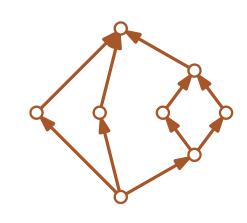
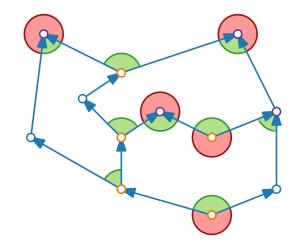


Visualization of Graphs

Lecture 5: Upward Planar Drawings



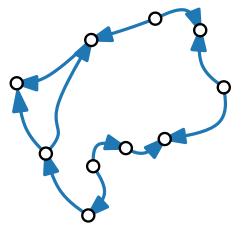


Part I: Recognition

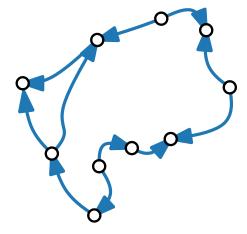
Alexander Wolff



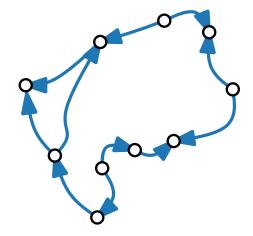
Summer term 2025

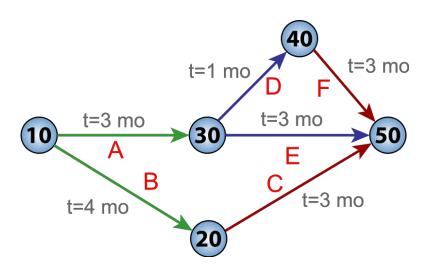


What may the direction of edges in a directed graph represent?



- What may the direction of edges in a directed graph represent?
 - Time

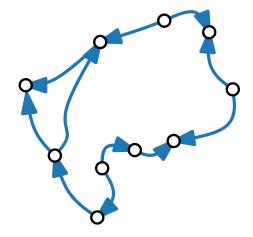


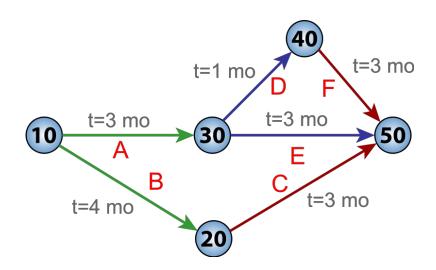


PERT diagram

Program Evaluation and Review Technique (Project management)

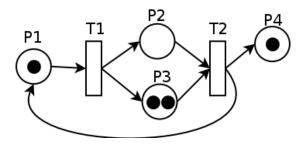
- What may the direction of edges in a directed graph represent?
 - Time
 - Flow





PERT diagram

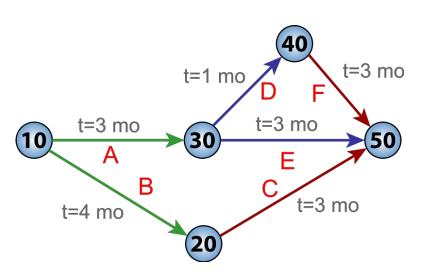
Program Evaluation and Review Technique (Project management)



Petri net

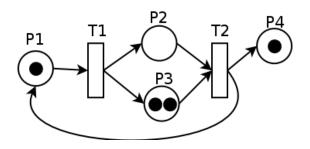
Place/Transition net (Modeling languages for distributed systems)

- What may the direction of edges in a directed graph represent?
 - Time
 - Flow
 - Hierarchy



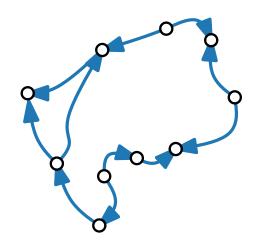
PERT diagram

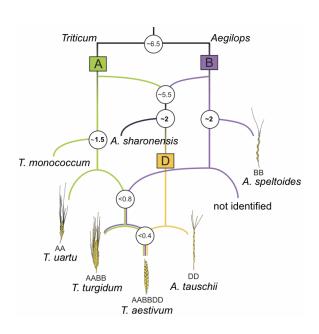
Program Evaluation and Review Technique (Project management)



Petri net

Place/Transition net (Modeling languages for distributed systems)

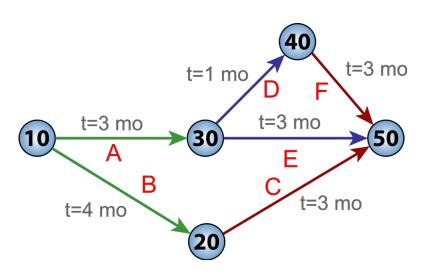




Phylogenetic network

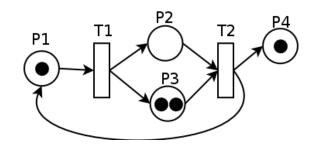
Ancestral trees / networks (Biology)

- What may the direction of edges in a directed graph represent?
 - Time
 - Flow
 - Hierarchy



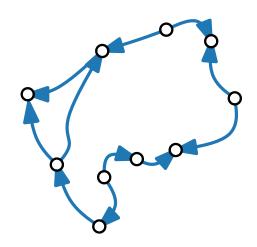
PERT diagram

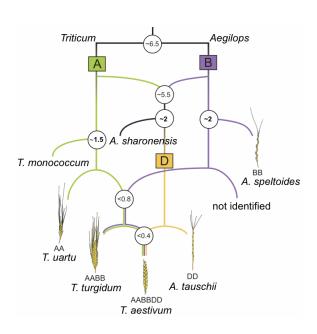
Program Evaluation and Review Technique (Project management)



Petri net

Place/Transition net (Modeling languages for distributed systems)

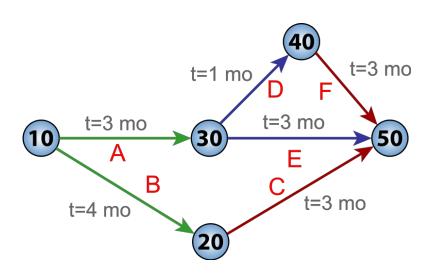




Phylogenetic network

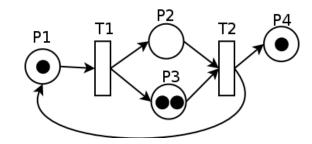
Ancestral trees / networks (Biology)

- What may the direction of edges in a directed graph represent?
 - Time
 - Flow
 - Hierarchy
 - ...
- We aim for drawings where the general direction is preserved.



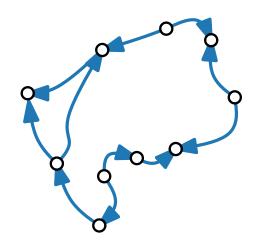
PERT diagram

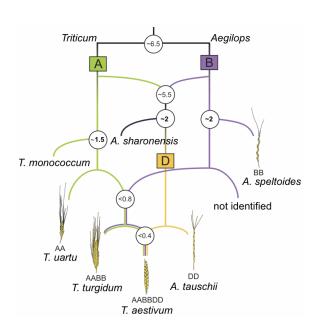
Program Evaluation and Review Technique (Project management)



Petri net

Place/Transition net (Modeling languages for distributed systems)

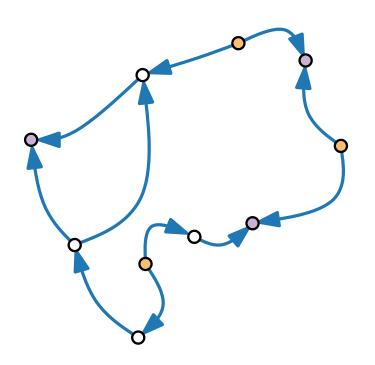




Phylogenetic network

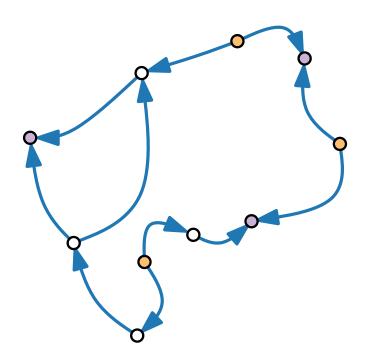
Ancestral trees / networks (Biology)

A directed graph (digraph) is upward planar when it admits a drawing



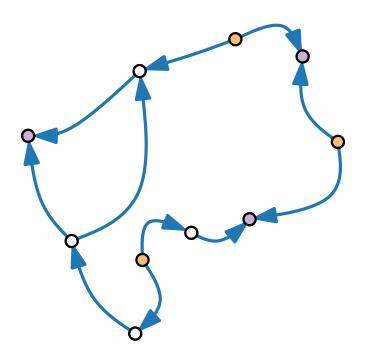
A directed graph (digraph) is upward planar when it admits a drawing

that is planar



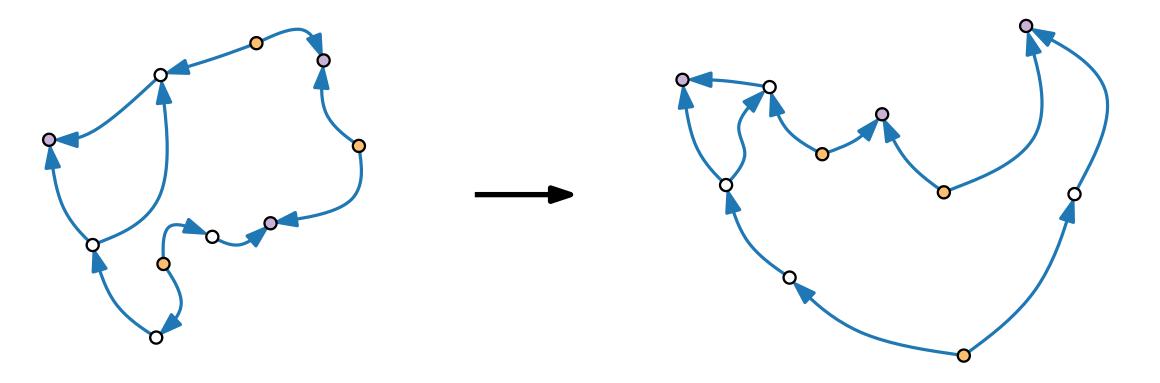
A directed graph (digraph) is upward planar when it admits a drawing

- that is planar and
- where each edge is drawn as an upward y-monotone curve.



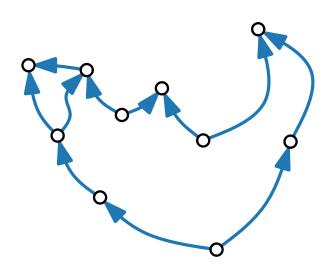
A directed graph (digraph) is upward planar when it admits a drawing

- that is planar and
- where each edge is drawn as an upward y-monotone curve.

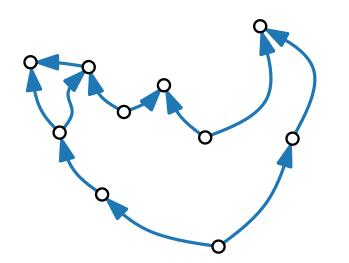


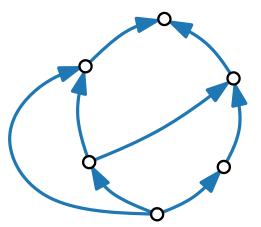
■ For an (embedded) digraph to be upward planar, it needs to

- For an (embedded) digraph to be upward planar, it needs to
 - be planar

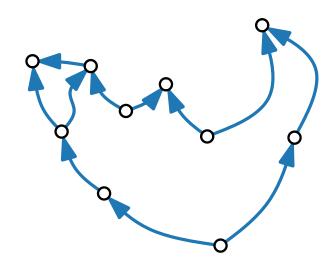


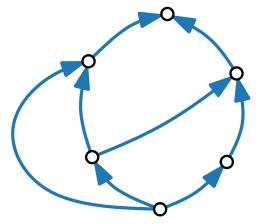
- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic

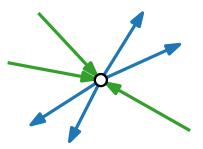




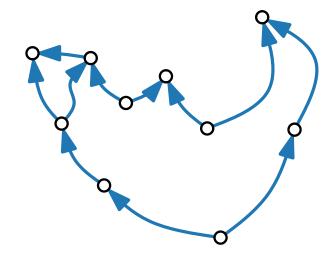
- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic

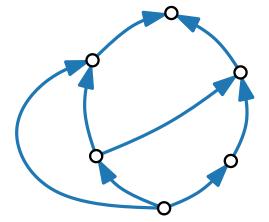


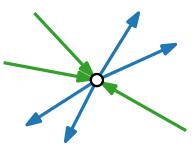




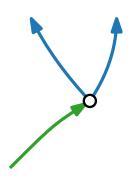
- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic

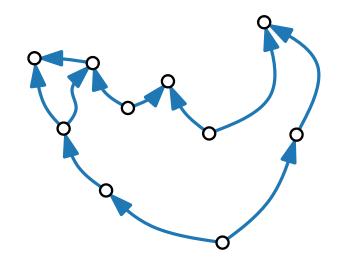


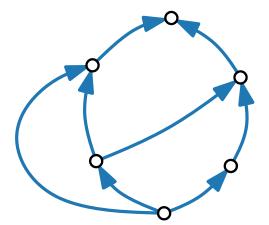


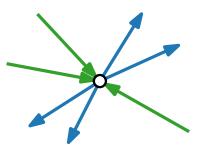


- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic

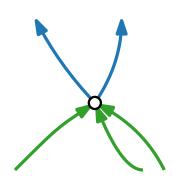


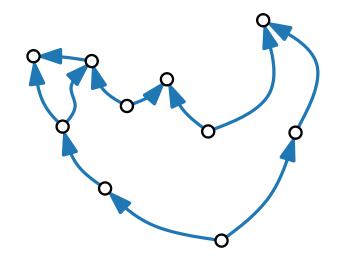


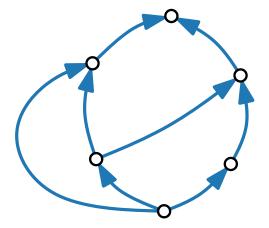


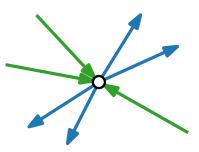


- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic

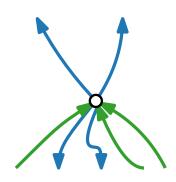


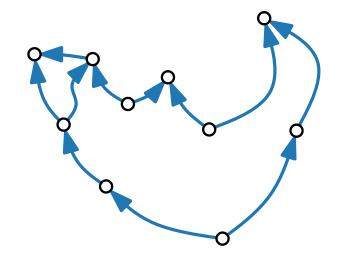


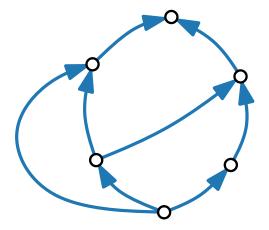


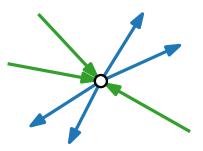


- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic

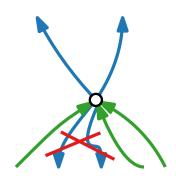


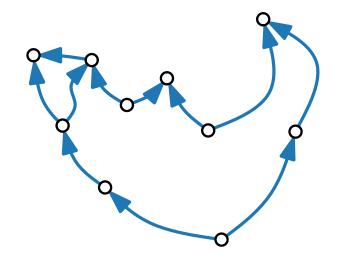


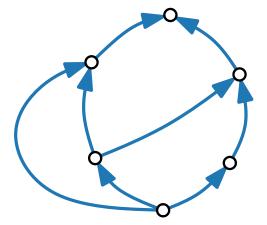


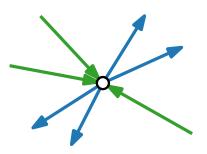


- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic

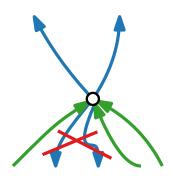


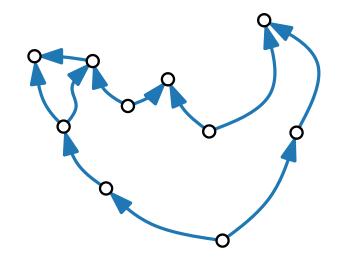


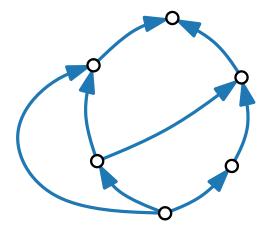


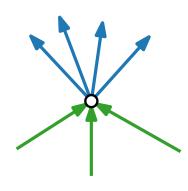


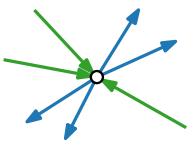
- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic



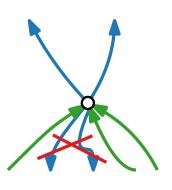


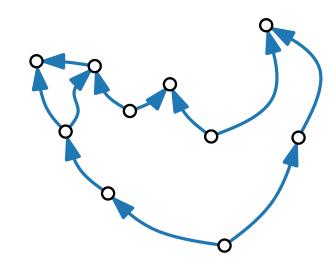


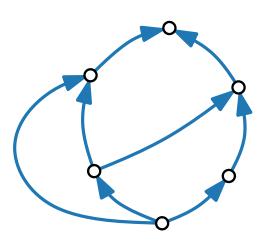


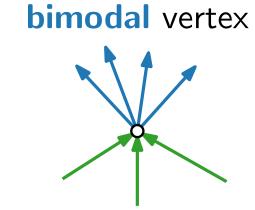


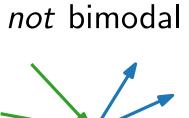
- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic



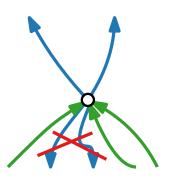


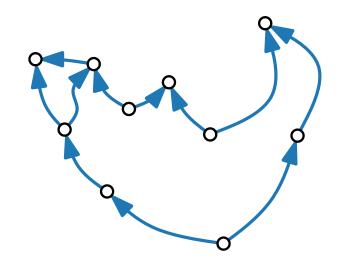


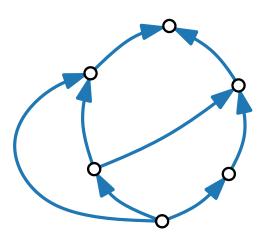


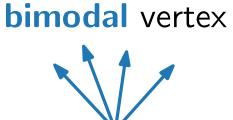


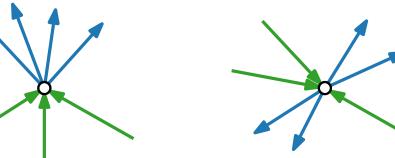
- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic
 - have a bimodal embedding





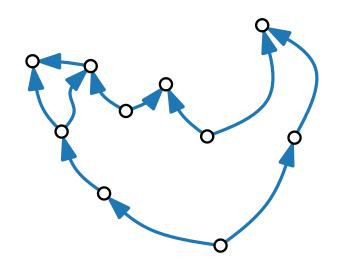




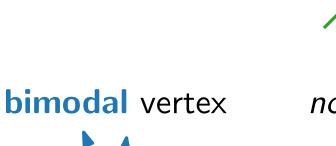


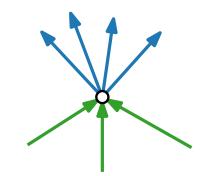
not bimodal

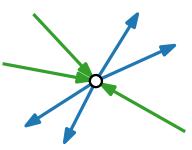
- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic
 - have a bimodal embedding
- ... but these conditions are not sufficient.



