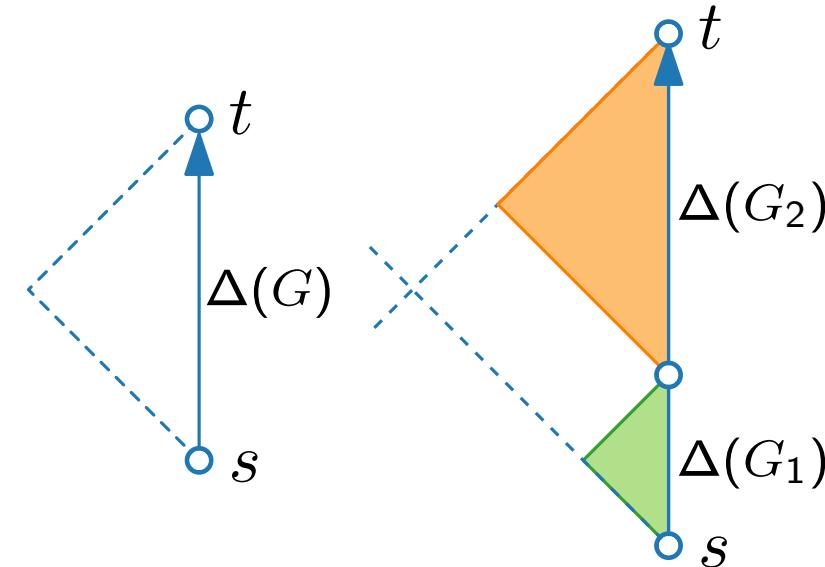
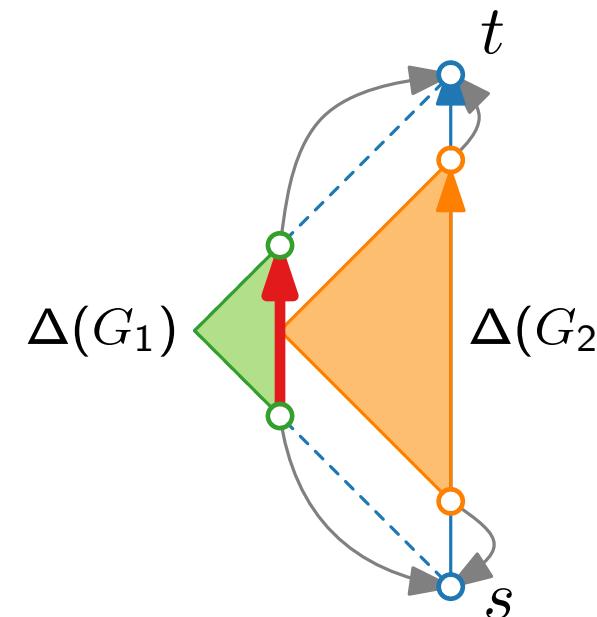
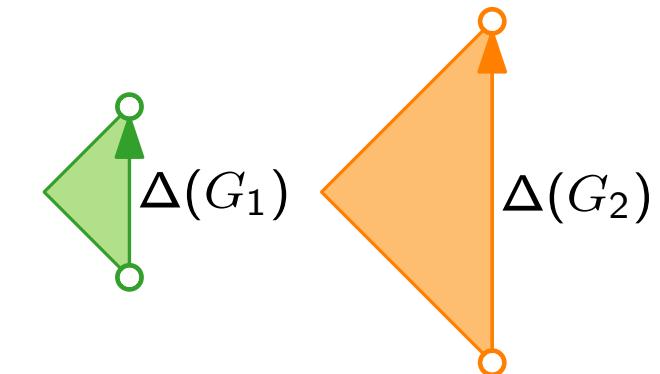
Base case: Q-nodes

Divide: Draw G_1 and G_2 first



Conquer:

- S-nodes: series compositions
- P-nodes: parallel compositions



Do you see any problem?
single edge
change embedding!

