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Upward Planar Drawings — Motivation

B What may the direction of edges in a directed graph represent?

B We aim for drawings where the general direction is preserved.
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Upward Planar Drawings — Detinition

A directed graph (digraph) is upward planar when it admits a drawing
B that is planar and

B where each edge Is drawn as an upward y-monotone curve.



Upward Planarity — Necessary Conditions

B For an (embedded) digraph to be upward planar, it needs to ...
B be planar

B be acyclic

B have a bimodal embedding

B ...but these conditions are not sufficient. — Exercise

bimodal vertex not bimodal

T X ¥



Upward Planarity — Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]
For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.
— Y——
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Additionally: no Crossings l

Embedded such
that s and ¢ are on

acyclic digraph with
the outer face fp.

a single and a single sink ¢

\
or:
Edge (s,1) exists.




Upward Planarity — Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]
For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.
(2) = (1) By definition. (1) = (3) For the proof idea, see the example above.

(3) = (2) Triangulate & construct drawing: Idea: Contract 1!

Claim. Case 1: ! Case 2: ! t
Can be drawn  chord no chord

in pre-specified .
triangle. — two smaller -
Induction on the Instances; solve Place u
number of vertices n. inductively close to v.



Upward Planarity — Complexity

Theorem. [Garg & Tamassia, 1995]
Given a planar acyclic digraph G,
it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994]

Given an embedded planar digraph G,
it can be tested in quadratic time whether GG is upward planar.

Corollary.
Given a triconnected planar digraph G,
it can be tested in quadratic time whether G is upward planar.

Theorem. [Hutton & Lubiw, 1996]
Given an acyclic single-source digraph G,
it can be tested in linear time whether GG is upward planar.



The Problem

Fixed Embedding Upward Planarity Testing.
Let G be a plane digraph, let F' be the set of faces of G,

and let fy be the outer face of G.
Test whether G is upward planar (w.r.t. to F' and fy).

Plan.
B Find a property that any upward planar drawing of G satisfies.

B Formalize this property.
B Specify an algorithm to test this property.



Angles, Local Sources & Sinks

Definitions.

A vertex v is a local source w.r.t. to a face f
if v has two outgoing edges on @f.~ boundary of f

A vertex v is a local sink w.r.t. to a face f
if v has two incoming edges on Of.

An angle « at a local source/sink is large
if a > 7 and small otherwise.

L(v) = # large angles at v

L(f) = # large angles in f
S(v) = # small angles at v

S(f) = # small angles at f I]E?%T-aSl(.f) = 2A(f)

A([) = # local sources w.r.t. to f
= # local sinks w.r.t. to f

- 28



Assignment Problem

B Observe that the global sources and global sinks have precisely one large angle.
B All other vertices have only small angles.
B Let v be a global source and let it be incident to faces f; and f>.

B Does v have a large angle in f1 or 157



10 - 14

Angle Relations

Lemma 2. Proof by induction on L(f).

L(f) - S(f) = {+2 o . L(f) =0 @ = 5(f)=2
mL(f)>1
Split f with edge from a large angle at a “low” sink u to...
B sink v with small angle:
—2 —2

L(f) = S(f) =L(f1) +L(f2) + 1
—(S(f1) +S(f2) — 1)
0 _242=
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Angle Relations

Lemma 2. Proof by induction on L(f).

L(f)S(f)={;§ e min=0 @ S 5()=2

mL(f)>1
Split f with edge from a large angle at a “low” sink u to...

B sink v with small/large angle:

—2 —2

L(f) = S(f) =L(f1) +L(f2) + 1
—(S(f1) +S(f2) — 1)
0 _242=
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Angle Relations

Lemma 2. Proof by induction on L(f).

L(f)S(f)={+2 fr— mL(f)=0 @ =S(f)=2

mL(f)>1
Split f with edge from a large angle at a “low” sink u to...

B source v withsmratt/large angle:
—2 —2

L(f) = S(f) =L(f1) +'L(f2) + 2

— (S(f1) +5(f2))
2 _242=0
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Angle Relations

Lemma 2. Proof by induction on L(f).