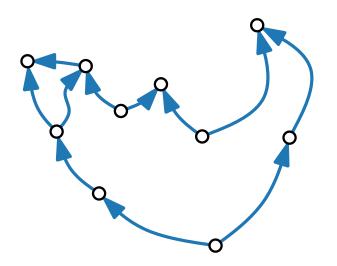


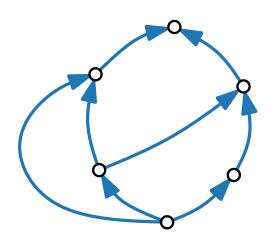


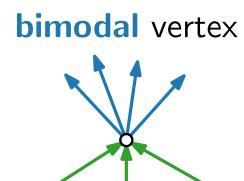


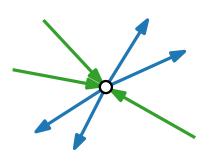


- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic
 - have a bimodal embedding
- **Let up** but these conditions are *not sufficient*. \rightarrow **Exercise**









Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent: (1) G is upward planar.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

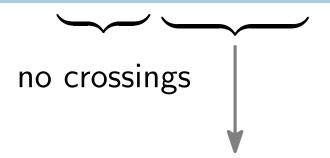
- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

no crossings

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

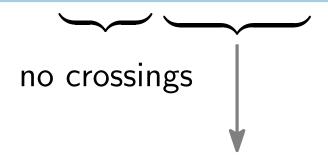


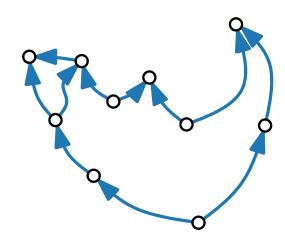
acyclic digraph with a single source s and a single sink t

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

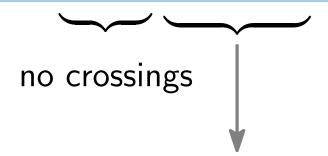


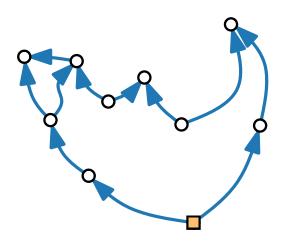


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

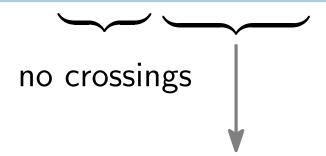


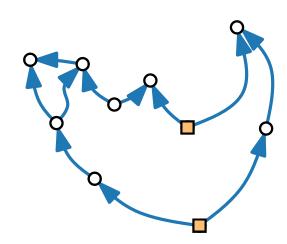


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

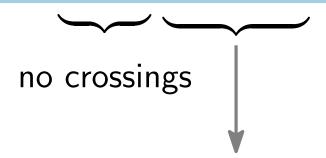


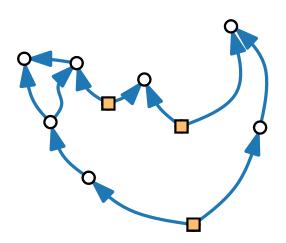


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

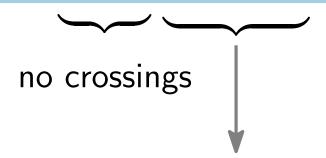




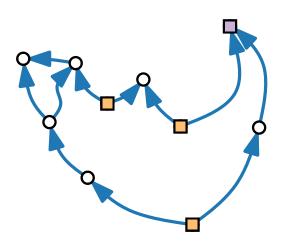
Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



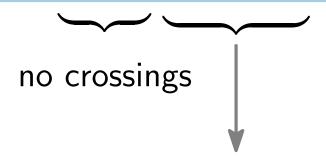
acyclic digraph with a single source \boldsymbol{s} and a single sink t



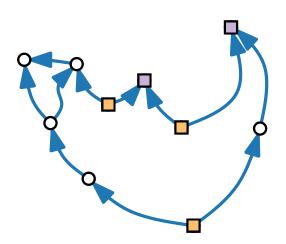
Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



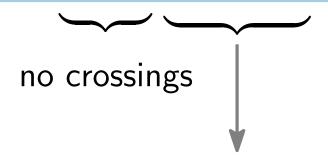
acyclic digraph with a single source s and a single sink t



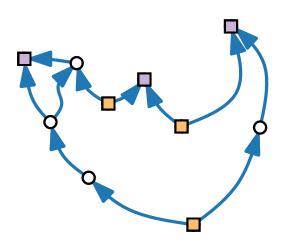
Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



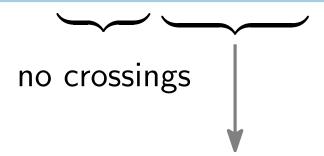
acyclic digraph with a single source s and a single sink t



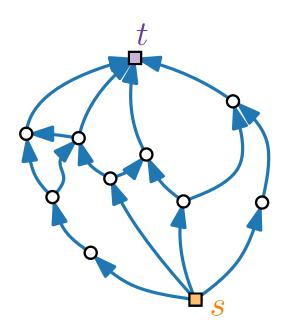
Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



acyclic digraph with a single source s and a single sink t



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

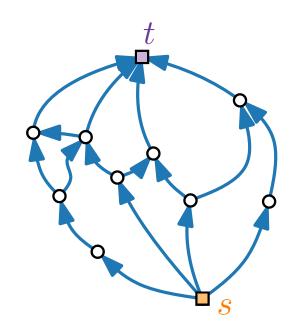
- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Additionally: Embedded such that s and t are on the outer face f_0 .

no crossings

acvclic digraph with

acyclic digraph with a single source \boldsymbol{s} and a single sink \boldsymbol{t}



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

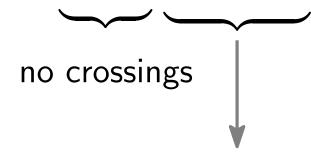
- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Additionally: Embedded such

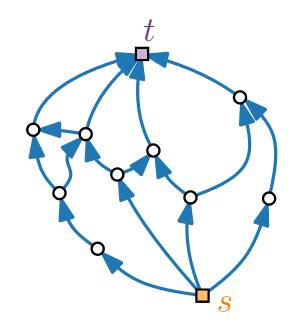
that s and t are on the outer face f_0 .

or:

Edge (s, t) exists.



acyclic digraph with a single source \boldsymbol{s} and a single sink \boldsymbol{t}



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

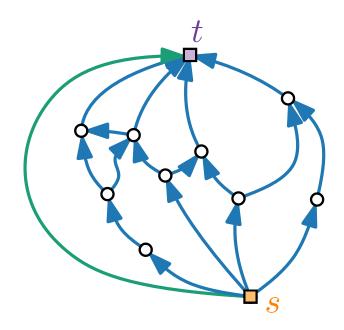
Additionally: Embedded such

that s and t are on the outer face f_0 .

or:

Edge (s, t) exists.

acyclic digraph with a single source \boldsymbol{s} and a single sink t

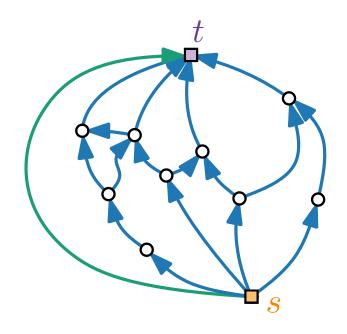


Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.



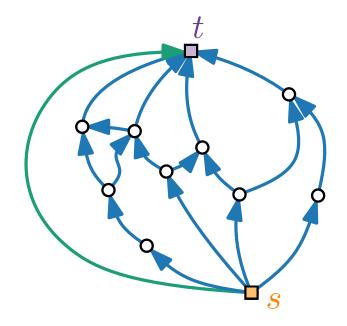
Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

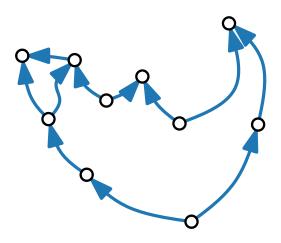
 $(2) \Rightarrow (1)$ By definition.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

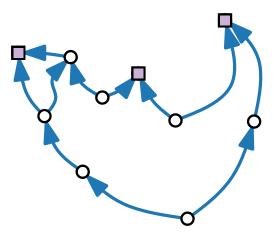


Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

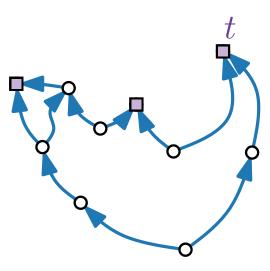


Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

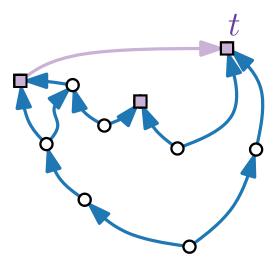


Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

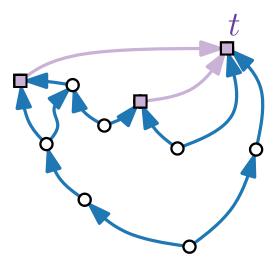


Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

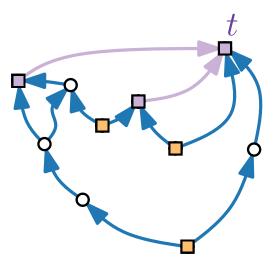


Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

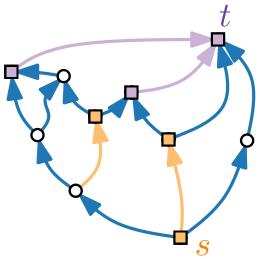
- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



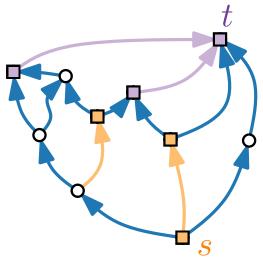
Proof.

$$(3) \Rightarrow (2)$$

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



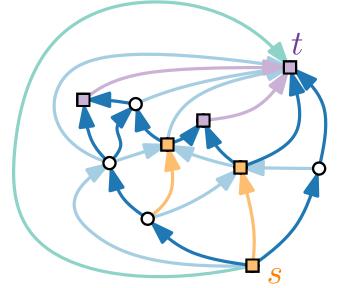
Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



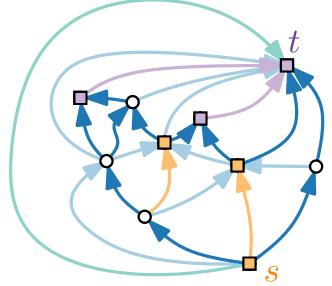
Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

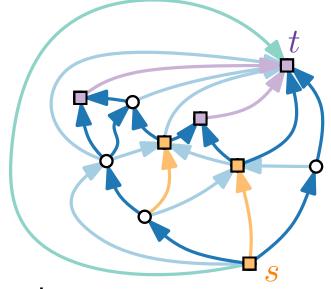
Claim.

Can be drawn in pre-specified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

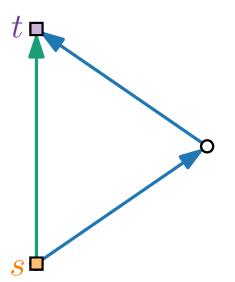


Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

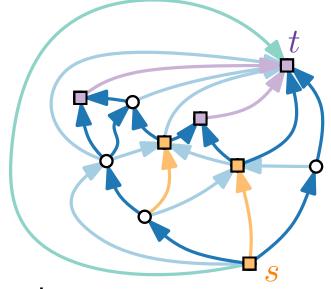
Can be drawn in pre-specified triangle.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

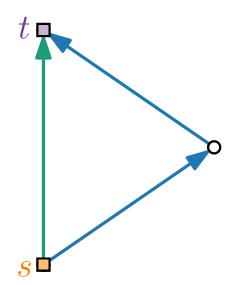


Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

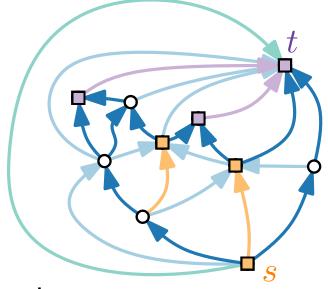
Can be drawn in pre-specified triangle.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

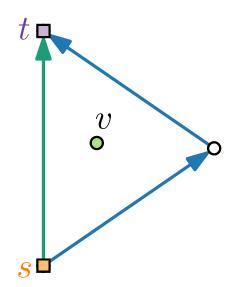


Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

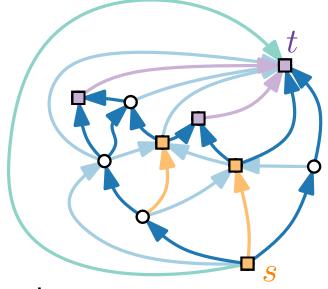
Can be drawn in pre-specified triangle.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

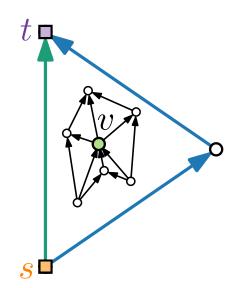


Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

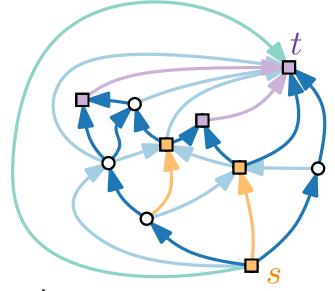
Can be drawn in pre-specified triangle.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



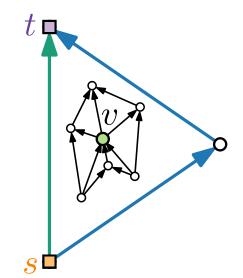
Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Case 1:

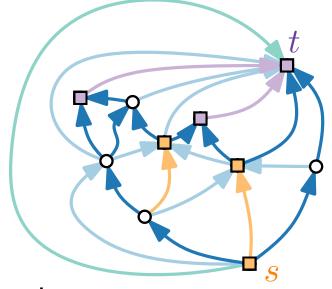
Can be drawn chord in pre-specified triangle.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



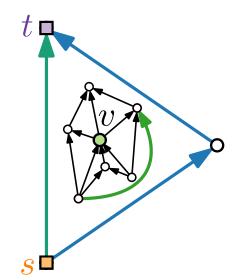
Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Case 1: chord

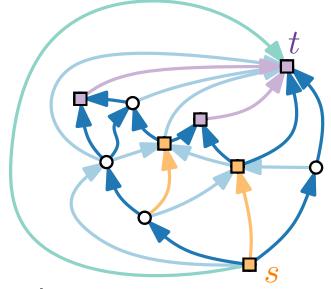
Can be drawn chord in pre-specified triangle.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



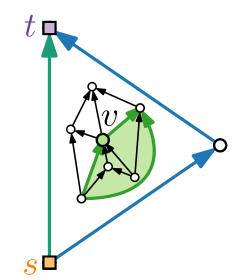
Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Case 1:

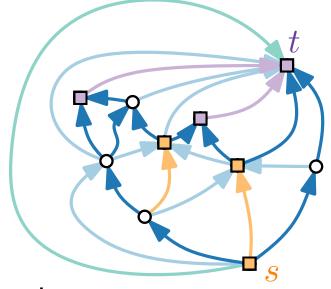
Can be drawn chord in pre-specified triangle.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

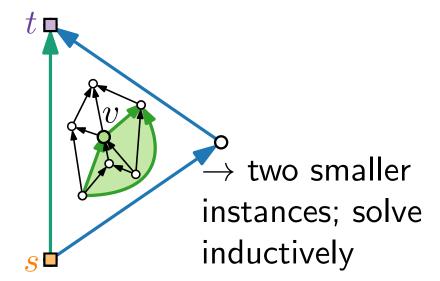


Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

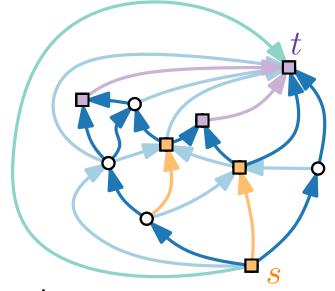
Case 1: Can be drawn chord in pre-specified triangle.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



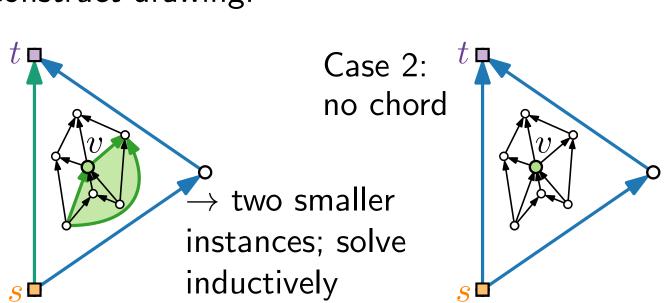
Proof.

- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Case 1:

Claim.

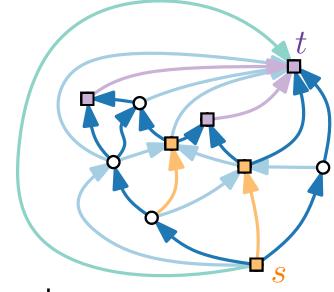
Can be drawn chord in pre-specified triangle.



Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



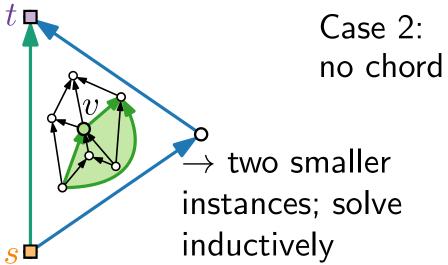
Proof.

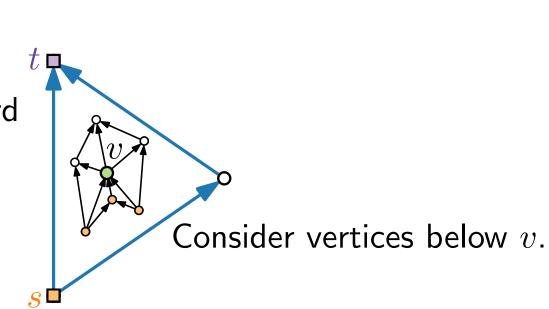
- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Case 1:

Claim.

Can be drawn chord in pre-specified triangle.

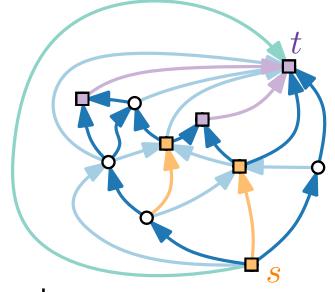




Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



Proof.