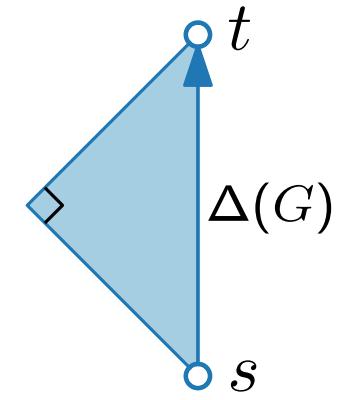
Series-Parallel Graphs – Straight-Line Drawings

Divide-and-conquer algorithm using the decomposition tree

- Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

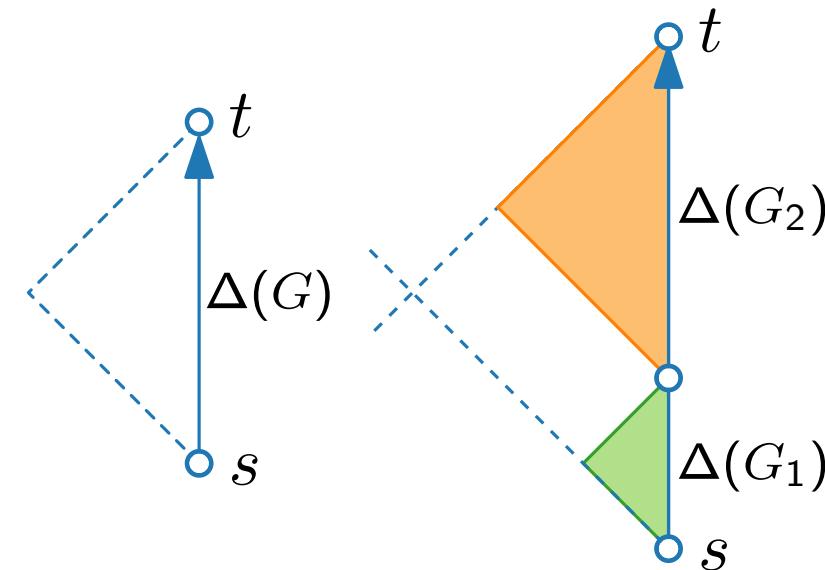
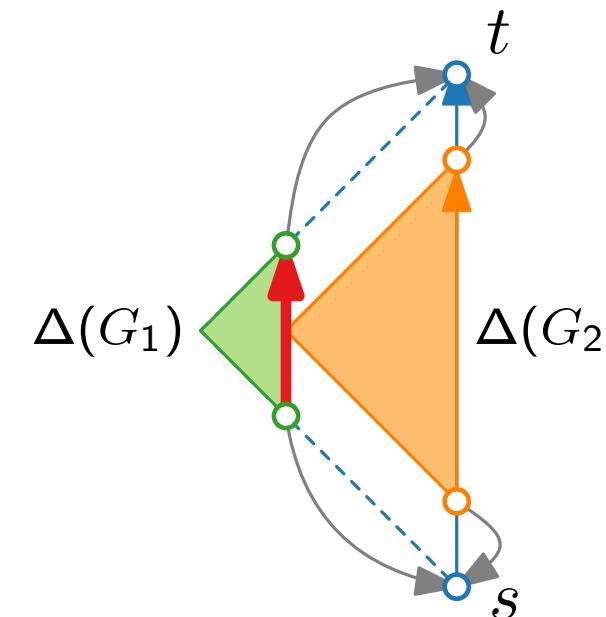
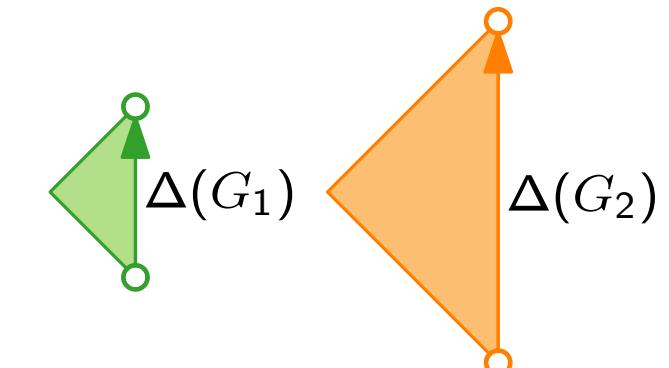
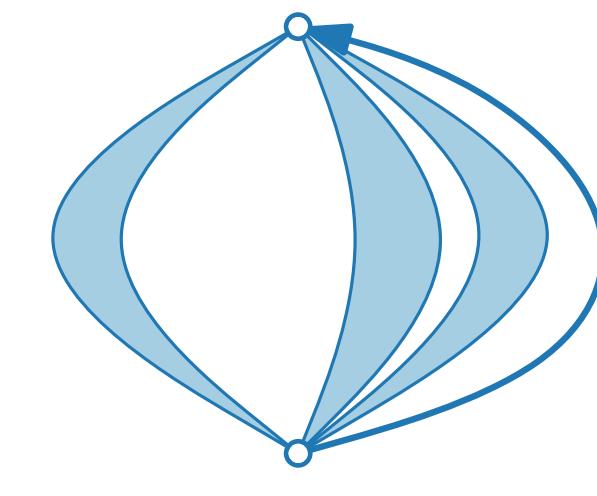
Base case: Q-nodes