L(f)S(f)={;§ e min=0 @ > 5(N=2 ¢

mL(f)>1
Split f with edge from a large angle at a “low” sink u to...

B vertex v that is neither source nor sink:

—2 —2

L(f) = 5(f) =L(fr) +L(f2) + 1
- (5(f1) + 5(12) - 1)
=—2-242=-2
B Otherwise “high” exists. — symmetric

m Similar argument for the outer face fp.
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Number of Large Angles

Proof. Lemma 1: L(f)+ S(f) =2A([)
Lemma 2: L(f) — S(f) = £2.

= 2L(f) =2A(f) £ 2.

/N N



Assignment of Large Angles to Faces

Let 5 be the set of (global) , and let T be the set of (global) sinks.

Definition.
A consistent assignment : SUT — F'is a mapping with

®: v — incident face, where v forms a large angle

such that

()l = L(f)

12 -



Example of Angle-to-Face Assignment

13-8

oo global & sinks
# local /sinks of f
L(f) = # large angles of f

\ J

“ P SUT - F

assignment



Result Characterization

Theorem 3.
Let G be an acyclic plane digraph with embedding given by F' and fj.

Then G is upward planar (respecting F' and fj)
& (G is bimodal and there exists a consistent assignment ©.

Proof.
=: As constructed before.

<: |ldea:
B Construct planar st-digraph that is a supergraph of G.

B Apply equivalence from Theorem 1.

A

GG is upward planar < G is a spanning subgraph of a planar st-digraph.

14 -



Refinement Algorithm: ©, F, fy — st-digraph

Let f be a face.
Consider the clockwise angle sequence o of L / S on local

B Goal: Add edges to break large angles ( and sinks).
B For f # fo with |o¢| > 2 containing (L, S, S) at vertices

m = insert edge (2, x)

and sinks of f.

15 -
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Refinement Algorithm: ©, F, fy — st-digraph

Let f be a face.
Consider the clockwise angle sequence o of L / S on local and sinks of f.

B Goal: Add edges to break large angles ( and sinks).
B For f # fo with |o¢| > 2 containing (L, S, S) at vertices

m = insert edge (2, x)

B x sink = insert edge (z, 2).
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Refinement Algorithm: ©, F, fy — st-digraph

Let f be a face.

Consider the clockwise angle sequence o of L / S on local and sinks of f.
B Goal: Add edges to break large angles ( and sinks).
B For f # fo with |o¢| > 2 containing (L, S, S) at vertices
m = insert edge (2, x)
B x sink = insert edge (z, 2).
B Refine outer face fy similarly. p
— Exercise S

B Refine all faces. = G is contained in a planar st-digraph.

B Planarity, acyclicity, bimodality are invariants under construction.



Refinement Example




Refinement Example










Result Upward Planarity Test

Theorem 2. |[Bertolazzi, Di Battista, Mannino, Tamassia '94]
Given an embedded planar digraph G,
we can test in quadratic time whether G is upward planar.

Proof.

Test for bimodality.
Test for a consistent assignment ® (via flow network).
f G bimodal and ¢ exists, refine G to plane st-digraph H.

Draw H upward planar.

Deleted edges added in refinement step.

17 -



18- 16

Finding a Consistent Assignment

Idea. Flow (v, f) =1
from global source / sink v to the incident face f its large angle gets assigned to.

nodes of flow network edges of flow network lower /upper bounds on edge capcities

H /supplies/demands ofnodey/
Flow network. /—’{/ff Example.

Np £, (G) = (W, E"); b; £; u)
BW={veV(G)|v source or sigk} U F(’)(G)
mE ={(v,f)|vincident to f} —.

B /e)=0VeecFE
B ule)=1Vee F
1 Vw e WNV(G)
m b(w) = { —(A(0) ~ 1) Yw e F(G)\ {fo}
(M) +1) w=f
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Series-Parallel Graphs

A graph G is series-parallel if
B it contains a single (directed) edge (s,t), or
B it consists of two series-parallel graphs ¢, G5

with sources s1, s> and sinks 1, > that are
combined using one of the following rules:

Series composition
(7

S1 S2

20 -

¢ Convince yourself
that series-parallel
graphs are (upward)
S planar!