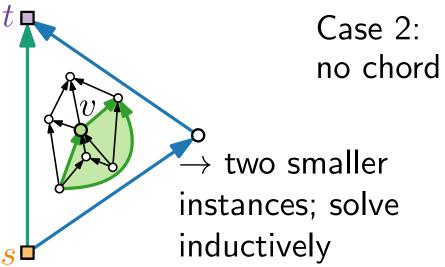
- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Case 1:

Claim.

Can be drawn chord in pre-specified triangle.

Induction on the number of vertices n.

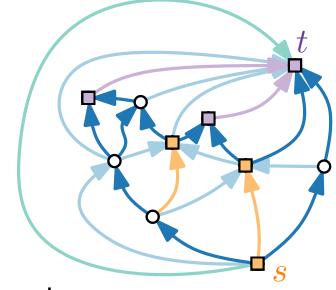


Consider vertices below v.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



Proof.

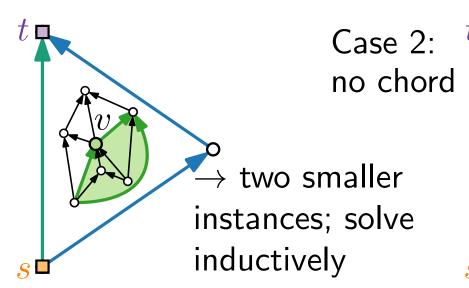
- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Case 1:

Claim.

Can be drawn chord in pre-specified triangle.

Induction on the number of vertices n.

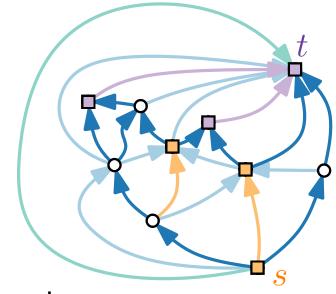


Consider vertices below v. Among these, take "highest."

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



Proof.

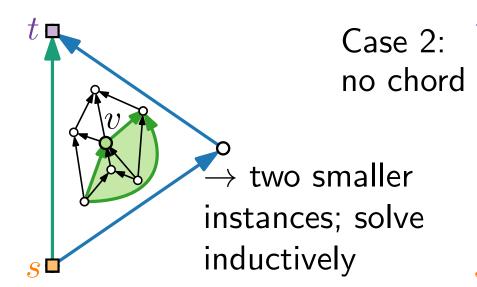
- $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.
- $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Case 1:

Claim.

Can be drawn chord in pre-specified triangle.

Induction on the number of vertices n.



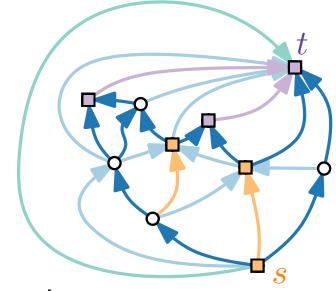
Idea: Contract uv!

Consider vertices below v. Among these, take "highest."

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



Proof.

 $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.

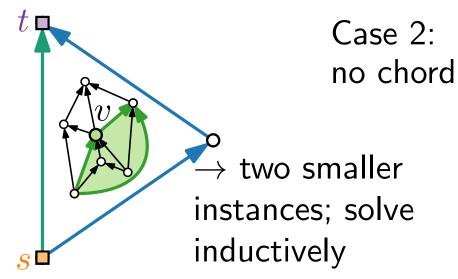
 $(3) \Rightarrow (2)$ Triangulate & construct drawing:

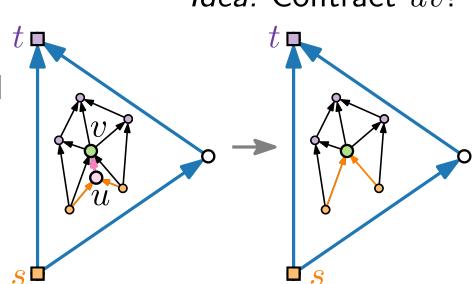
Case 1:

Idea: Contract uv!

Claim.

Can be drawn chord in pre-specified triangle.



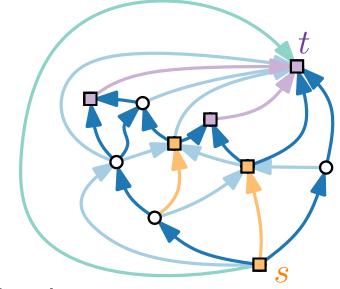


Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



Proof.

 $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.

 $(3) \Rightarrow (2)$ Triangulate & construct drawing:

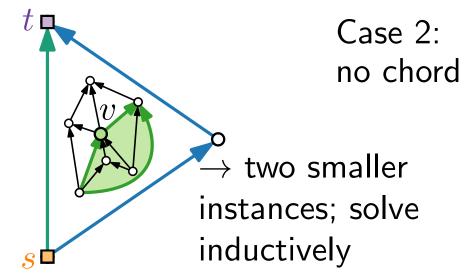
Case 1:

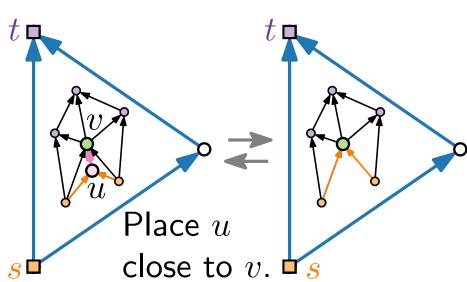
Idea: Contract uv!

Claim.

Can be drawn chord in pre-specified triangle.

Induction on the number of vertices n.





Given a planar acyclic digraph G, decide whether G is upward planar.

Theorem.

[Garg & Tamassia, 1995]

Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem.

[Garg & Tamassia, 1995]

Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994]

Given an embedded planar digraph G, it can be tested in quadratic time whether G is upward planar.

Theorem.

[Garg & Tamassia, 1995]

Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994]

Given an embedded planar digraph G, it can be tested in quadratic time whether G is upward planar.

Corollary.

Given a *triconnected* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Theorem.

[Garg & Tamassia, 1995]

Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994]

Given an *embedded* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Corollary.

Given a *triconnected* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Theorem.

[Hutton & Lubiw, 1996]

Given an acyclic single-source digraph G, it can be tested in linear time whether G is upward planar.

Theorem.

[Garg & Tamassia, 1995]

Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994]

Given an *embedded* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Corollary.

Given a *triconnected* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Theorem.

[Hutton & Lubiw, 1996]

Given an acyclic single-source digraph G, it can be tested in linear time whether G is upward planar.

The Problem

Fixed Embedding Upward Planarity Testing.

Let G be a plane digraph, let F be the set of faces of G, and let f_0 be the outer face of G.

Test whether G is upward planar (w.r.t. to F and f_0).

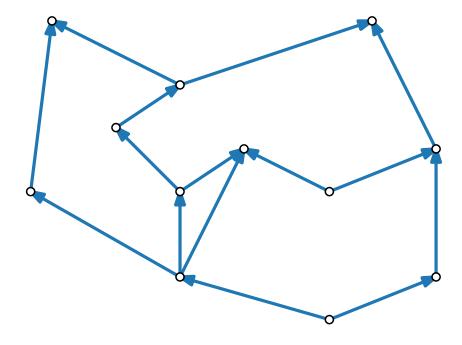
The Problem

Fixed Embedding Upward Planarity Testing.

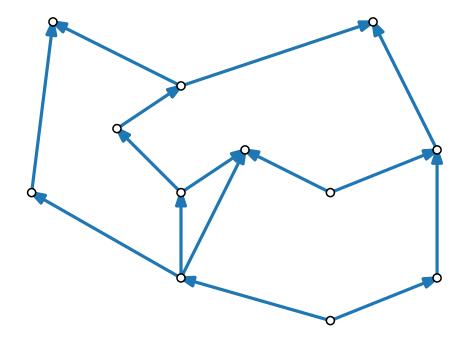
Let G be a plane digraph, let F be the set of faces of G, and let f_0 be the outer face of G. Test whether G is upward planar (w.r.t. to F and f_0).

Plan.

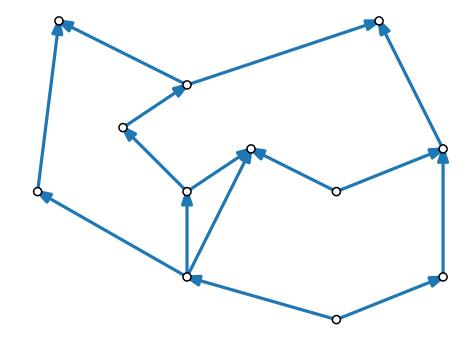
- lacktriangle Find a property that any upward planar drawing of G satisfies.
- Formalize this property.
- Specify an algorithm to test this property.



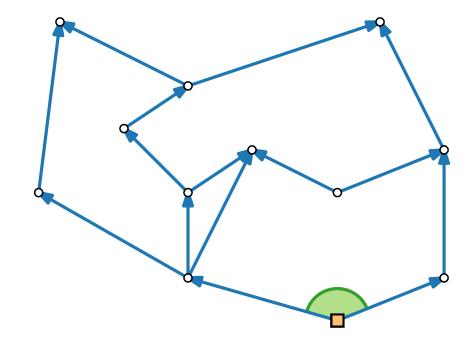
Definitions.



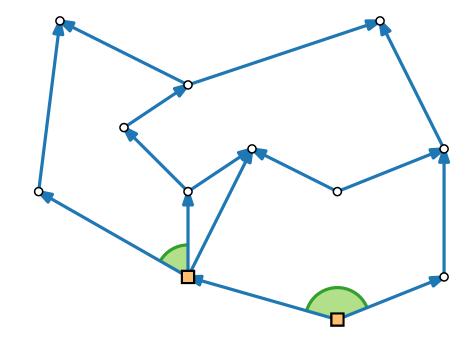
Definitions.



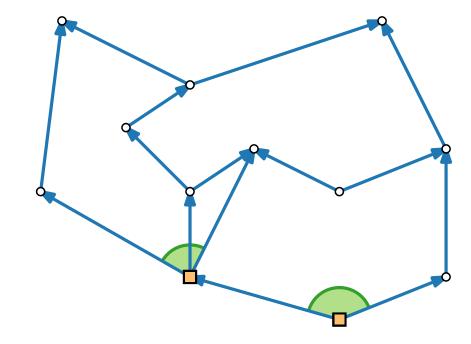
Definitions.



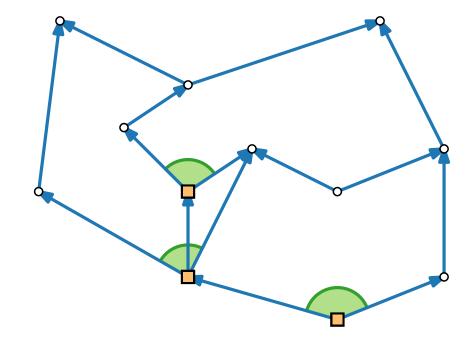
Definitions.



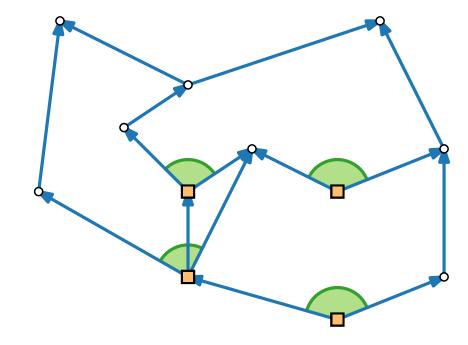
Definitions.



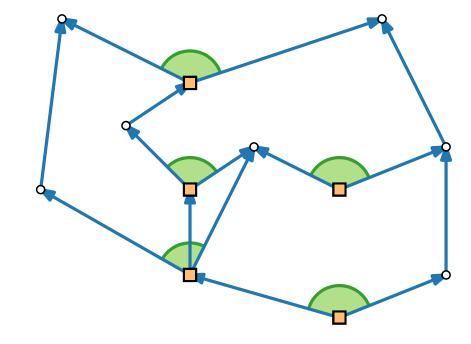
Definitions.



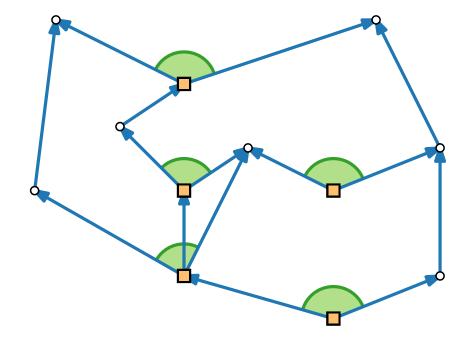
Definitions.



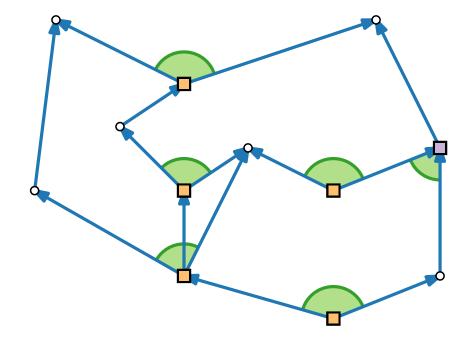
Definitions.



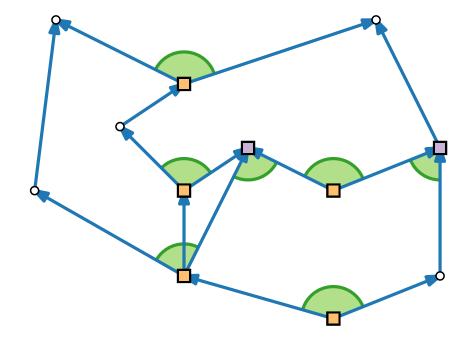
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .



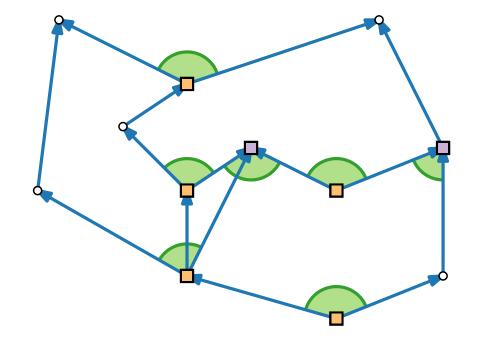
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .



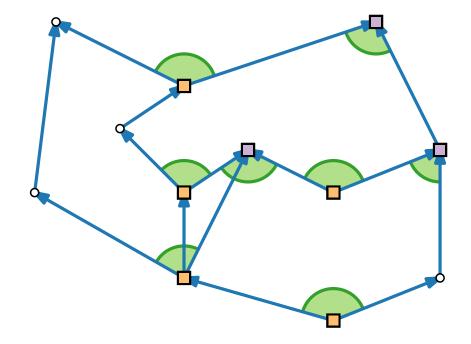
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .



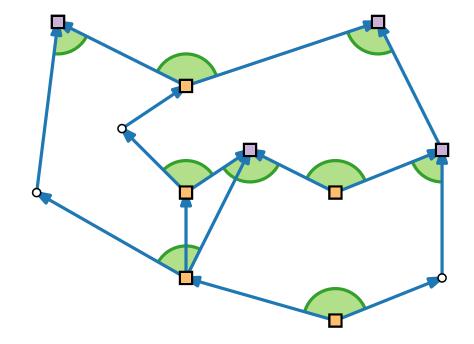
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .



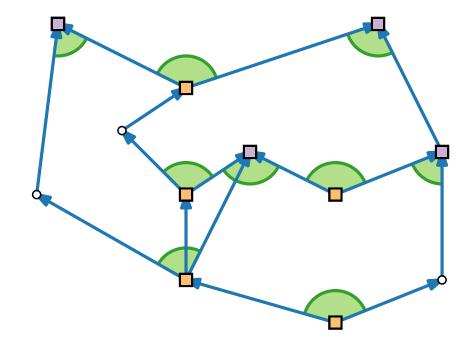
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .



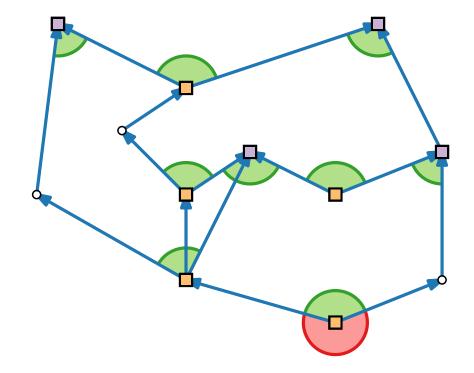
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .



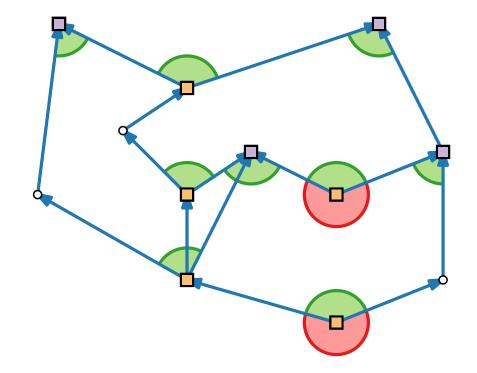
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.



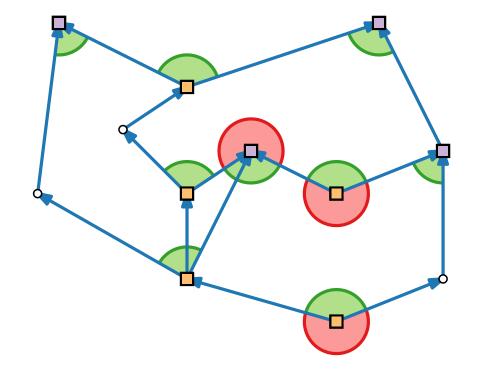
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.



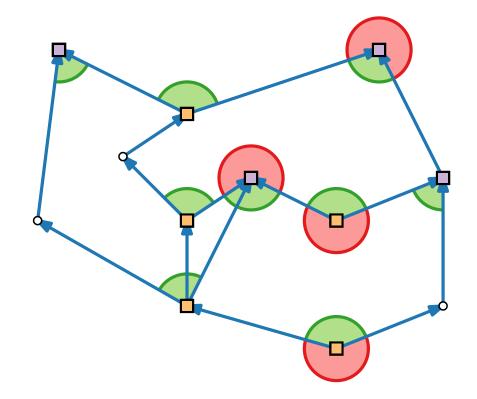
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.



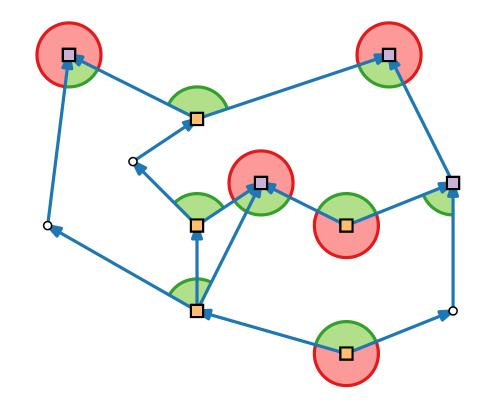
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.



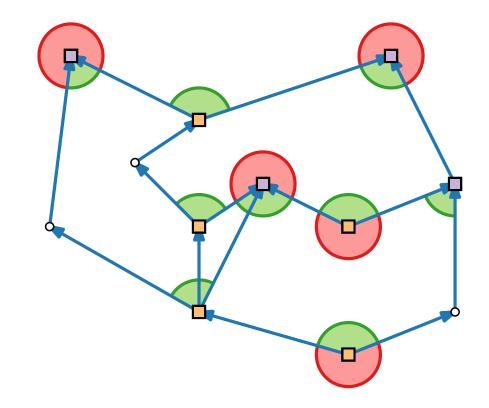
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.