Divide: Draw G_1 and G_2 first



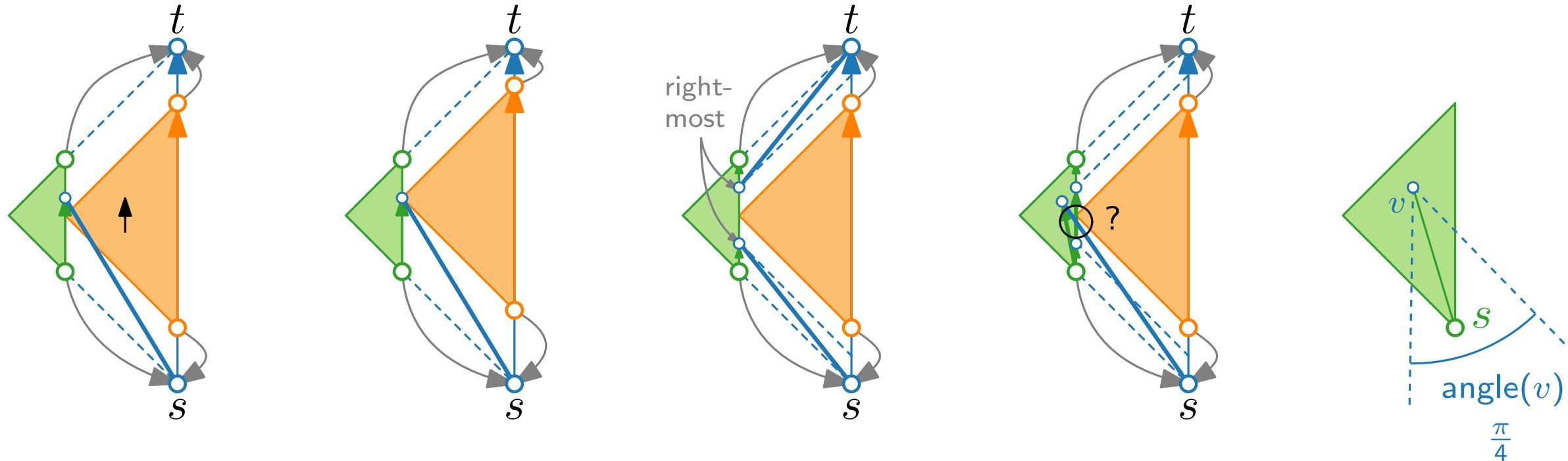
Conquer:

- S-nodes: series compositions
- P-nodes: parallel compositions



Series-Parallel Graphs – Straight-Line Drawings

- What makes parallel composition possible without creating crossings?



- This condition **is** preserved during the induction step.

Assume the following holds:
the only vertex in $\text{angle}(v)$ is s

Lemma.

The drawing produced by the algorithm is planar.

Series-Parallel Graphs – Result

Theorem.

Let G be a series-parallel graph. Then G (with **variable embedding**) admits a drawing Γ that

- is upward planar,
- is straight-line, and
- uses quadratic area.
- Isomorphic components of G have congruent drawings up to translation.

Γ can be computed in linear time.