Parallel composition

t1 =1




Series-Parallel Graphs — Decomposition Tree

A decomposition tree of (G is a binary tree 1" with nodes of three types: S, P and Q.

B A Q-node represents a single edge.

B An S-node represents a series composition;
its children 77 and 75 represent and G>.

B A P-node represents a parallel composition;
Its children and 75 represent and (5

@ A@\

21 -



Series-Parallel Graphs — Decomposition Example



Series-Parallel Graphs — Applications

Flowcharts PERT-Diagrams

(Program Evaluation and Review Technique)

Computational complexity:

Series-parallel graphs often admit linear-time algorithms for problems that are NP-hard
in general, e.g., minimum maximal matching, maximum independent set, Hamiltonian
completion.

23 -



Series-Parallel Graphs — Drawing Style

Drawing conventions
m Planarity

B Straight-line edges
m Upward

Drawing aesthetics to optimize
B Area

B Symmetry

24 -



Series-Parallel Graphs — Straight-Line Drawings

t
Divide-and-conquer algorithm using the decomposition tree
B Invariant: draw G inside a right-angled isosceles bounding triangle A(G) A(G)
with s at the bottom and ¢ at the top
Base case: Q-nodes Divide: Draw GG; and G5 first S

Conquer:
B S-nodes: series compositions <IA(G1) A(G))
B P-nodes: parallel compositions )

Do you see any problem?

A(G)) single edge

change embedding!

25 -16



Series-Parallel Graphs — Straight-Line Drawings

Divide-and-conquer algorithm using the decomposition tree

B Invariant: draw G inside a right-angled isosceles bounding triangle A(G) A(G)
with s at the bottom and ¢ at the top

Base case: Q-nodes Divide: Draw GG; and G5 first S

Conquer:

B S-nodes: series compositions <IA(G1) A(G))
B P-nodes: parallel compositions

25-19



26 - 16

Series-Parallel Graphs — Straight-Line Drawings

B What makes parallel composition possible without creating crossings?

' angle(v)

Assume the following holds:
the only vertex in angle(v) is s

B This condition is preserved during the induction step.

Lemma.
The drawing produced by the algorithm is planar.



Series-Parallel Graphs — Result

Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing [ that

W is upward planar,
W is straight-line, and
M uses quadratic area.

B Isomorphic components of G have congruent drawings
up to translation.

[ can be computed in linear time.
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Series-Parallel Graphs — Fixed Embedding

Theorem. |[Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any n > 1, there exists a 2n-vertex series-parallel graph G,
in an embedding such that any upward planar straight-line drawing
of G,, that respects the given embedding requires 2(4™) area.

B 2 Area(G,) < Area(I)
B 2-Area(ll) < Area(Gpi1)
= 4 - Area(G,,) < Area(Gp41)




29 -

Discussion

B There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs
with the parameter being the number of triconnected components.

[Healy & Lynch 2005, Didimo et al. 2009]

® Finding a consistent assignment (Theorem 2) can be sped up to O(n + r1°),
where r = # . [Abbasi, Healy, Rextin 2010]

B Many related concepts have been studied:
upward drawings of mixed graphs, upward drawings with layers for the vertices,
upward planarity on cylinder/torus, upward k-planarity, ...
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| iterature

B [GD Ch. 6] Detailed explanation on upward planarity.
®m [GD Ch. 3] Divide-and-conquer methods for series-parallel graphs.

Orginal papers referenced:
B [Kelly '87] Fundamentals of Planar Ordered Sets

B Di Battista & Tamassia '88| Algorithms for Plane Representations of Acyclic Digraphs

B [Garg &Tamassia '95]
On the Computational Complexity of Upward and Rectilinear Planarity Testing

B [Hutton & Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs

B [Bertolazzi, Di Battista, Mannino, Tamassia '94|
Upward Drawings of Triconnected Digraphs

B [Healy & Lynch '05] Building Blocks of Upward Planar Digraphs
B Didimo, Giordano, Liotta '09] Upward Spirality and Upward Planarity Testing

B [Abbasi, Healy, Rextin '10]
mproving the running time of embedded upward planarity testing
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