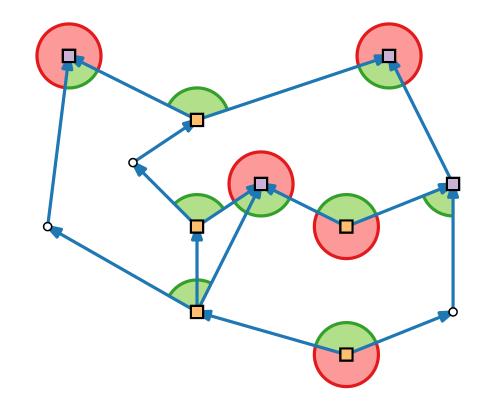
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.



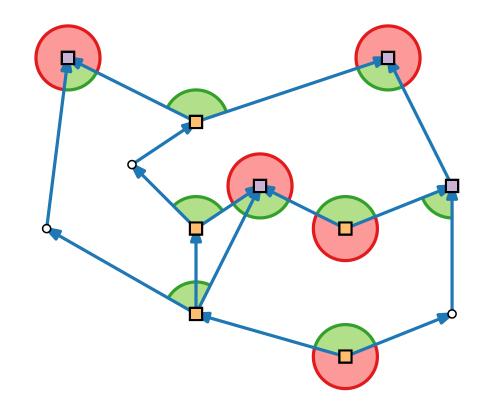
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.
- L(v) = # large angles at v



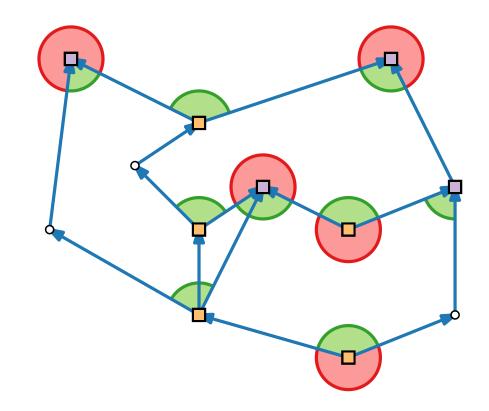
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.
- L(v) = # large angles at v
- lacksquare L(f) = # large angles in f



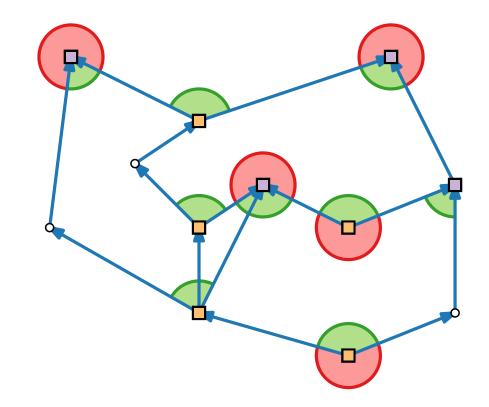
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.
- L(v) = # large angles at v
- lacksquare L(f) = # large angles in f
- S(v) = # small angles at v
- lacksquare S(f) = # small angles at f



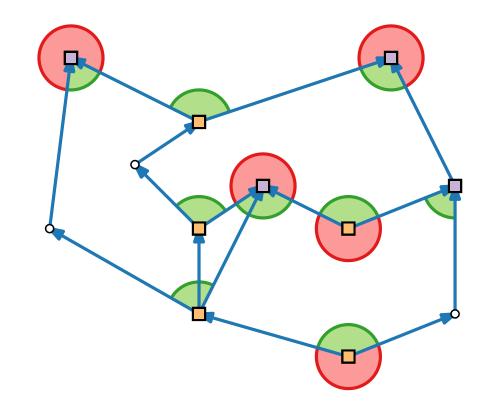
- A vertex v is a **local source** w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.
- L(v) = # large angles at v
- lacksquare L(f) = # large angles in f
- S(v) = # small angles at v
- lacksquare S(f) = # small angles at f
- lacksquare A(f) = # local sources w.r.t. to f



- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.
- L(v) = # large angles at v
- lacksquare L(f) = # large angles in f
- lacksquare S(v) = # small angles at v
- lacksquare S(f) = # small angles at f
- A(f) = # local sources w.r.t. to f= # local sinks w.r.t. to f



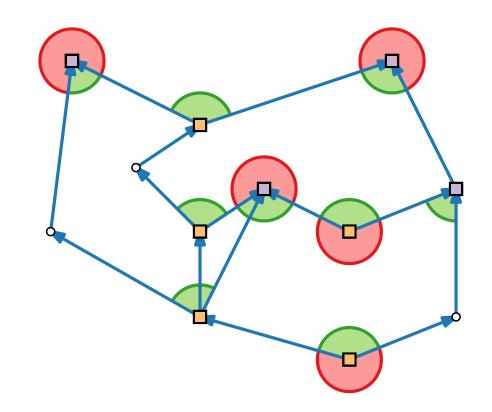
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.
- L(v) = # large angles at v
- lacksquare L(f) = # large angles in f
- lacksquare S(v) = # small angles at v
- lacksquare S(f) = # small angles at f



Angles, Local Sources & Sinks

Definitions.

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.
- L(v) = # large angles at v
- lacksquare L(f) = # large angles in f
- lacksquare S(v) = # small angles at v
- lacksquare S(f) = # small angles at f

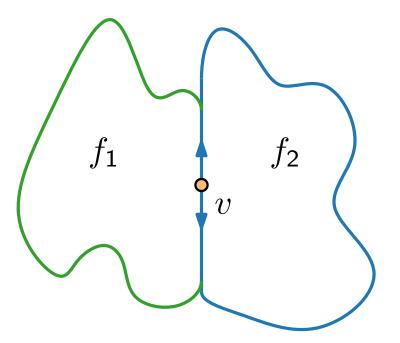


Lemma 1. L(f) + S(f) = 2A(f)

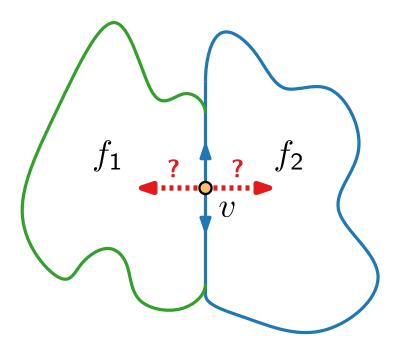
■ Observe that the global sources and global sinks have precisely one large angle.

- Observe that the global sources and global sinks have precisely one large angle.
- All other vertices have only small angles.

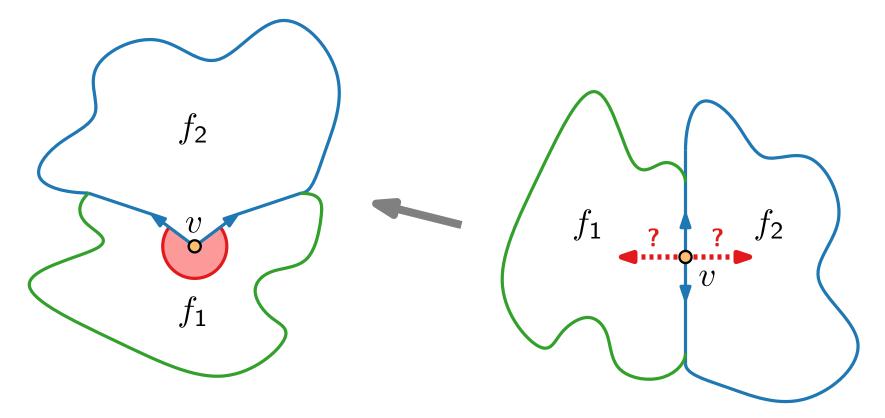
- Observe that the global sources and global sinks have precisely one large angle.
- All other vertices have only small angles.
- Let v be a global source and let it be incident to faces f_1 and f_2 .



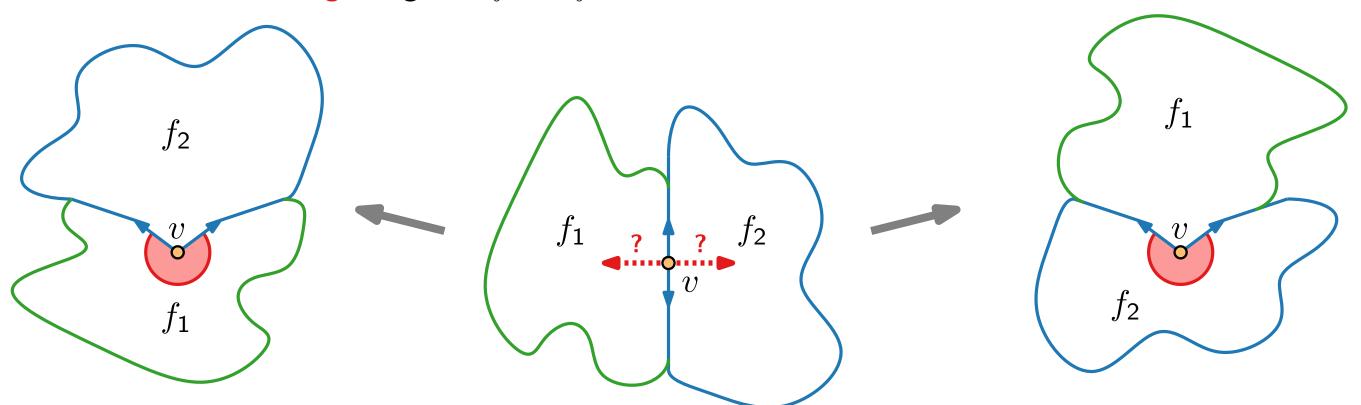
- Observe that the global sources and global sinks have precisely one large angle.
- All other vertices have only small angles.
- Let v be a global source and let it be incident to faces f_1 and f_2 .
- Does v have a large angle in f_1 or f_2 ?



- Observe that the global sources and global sinks have precisely one large angle.
- All other vertices have only small angles.
- Let v be a global source and let it be incident to faces f_1 and f_2 .
- Does v have a large angle in f_1 or f_2 ?



- Observe that the global sources and global sinks have precisely one large angle.
- All other vertices have only small angles.
- Let v be a global source and let it be incident to faces f_1 and f_2 .
- Does v have a large angle in f_1 or f_2 ?



Lemma 2.
$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Lemma 2.

$$L(f) - S(f) = egin{cases} -2 & ext{if } f
eq f_0, \ +2 & ext{if } f = f_0. \end{cases}$$

Proof by induction on L(f).

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

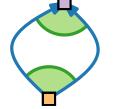
Proof by induction on L(f).

$$L(f) = 0$$

Lemma 2.

Lemma 2.
$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$
 Proof by induction on $L(f)$.

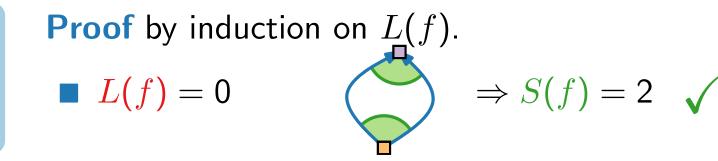
$$L(f) = 0$$



Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0,\ +2 & ext{if } f=f_0. \end{cases}$$

$$L(f) = 0$$

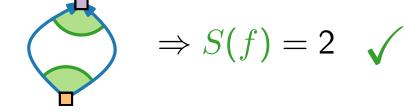


Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0,\ +2 & ext{if } f=f_0. \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$



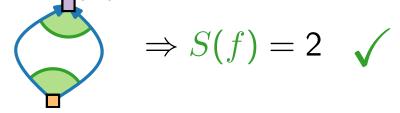
$$L(f) \geq 1$$

Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0,\ +2 & ext{if } f=f_0. \end{cases}$$

Proof by induction on L(f).

L(f) = 0



$$\blacksquare$$
 $L(f) \geq 1$

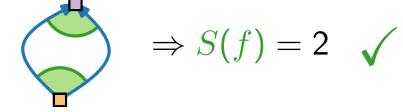
Split f with edge from a large angle at a "low" sink u to...

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

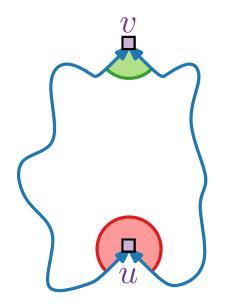
Proof by induction on L(f).

$$L(f)=0$$



 \blacksquare $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

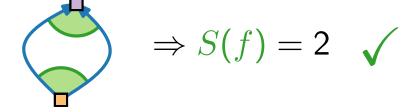


Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0,\ +2 & ext{if } f=f_0. \end{cases}$$

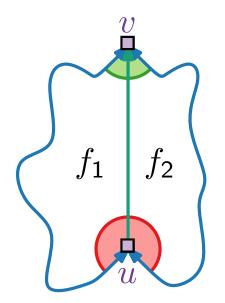
Proof by induction on L(f).

$$L(f) = 0$$



 \blacksquare $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

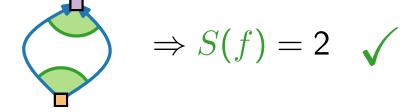


Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0,\ +2 & ext{if } f=f_0. \end{cases}$$

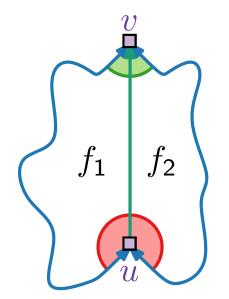
Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...



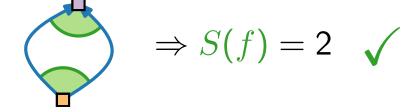
$$L(f) - S(f)$$

Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0,\ +2 & ext{if } f=f_0. \end{cases}$$

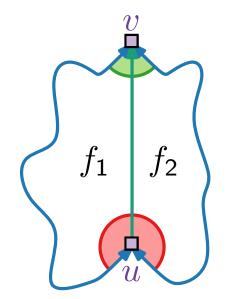
Proof by induction on L(f).

$$L(f)=0$$



 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...



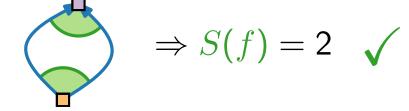
$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

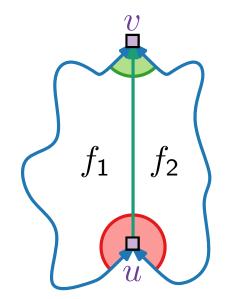
Proof by induction on L(f).

$$L(f) = 0$$



 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...



$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$
$$- (S(f_1) + S(f_2) - 1)$$

Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0,\ +2 & ext{if } f=f_0. \end{cases}$$

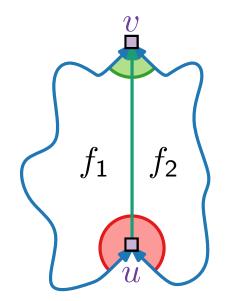
Proof by induction on L(f).

$$L(f) = 0$$



 \blacksquare $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...



$$-2$$
 -2

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

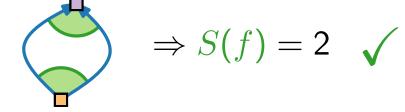
$$-(S(f_1) + S(f_2) - 1)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$
 $L(f) = 0$

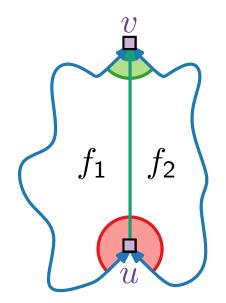
Proof by induction on L(f).

$$L(f) = 0$$



 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...



$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

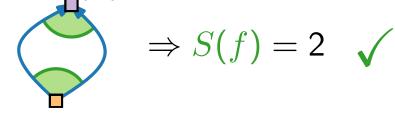
$$= -2 - 2 + 2 = -2$$

Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0, \ +2 & ext{if } f=f_0. \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$f_1$$
 f_2

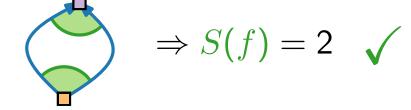
$$L(f) - S(f)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

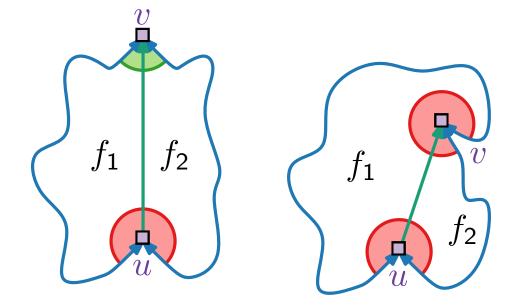
Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...



$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

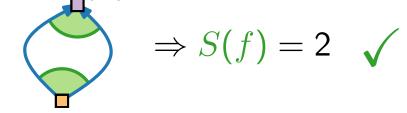
- $(S(f_1) + S(f_2) - 1)$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on L(f).

$$L(f)=0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$-2$$
 -2

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

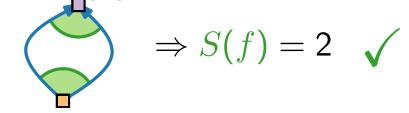
$$-(S(f_1) + S(f_2) - 1)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

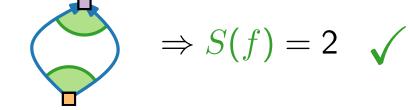
$$= -2 - 2 + 2 = -2$$

Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0, \ +2 & ext{if } f=f_0. \end{cases}$$

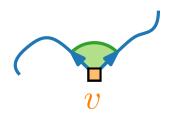
Proof by induction on L(f).

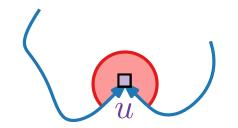
$$L(f) = 0$$



 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

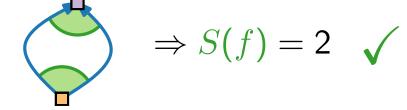




Lemma 2.

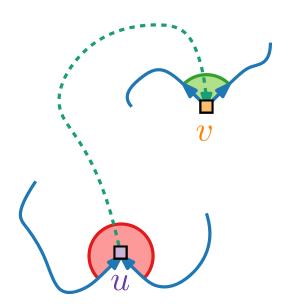
$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0,\ +2 & ext{if } f=f_0. \end{cases}$$

Proof by induction on L(f).



 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

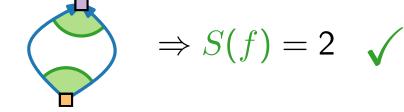


Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on L(f).