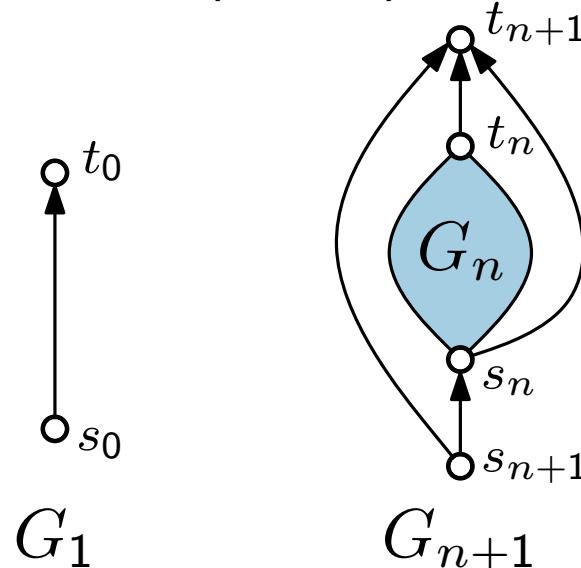
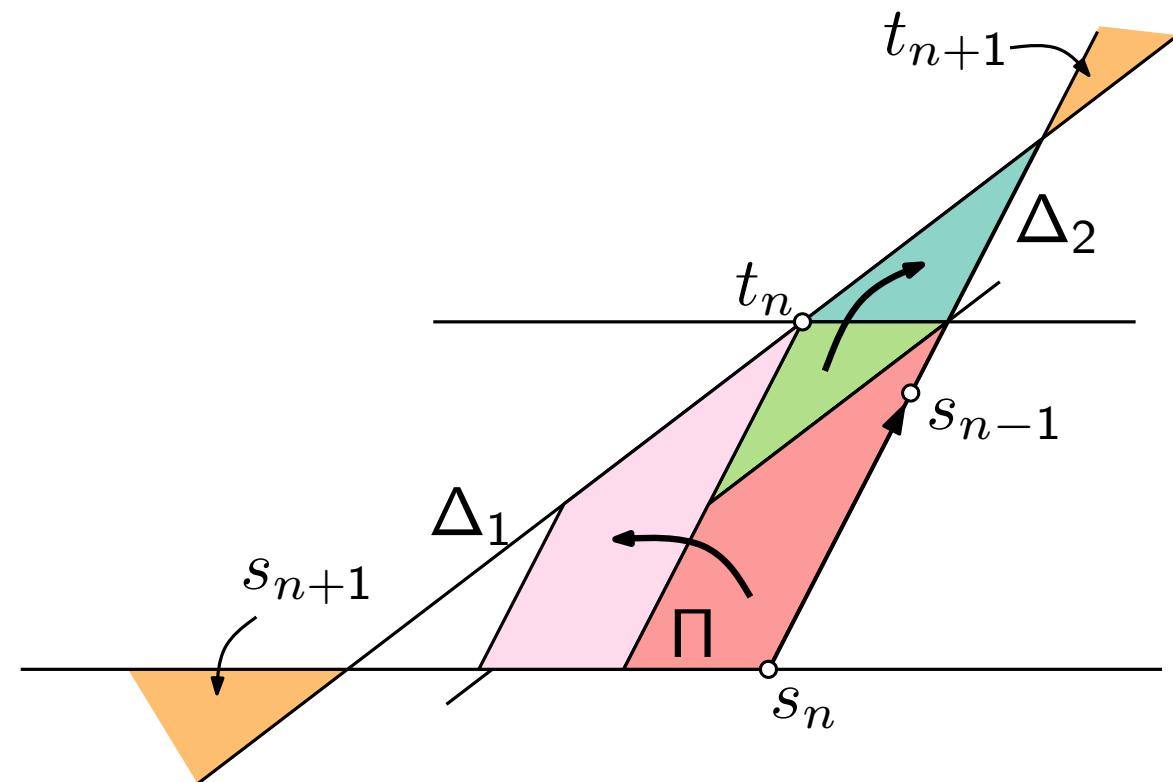
Series-Parallel Graphs – Fixed Embedding

Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any $n \geq 1$, there exists a $2n$ -vertex series-parallel graph G_n in an embedding such that any upward planar straight-line drawing of G_n that respects the given embedding requires $\Omega(4^n)$ area.

- $2 \cdot \text{Area}(G_n) < \text{Area}(\Pi)$
- $2 \cdot \text{Area}(\Pi) \leq \text{Area}(G_{n+1})$
- $\Rightarrow 4 \cdot \text{Area}(G_n) < \text{Area}(G_{n+1})$



Discussion

- There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy & Lynch 2005, Didimo et al. 2009]

- Finding a consistent assignment (Theorem 2) can be sped up to $\mathcal{O}(n + r^{1.5})$, where $r = \# \text{sources}$.

[Abbasi, Healy, Rextin 2010]

- Many related concepts have been studied:
upward drawings of mixed graphs, upward drawings with layers for the vertices,
upward planarity on cylinder/torus, upward k -planarity, . . .

Literature

- [GD Ch. 6] Detailed explanation on upward planarity.
- [GD Ch. 3] Divide-and-conquer methods for series-parallel graphs.

Orginal papers referenced:

- [Kelly '87] Fundamentals of Planar Ordered Sets
- [Di Battista & Tamassia '88] Algorithms for Plane Representations of Acyclic Digraphs
- [Garg & Tamassia '95]
On the Computational Complexity of Upward and Rectilinear Planarity Testing
- [Hutton & Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs
- [Bertolazzi, Di Battista, Mannino, Tamassia '94]
Upward Drawings of Triconnected Digraphs
- [Healy & Lynch '05] Building Blocks of Upward Planar Digraphs
- [Didimo, Giordano, Liotta '09] Upward Spirality and Upward Planarity Testing
- [Abbasi, Healy, Rextin '10]
Improving the running time of embedded upward planarity testing