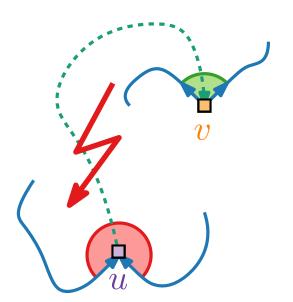
$$L(f) = 0$$



 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

source v with small angle:

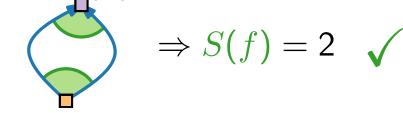


Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

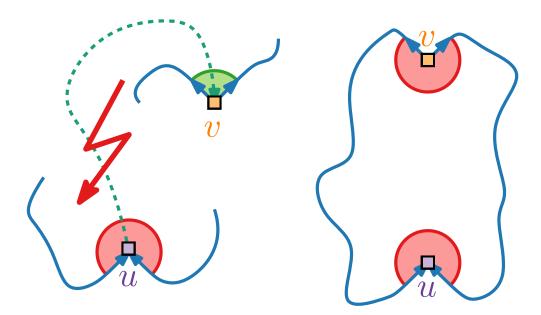
Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

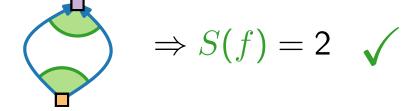


Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0, \ +2 & ext{if } f=f_0. \end{cases}$$

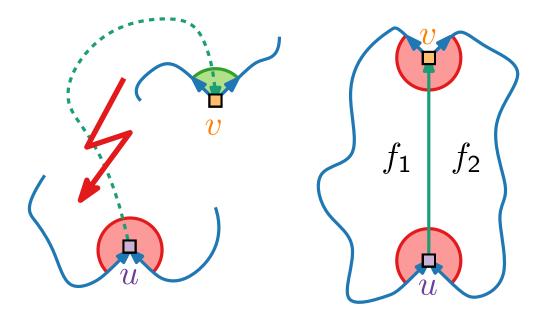
Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

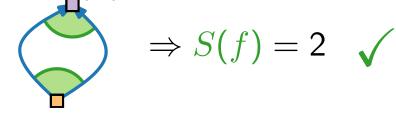


Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0, \ +2 & ext{if } f=f_0. \end{cases}$$

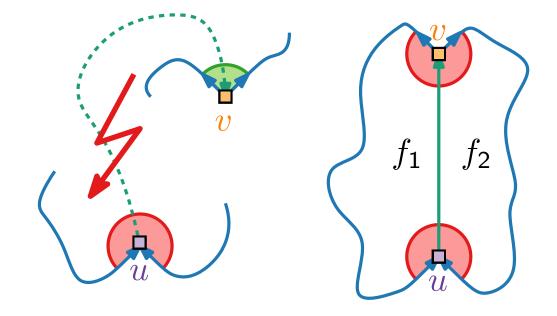
Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...



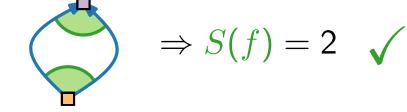
$$L(f) - S(f)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

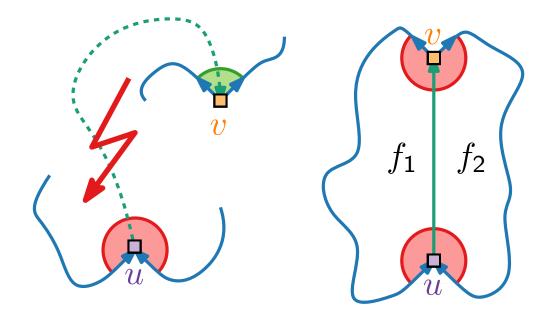
Proof by induction on L(f).

$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to...



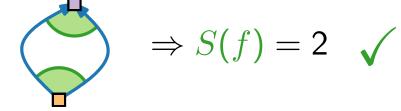
$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0, \ +2 & ext{if } f=f_0. \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$f_1$$
 f_2

$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

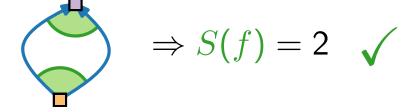
- $(S(f_1) + S(f_2))$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$f_1$$
 f_2

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

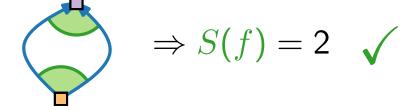
$$-(S(f_1) + S(f_2))$$

Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0,\ +2 & ext{if } f=f_0. \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to...

$$f_1$$
 f_2

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

$$-(S(f_1) + S(f_2))$$

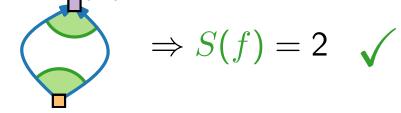
$$= -2 - 2 + 2 = -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$
 $L(f) = 0$

Proof by induction on L(f).

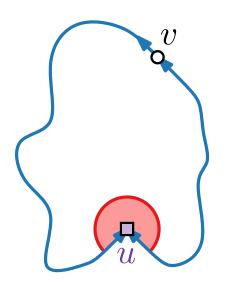
$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

vertex v that is neither source nor sink:

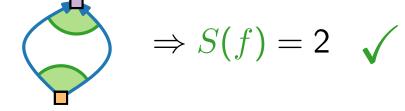


Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0,\ +2 & ext{if } f=f_0. \end{cases}$$

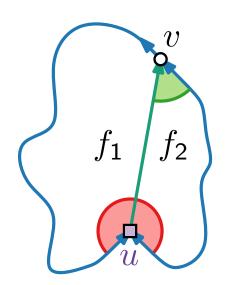
Proof by induction on L(f).

$$\blacksquare L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

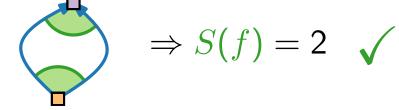


Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0,\ +2 & ext{if } f=f_0. \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$f_1$$
 f_2

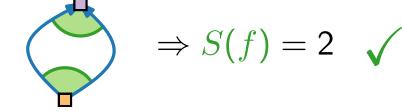
$$L(f) - S(f)$$

Lemma 2.

$$L(f)-S(f)=egin{cases} -2 & ext{if } f
eq f_0,\ +2 & ext{if } f=f_0. \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$f_1$$
 f_2

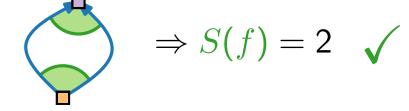
$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$
 $L(f) = 0$

Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

 \blacksquare vertex v that is neither source nor sink:

$$f_1$$
 f_2

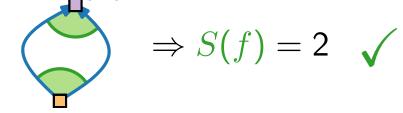
$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$
$$- (S(f_1) + S(f_2) - 1)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$
 $L(f) = 0$

Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

 \blacksquare vertex v that is neither source nor sink:

$$f_1$$
 f_2

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

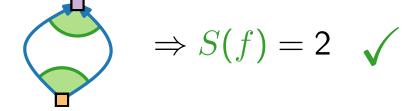
$$-(S(f_1) + S(f_2) - 1)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$
 $L(f) = 0$

Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

 \blacksquare vertex v that is neither source nor sink:

$$f_1$$
 f_2

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

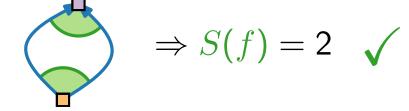
$$= -2 - 2 + 2 = -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$
 $L(f) = 0$

Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

vertex v that is neither source nor sink:

$$f_1$$
 f_2

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

$$= -2 - 2 + 2 = -2$$

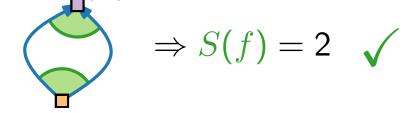
Otherwise "high" source u exists. \rightarrow symmetric

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

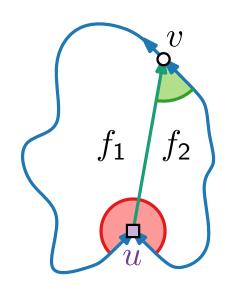
Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...



$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

$$= -2 - 2 + 2 = -2$$

- Otherwise "high" source u exists. o symmetric
- \blacksquare Similar argument for the outer face f_0 .

Lemma 3.

Lemma 3.

In every upward planar drawing of G, it holds that

• for each vertex $v: L(v) = \begin{cases} 0 \\ 1 \end{cases}$

Lemma 3.

In every upward planar drawing of G, it holds that

for each vertex $v : L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \end{cases}$

Lemma 3.

In every upward planar drawing of G, it holds that

for each vertex $v \colon L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$

Lemma 3.

- for each vertex $v : L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$
- for each face f: L(f) =

Lemma 3.

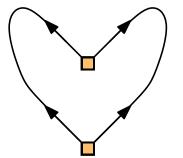
- for each vertex v: $L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$
- for each face $f: L(f) = \begin{cases} A(f) 1 & \text{if } f \neq f_0, \end{cases}$

Lemma 3.

- for each vertex $v: L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$
- for each face $f: L(f) = \begin{cases} A(f) 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$

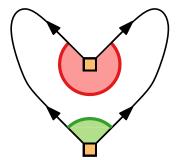
Lemma 3.

- for each vertex $v: L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$
- for each face $f\colon L(f)=egin{cases} A(f)-1 & \text{if } f
 eq f_0, \ A(f)+1 & \text{if } f=f_0. \end{cases}$



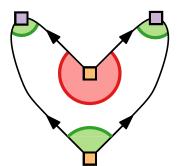
Lemma 3.

- for each vertex v: $L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$
- for each face $f\colon L(f)=egin{cases} A(f)-1 & \text{if } f
 eq f_0, \ A(f)+1 & \text{if } f=f_0. \end{cases}$



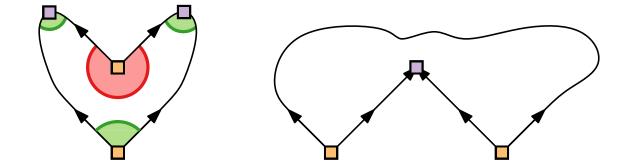
Lemma 3.

- for each vertex v: $L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$
- for each face $f\colon L(f)=egin{cases} A(f)-1 & \text{if } f
 eq f_0, \ A(f)+1 & \text{if } f=f_0. \end{cases}$



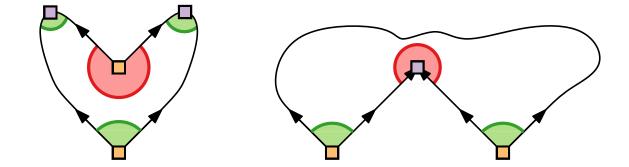
Lemma 3.

- for each vertex v: $L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$
- for each face $f\colon L(f)=egin{cases} A(f)-1 & \text{if } f
 eq f_0, \ A(f)+1 & \text{if } f=f_0. \end{cases}$



Lemma 3.

- for each vertex v: $L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$
- for each face $f: L(f) = \begin{cases} A(f) 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$



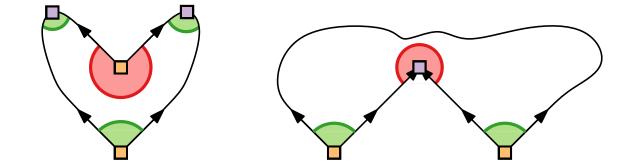
Lemma 3.

In every upward planar drawing of G, it holds that

for each vertex v: $L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$

for each face
$$f: L(f) = \begin{cases} A(f) - 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$$

Proof.

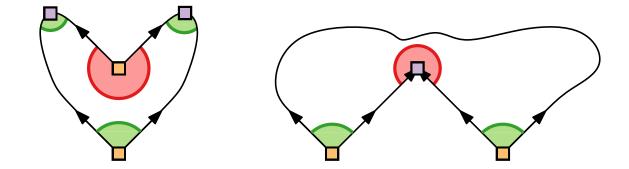


Lemma 3.

In every upward planar drawing of G, it holds that

- for each vertex $v: L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$
- for each face $f \colon L(f) = \begin{cases} A(f) 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$

Proof. Lemma 1: L(f) + S(f) = 2A(f)

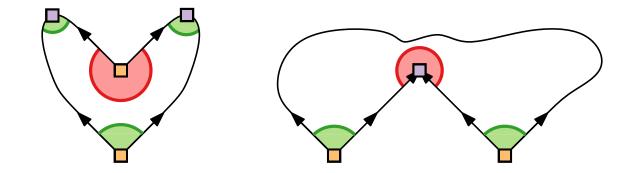


Lemma 3.

In every upward planar drawing of G, it holds that

- for each vertex $v: L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$
- for each face $f: L(f) = \begin{cases} A(f) 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$

Proof. Lemma 1: L(f) + S(f) = 2A(f)Lemma 2: $L(f) - S(f) = \pm 2$.

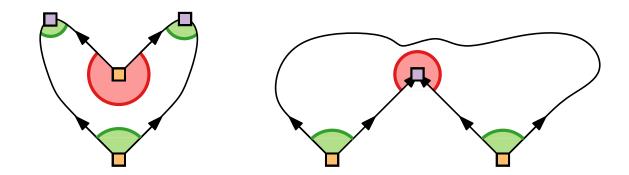


Lemma 3.

In every upward planar drawing of G, it holds that

- for each vertex $v: L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$
- for each face $f \colon L(f) = \begin{cases} A(f) 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$

Proof. Lemma 1: L(f) + S(f) = 2A(f)Lemma 2: $L(f) - S(f) = \pm 2$.



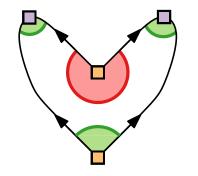
Lemma 3.

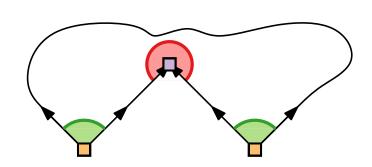
- for each vertex $v: L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$
- for each face $f\colon L(f)=egin{cases} A(f)-1 & \text{if } f
 eq f_0,\ A(f)+1 & \text{if } f=f_0. \end{cases}$

Proof. Lemma 1:
$$L(f) + S(f) = 2A(f)$$

Lemma 2: $L(f) - S(f) = \pm 2$.

$$\Rightarrow 2L(f) = 2A(f) \pm 2$$
.





Let S be the set of (global) sources, and let T be the set of (global) sinks.

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition.

A consistent assignment $\Phi: S \cup T \to F$ is a mapping with

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition.

A consistent assignment $\Phi: S \cup T \to F$ is a mapping with

 $\Phi \colon v \mapsto \text{ incident face, where } v \text{ forms a large angle}$

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition.

A consistent assignment $\Phi: S \cup T \to F$ is a mapping with

 $\Phi \colon v \mapsto \text{ incident face, where } v \text{ forms a large angle}$

$$|\Phi^{-1}(f)| =$$

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition.

A consistent assignment $\Phi: S \cup T \to F$ is a mapping with

 $\Phi \colon v \mapsto \text{ incident face, where } v \text{ forms a large angle}$

$$|\Phi^{-1}(f)| = L(f)$$

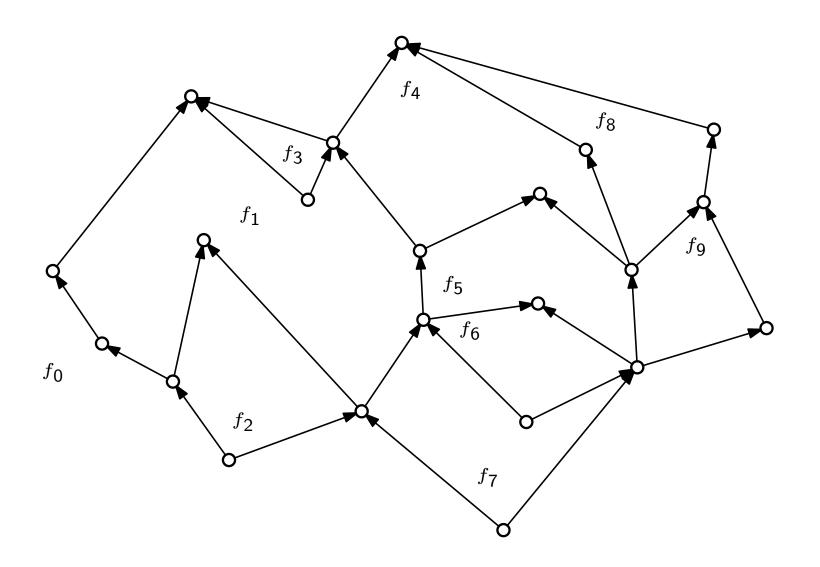
Let S be the set of (global) sources, and let T be the set of (global) sinks.

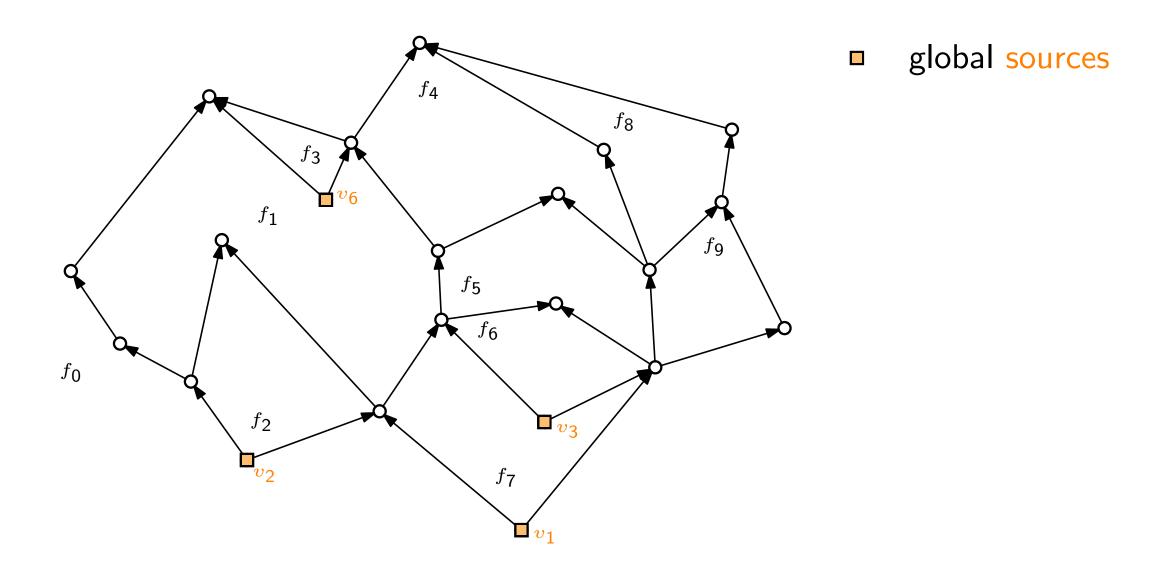
Definition.

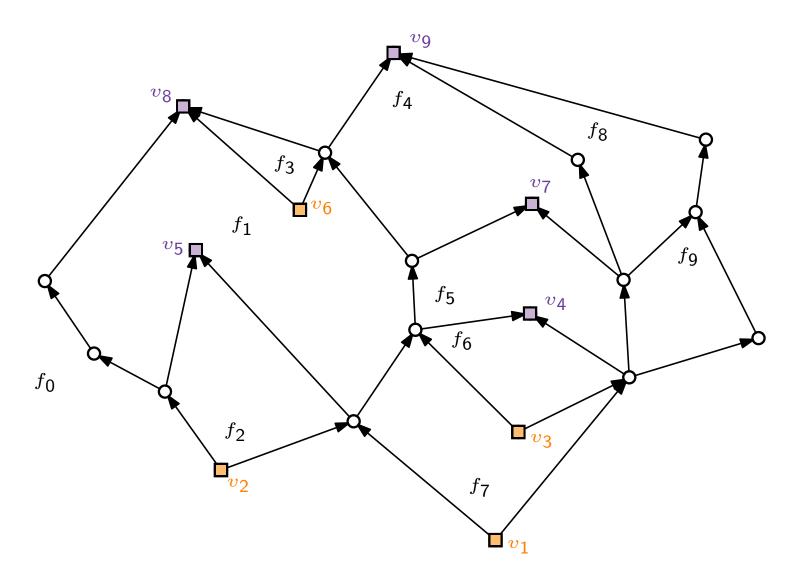
A consistent assignment $\Phi: S \cup T \to F$ is a mapping with

 $\Phi \colon v \mapsto \text{ incident face, where } v \text{ forms a large angle}$

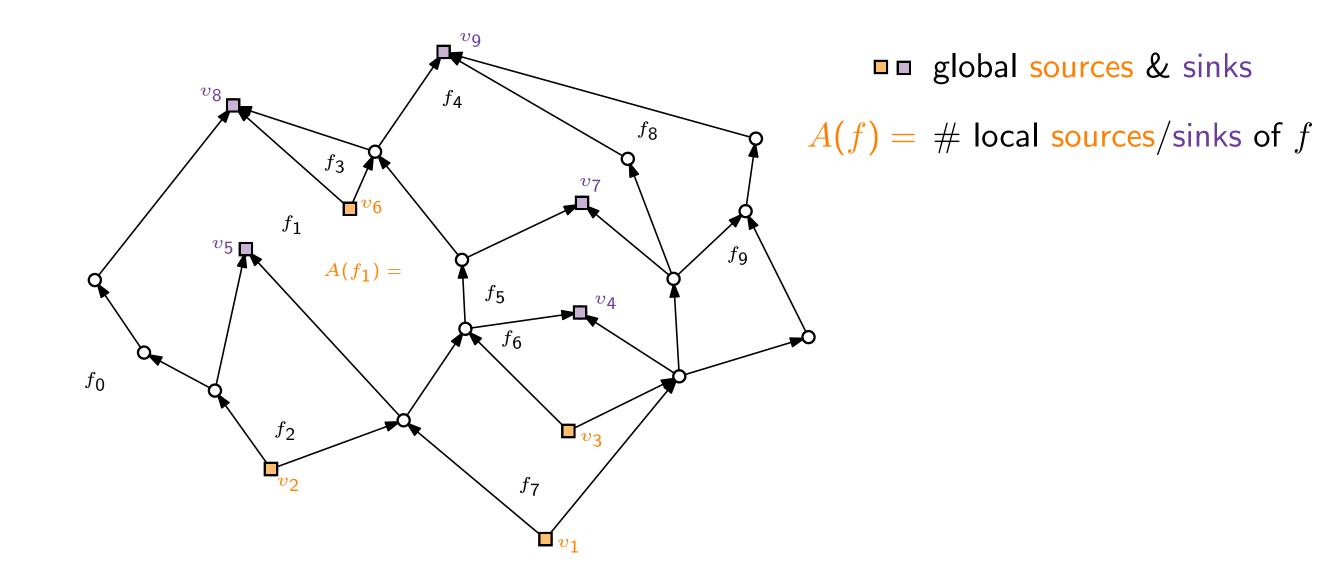
$$|\Phi^{-1}(f)| = L(f) = egin{cases} A(f) - 1 & ext{if } f
eq f_0, \ A(f) + 1 & ext{if } f = f_0. \end{cases}$$

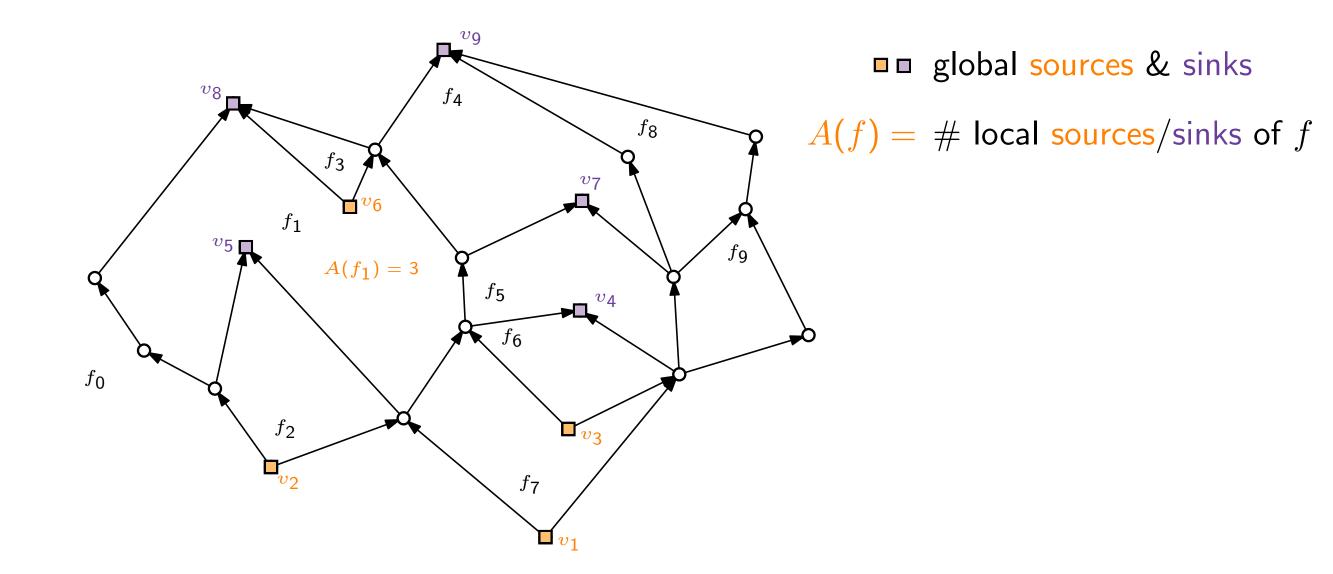




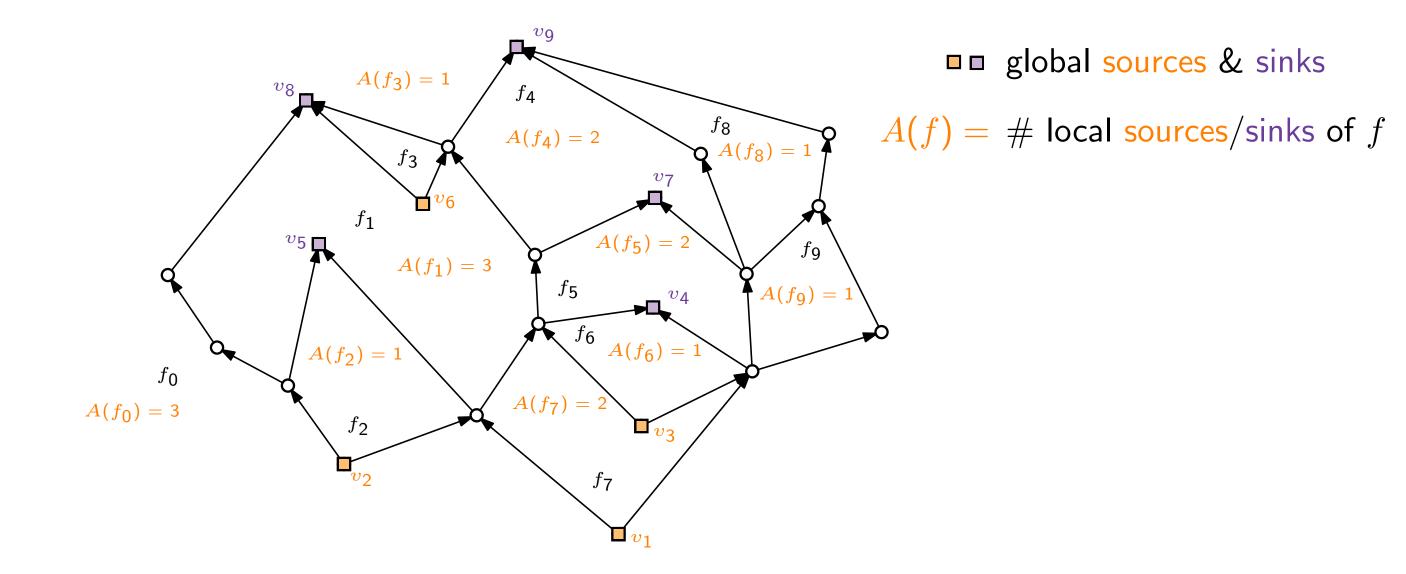


■■ global sources & sinks

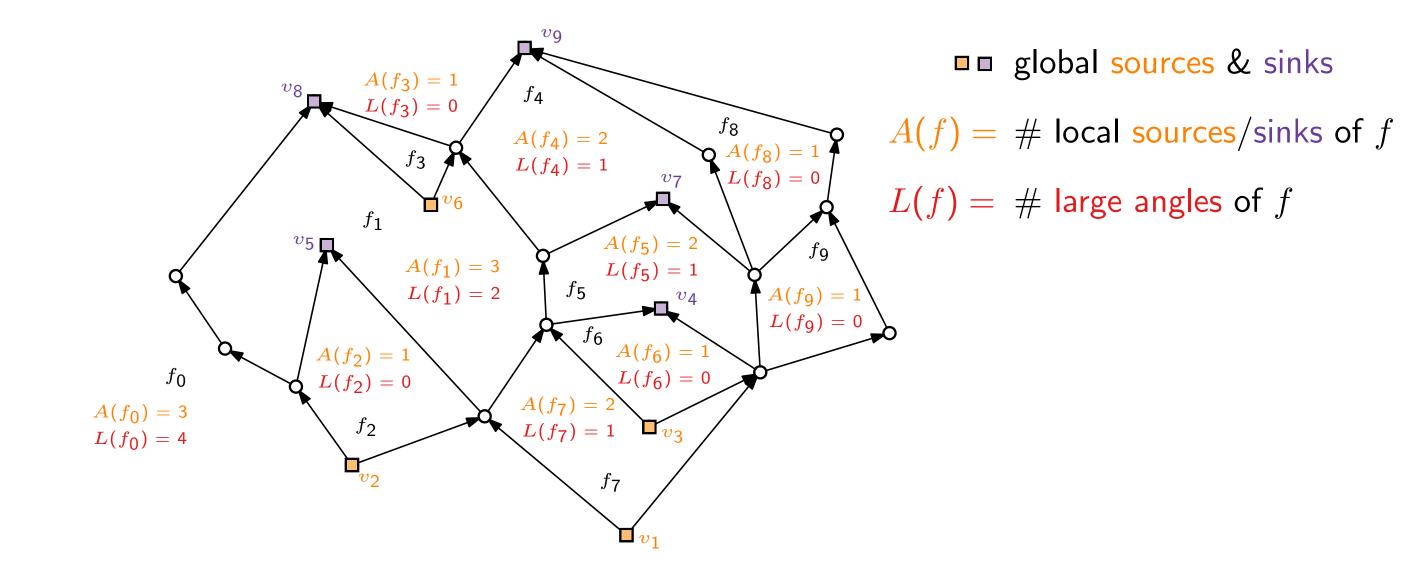




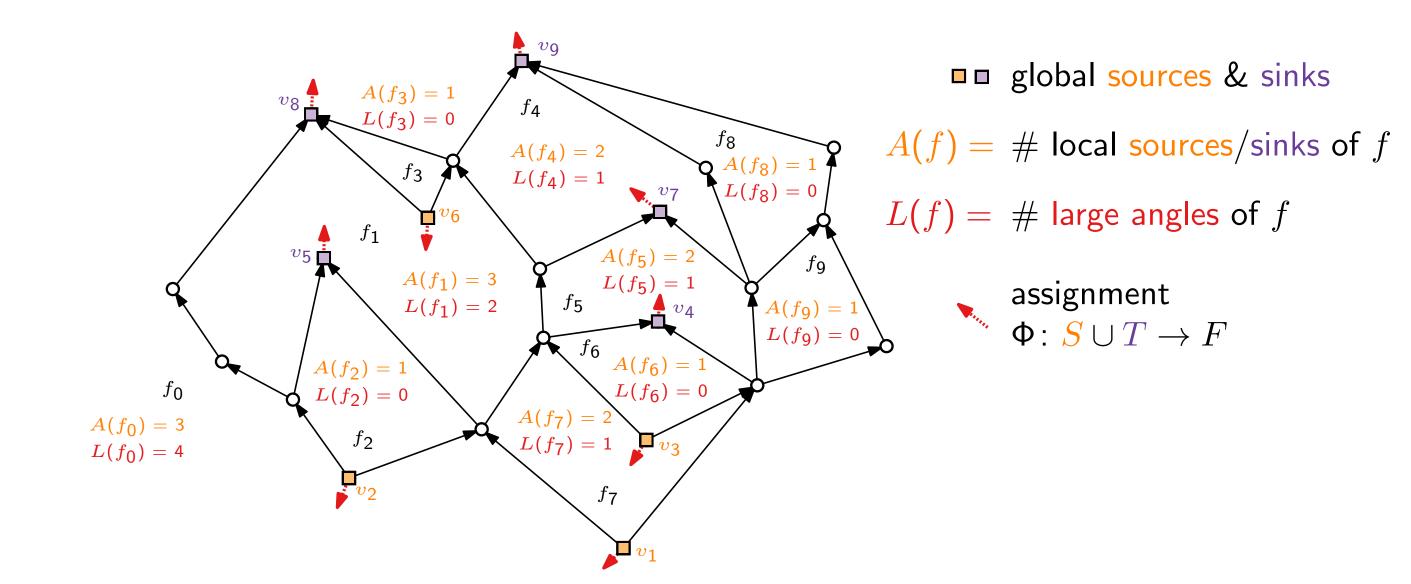
Example of Angle-to-Face Assignment



Example of Angle-to-Face Assignment



Example of Angle-to-Face Assignment



Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

←: Idea:

 \blacksquare Construct planar st-digraph that is a supergraph of G.

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

←: Idea:

- \blacksquare Construct planar st-digraph that is a supergraph of G.
- Apply equivalence from Theorem 1.

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

←: Idea:

- \blacksquare Construct planar st-digraph that is a supergraph of G.
- Apply equivalence from Theorem 1.

G is upward planar $\Leftrightarrow G$ is a spanning subgraph of a planar st-digraph.

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

←: Idea:

- \blacksquare Construct planar st-digraph that is a supergraph of G.
- Apply equivalence from Theorem 1.

G is upward planar $\Leftrightarrow G$ is a spanning subgraph of a planar st-digraph. $\Leftrightarrow G$ admits a straight-line upward planar drawing.

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

←: Idea:

- \blacksquare Construct planar st-digraph that is a supergraph of G.
- Apply equivalence from Theorem 1.

G is upward planar $\Leftrightarrow G$ is a spanning subgraph of a planar st-digraph. $\Leftrightarrow G$ admits a straight-line upward planar drawing. (Note: Proof was constructive!)

Let f be a face.

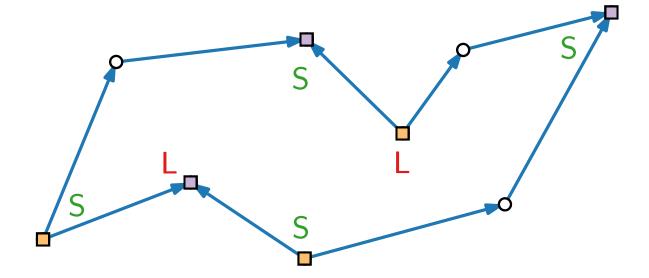
Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f.

■ Goal: Add edges to break large angles (sources and sinks).

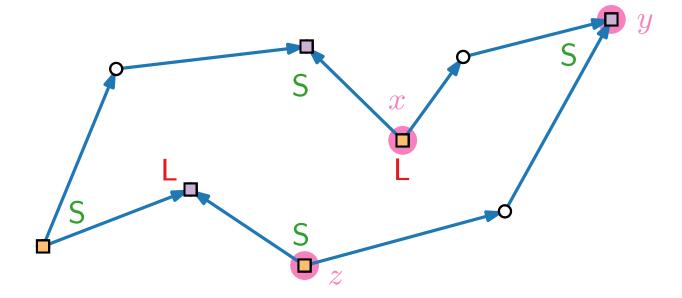
Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:



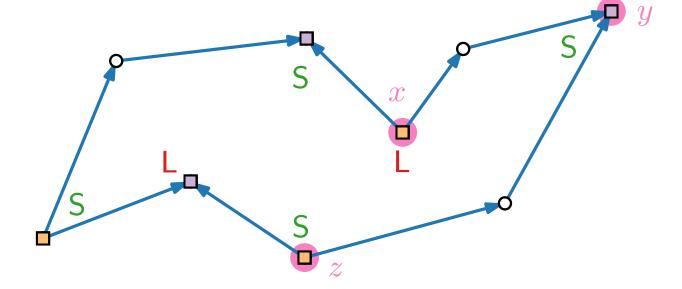
Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:



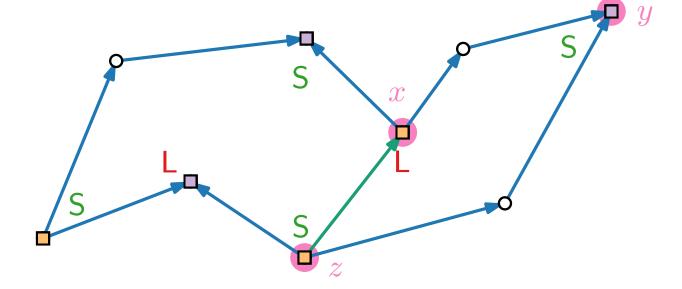
Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$



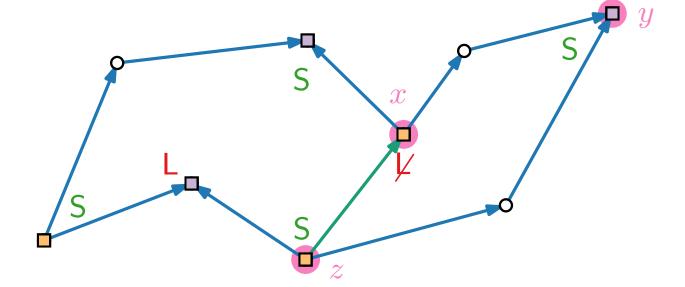
Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$



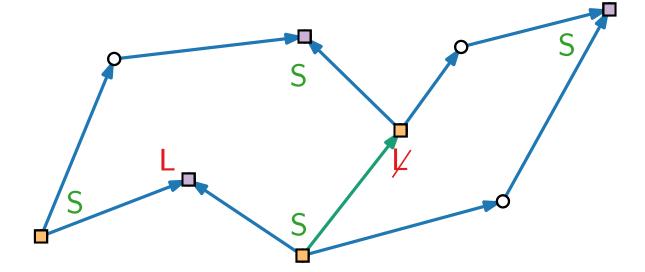
Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$



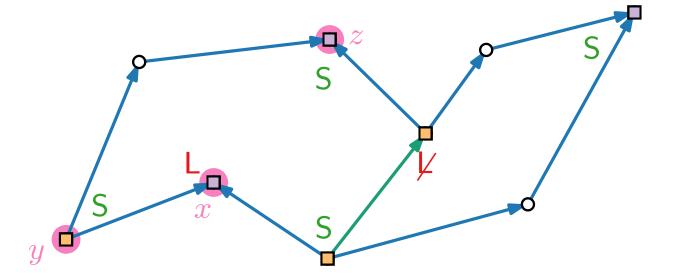
Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$



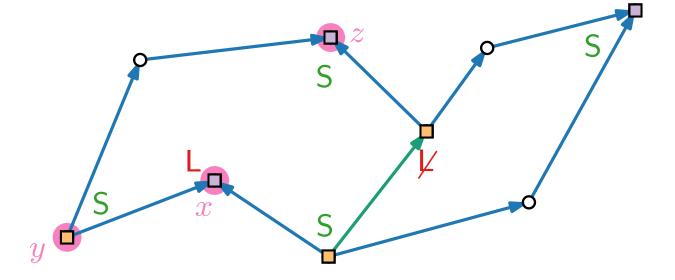
Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$



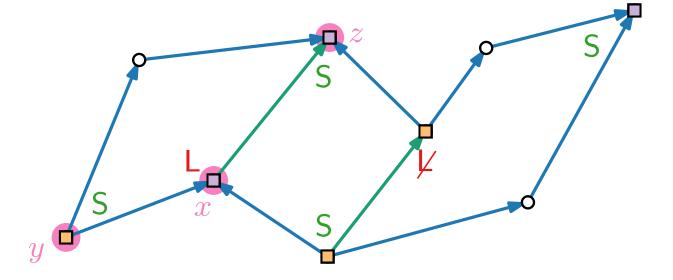
Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$



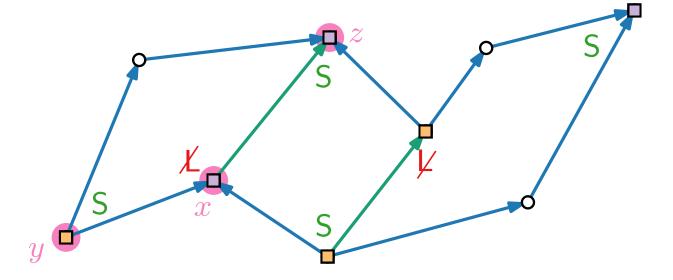
Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$



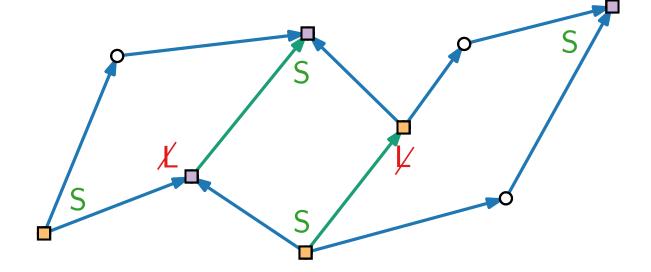
Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$



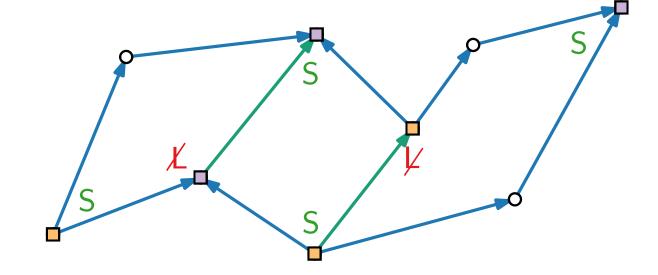
Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$



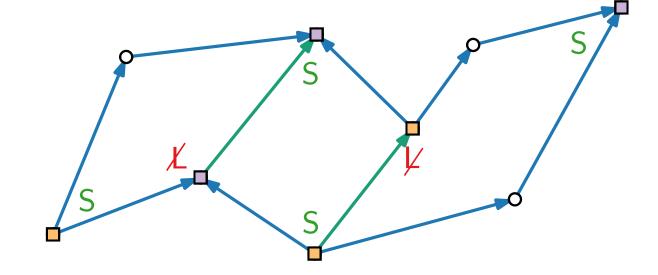
Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$
- \blacksquare Refine outer face f_0 similarly.



Let f be a face.

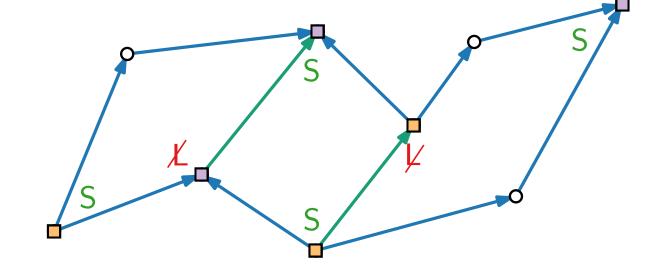
- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$
- \blacksquare Refine outer face f_0 similarly.
 - \rightarrow Exercise



Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$
- \blacksquare Refine outer face f_0 similarly.
 - → Exercise



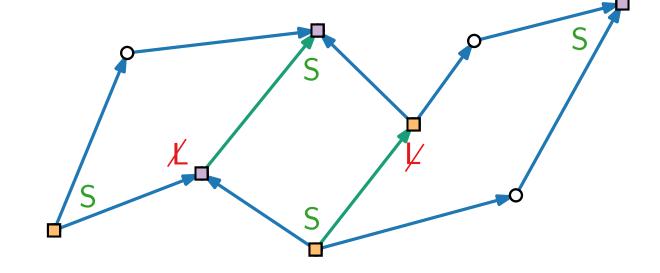
 \blacksquare Refine all faces. \Rightarrow G is contained in a planar st-digraph.

Let f be a face.

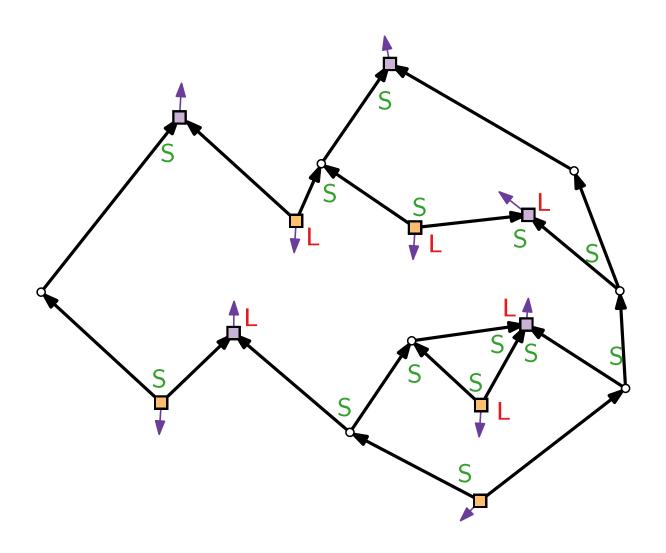
Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f.

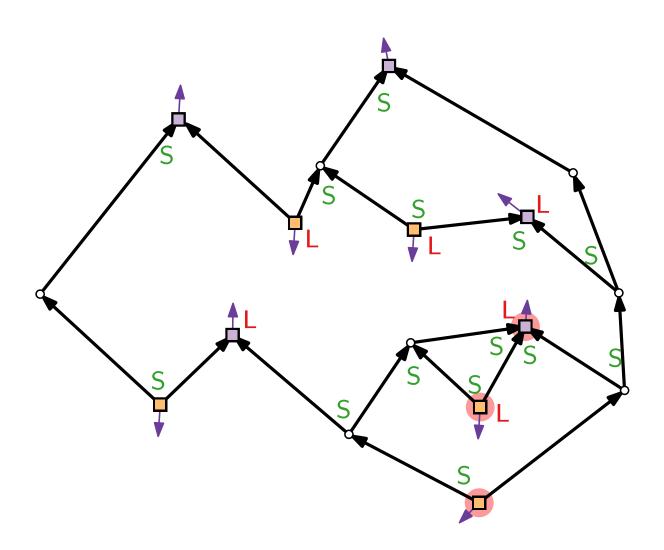
- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$
- Refine outer face f_0 similarly.

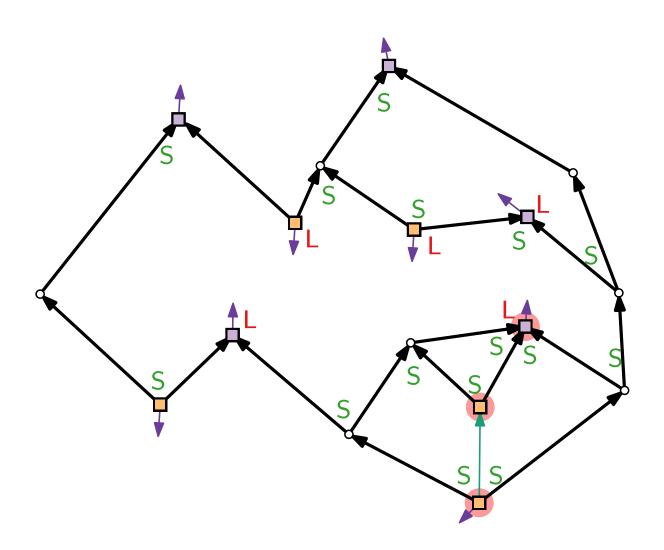
\rightarrow Exercise

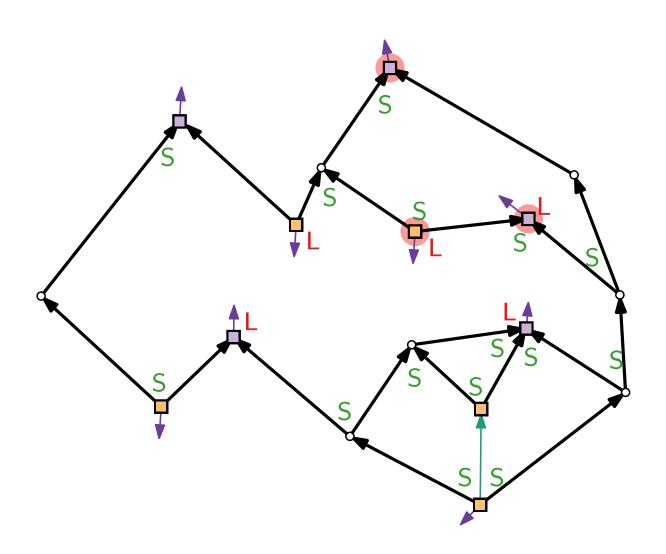


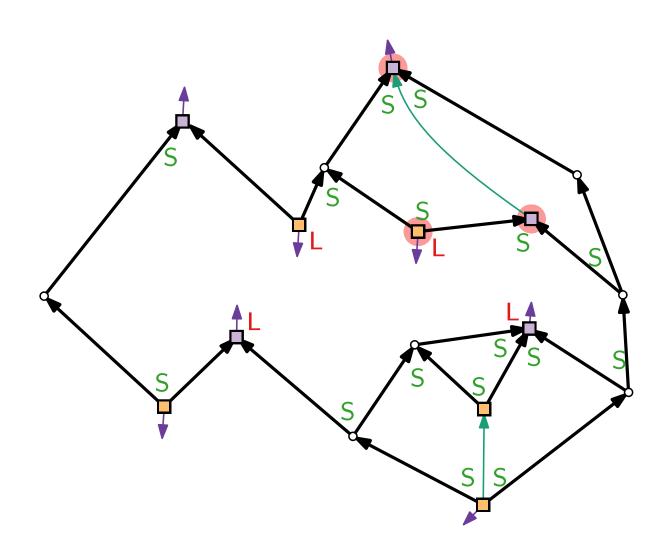
- \blacksquare Refine all faces. \Rightarrow G is contained in a planar st-digraph.
- Planarity, acyclicity, bimodality are invariants under construction.

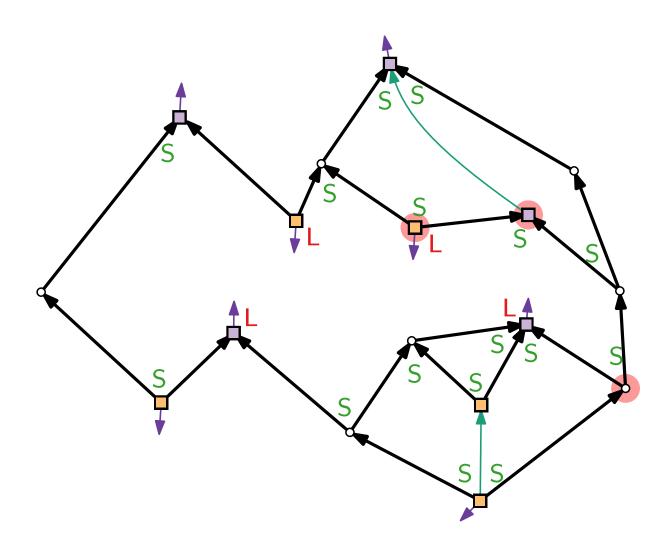


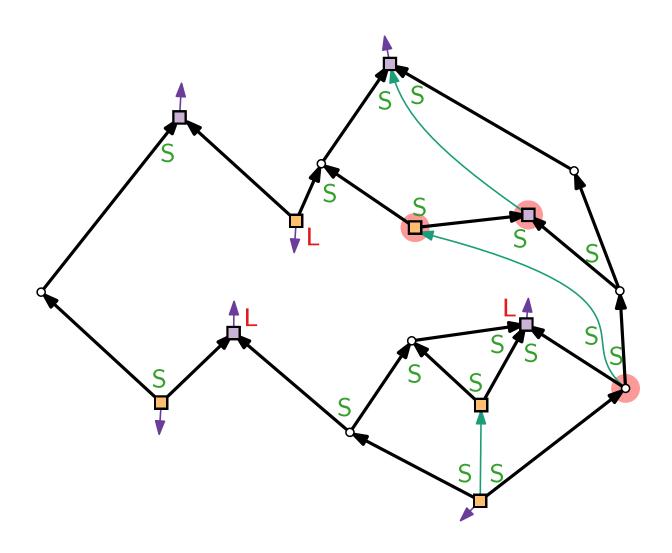


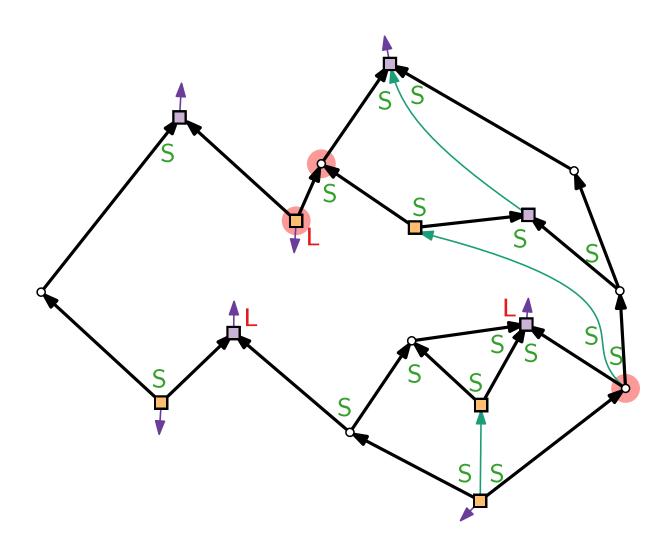


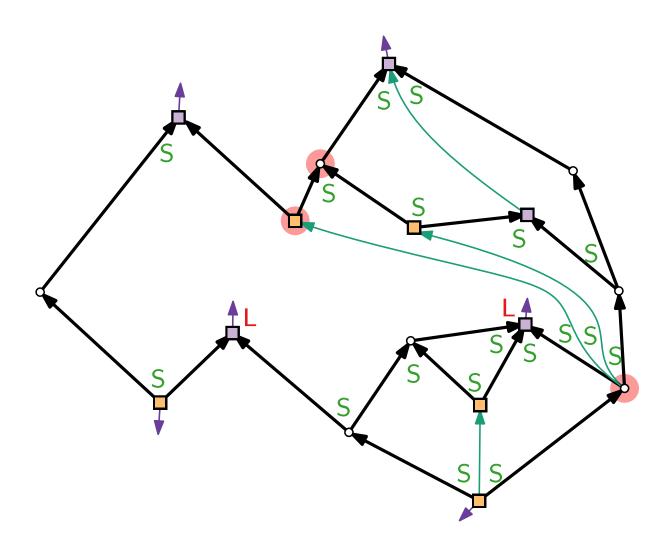


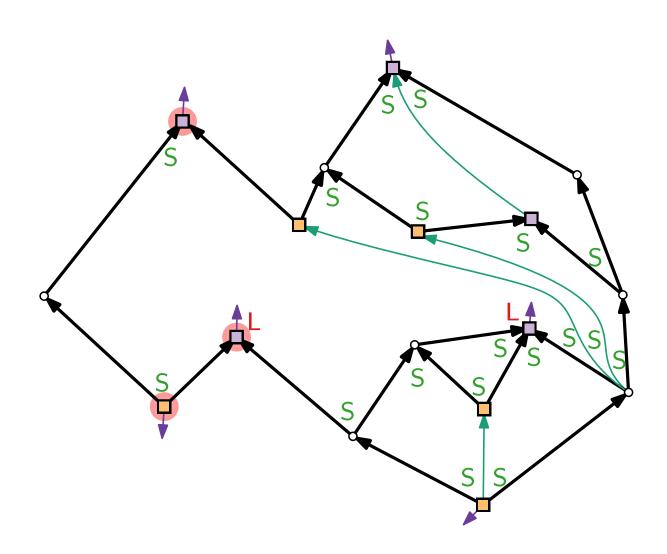


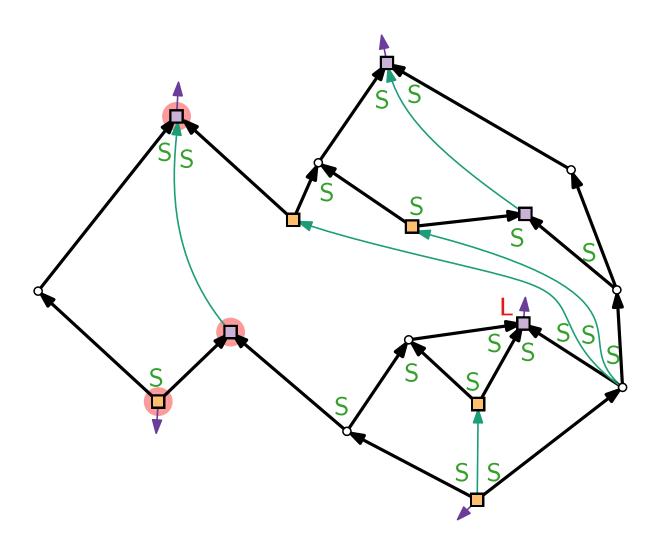


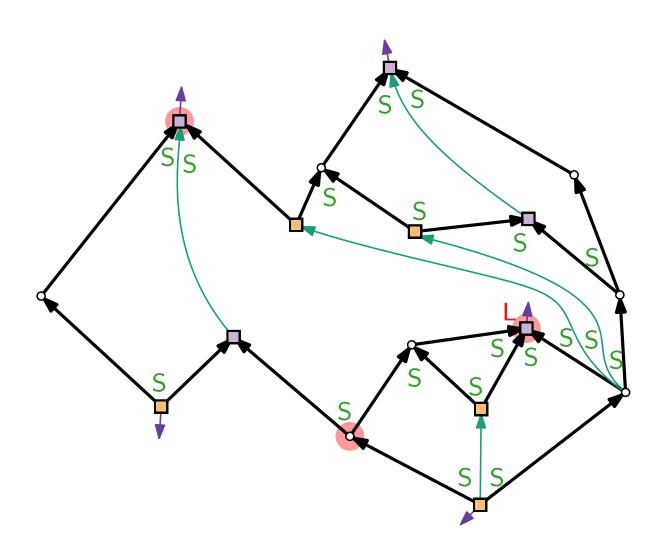


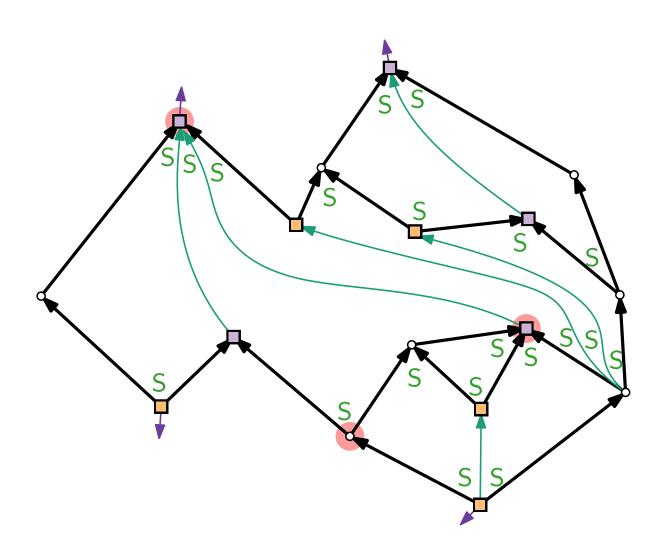


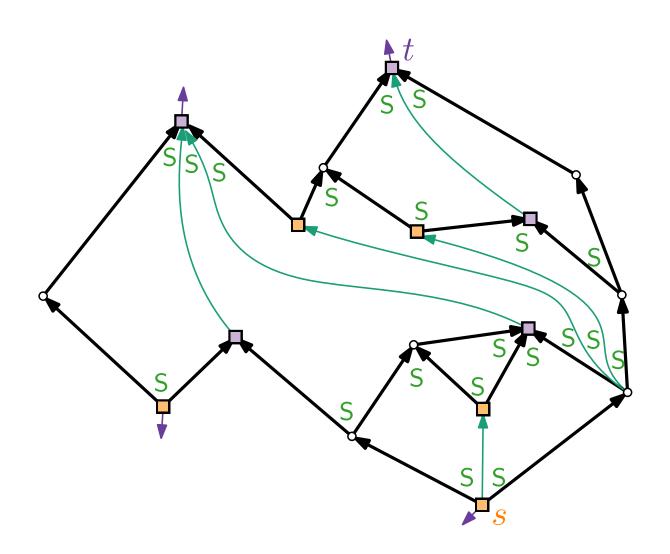


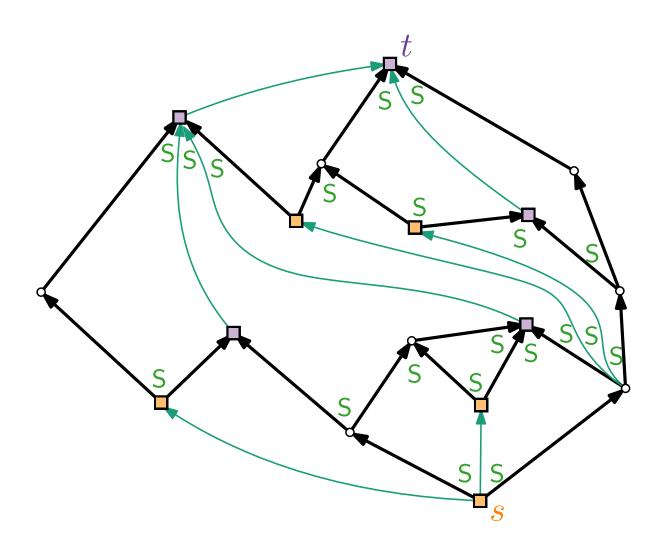












Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94] Given an *embedded* planar digraph G, we can test in quadratic time whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94] Given an *embedded* planar digraph G, we can test in quadratic time whether G is upward planar.

Proof.

■ Test for bimodality.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94] Given an *embedded* planar digraph G, we can test in quadratic time whether G is upward planar.

- Test for bimodality.
- \blacksquare Test for a consistent assignment Φ (via flow network).

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94] Given an *embedded* planar digraph G, we can test in quadratic time whether G is upward planar.

- Test for bimodality.
- \blacksquare Test for a consistent assignment Φ (via flow network).
- \blacksquare If G bimodal and Φ exists, refine G to plane st-digraph H.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94] Given an *embedded* planar digraph G, we can test in quadratic time whether G is upward planar.

- Test for bimodality.
- \blacksquare Test for a consistent assignment Φ (via flow network).
- \blacksquare If G bimodal and Φ exists, refine G to plane st-digraph H.
- \blacksquare Draw H upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94] Given an *embedded* planar digraph G, we can test in quadratic time whether G is upward planar.

- Test for bimodality.
- \blacksquare Test for a consistent assignment Φ (via flow network).
- \blacksquare If G bimodal and Φ exists, refine G to plane st-digraph H.
- \blacksquare Draw H upward planar.
- Deleted edges added in refinement step.

Idea. Flow (v, f) = 1 from global source $/ \sinh v$ to the incident face f its large angle gets assigned to.

Idea. Flow (v, f) = 1

from global source $/\sinh v$ to the incident face f its large angle gets assigned to.

Flow network.

$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $\blacksquare W =$
- $\blacksquare E' =$
- $\ell(e) =$
- u(e) =
- b(w) =

Idea. Flow (v, f) = 1

from global source $/ \sinh v$ to the incident face f its large angle gets assigned to.

nodes of flow network edges of flow network lower/upper bounds on edge capcities Flow network. Supplies/demands of nodes $N_{F,f_0}(G) = ((W,E');b;\ell;u)$

$$N_{F,f_0}(G) = ((W,E');b;\ell;u)$$

- $\blacksquare W =$
- $\blacksquare E' =$
- $\ell(e) =$
- u(e) =
- b(w) =

Idea. Flow (v, f) = 1

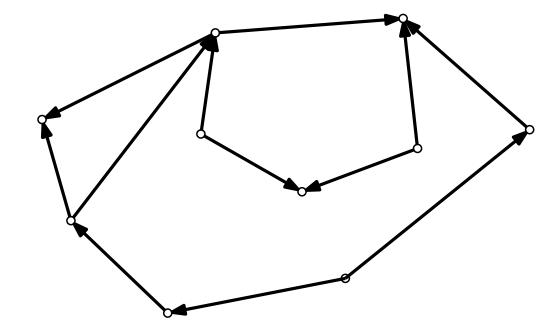
from global source $/ \sinh v$ to the incident face f its large angle gets assigned to.

nodes of flow network edges of flow network

lower/upper bounds on edge capcities

Flow network.
$$N_{F,f_0}(G) = ((W,E');b;\ell;u)$$

- $\blacksquare W =$
- \blacksquare E' =
- $\ell(e) =$
- u(e) =
- b(w) =



Idea. Flow (v, f) = 1

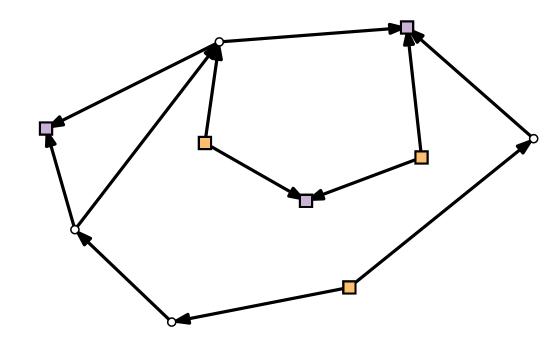
from global source / sink v to the incident face f its large angle gets assigned to.

nodes of flow network edges of flow network supplies/demands of nodes

lower/upper bounds on edge capcities

Flow network.
$$N_{F,f_0}(G) = ((W, E'); b; \ell; u)$$

- $lacksquare W = \{v \in V(G) \mid v \text{ source or sink}\} \cup V$
- \blacksquare E' =
- $\ell(e) =$
- u(e) =
- b(w) =



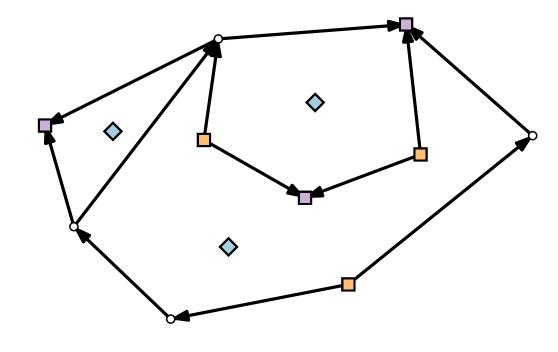
Idea. Flow (v, f) = 1

from global source $/ \sinh v$ to the incident face f its large angle gets assigned to.

nodes of flow network edges of flow network supplies/demands of nodes supplies/demands of nodes Example.

Flow network. $N_{F,f_0}(G) = ((W, E'); b; \ell; u)$

- $W = \{ v \in V(G) \mid v \text{ source or sink} \} \cup F(G)$
- $\blacksquare E' =$
- $\ell(e) =$
- u(e) =
- b(w) =



Idea. Flow (v, f) = 1

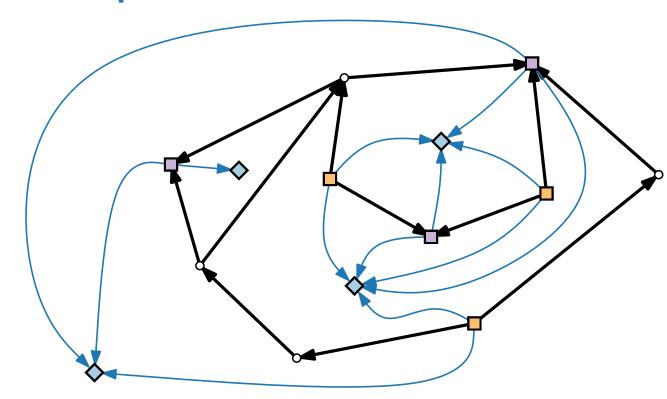
from global source / sink v to the incident face f its large angle gets assigned to.

nodes of flow network edges of flow network supplies/demands of nodes

lower/upper bounds on edge capcities

Flow network.
$$N_{F,f_0}(G) = ((W,E');b;\ell;u)$$

- $W = \{ v \in V(G) \mid v \text{ source or sink} \} \cup F(G)$
- $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) =$
- u(e) =
- b(w) =



Idea. Flow (v, f) = 1

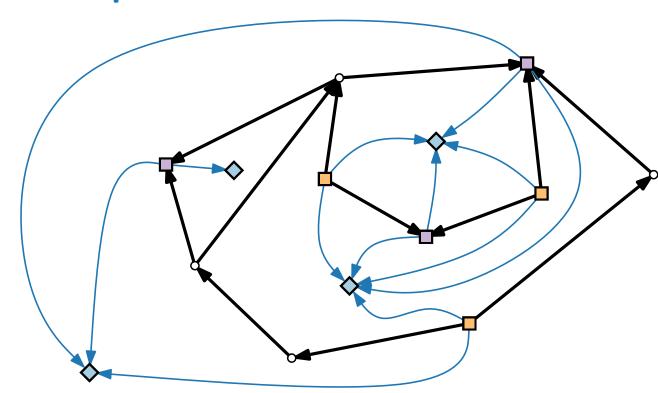
from global source / sink v to the incident face f its large angle gets assigned to.

nodes of flow network edges of flow network supplies/demands of nodes

lower/upper bounds on edge capcities

Flow network.
$$N_{F,f_0}(G) = ((W,E');b;\ell;u)$$

- $W = \{ v \in V(G) \mid v \text{ source or sink} \} \cup F(G)$
- $\blacksquare E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$
- b(w) =



Idea. Flow (v, f) = 1

from global source / sink v to the incident face f its large angle gets assigned to.

nodes of flow network edges of flow network

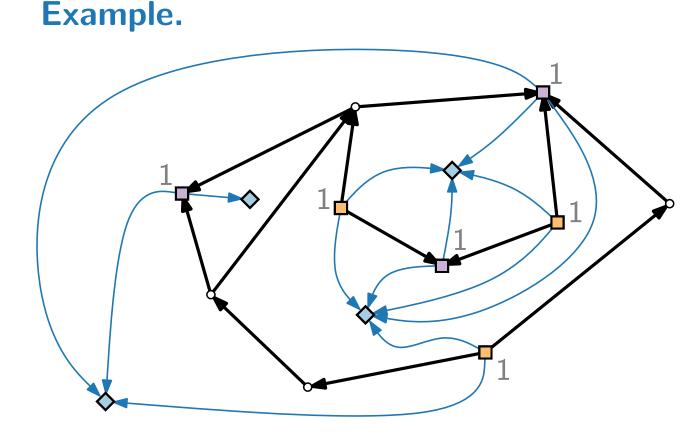
lower/upper bounds on edge capcities

Flow network. Supplies/demands of nodes
$$N_{F,f_0}(G) = ((W,E');b;\ell;u)$$

- $W = \{v \in V(G) \mid v \text{ source or sink}\} \cup F(G)$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$b(w) = \begin{cases} 1 \\ 1 \end{cases}$$

$$\forall w \in W \cap V(G)$$



Idea. Flow (v, f) = 1

from global source / sink v to the incident face f its large angle gets assigned to.

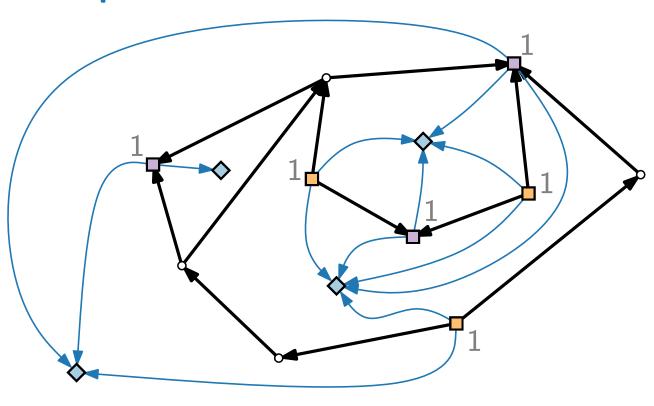
nodes of flow network edges of flow network

lower/upper bounds on edge capcities

Flow network. Supplies/demands of nodes $N_{F,f_0}(G)=((W,E');b;\ell;u)$

- $W = \{v \in V(G) \mid v \text{ source or sink}\} \cup F(G)$ $E' = \{(v,f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$b(w) = \begin{cases} 1 & \forall w \in W \cap V(G) \\ -(A(w) - 1) & \forall w \in F(G) \setminus \{f_0\} \end{cases}$$



Idea. Flow (v, f) = 1

from global source / sink v to the incident face f its large angle gets assigned to.

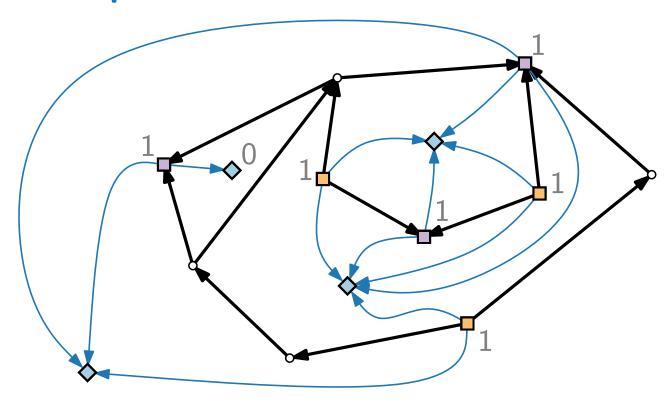
nodes of flow network edges of flow network

lower/upper bounds on edge capcities

Flow network. Supplies/demands of nodes $N_{F,f_0}(G)=((W,E');b;\ell;u)$

- $W = \{v \in V(G) \mid v \text{ source or sink}\} \cup F(G)$ $E' = \{(v,f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$b(w) = \begin{cases} 1 & \forall w \in W \cap V(G) \\ -(A(w) - 1) & \forall w \in F(G) \setminus \{f_0\} \end{cases}$$



Idea. Flow (v, f) = 1

from global source / sink v to the incident face f its large angle gets assigned to.

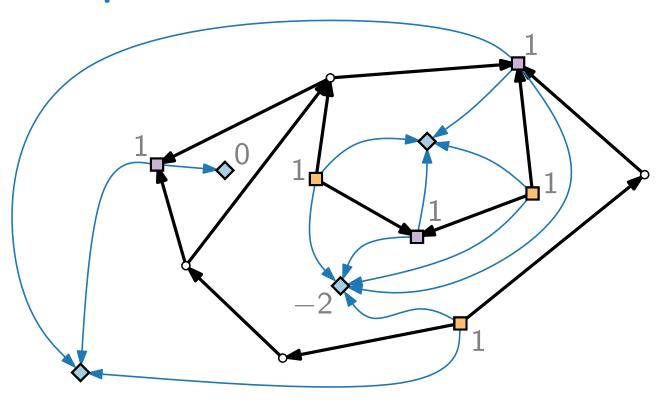
nodes of flow network edges of flow network

lower/upper bounds on edge capcities

Flow network.
$$N_{F,f_0}(G) = ((W,E');b;\ell;u)$$

- $W = \{v \in V(G) \mid v \text{ source or sink}\} \cup F(G)$ $E' = \{(v,f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$b(w) = \begin{cases} 1 & \forall w \in W \cap V(G) \\ -(A(w) - 1) & \forall w \in F(G) \setminus \{f_0\} \end{cases}$$



Idea. Flow (v, f) = 1

from global source / sink v to the incident face f its large angle gets assigned to.

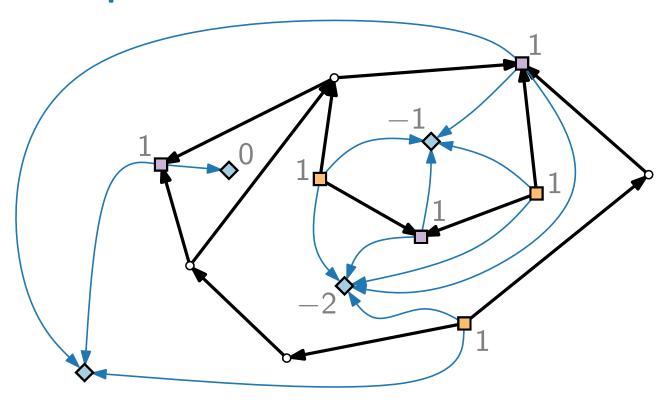
nodes of flow network edges of flow network

lower/upper bounds on edge capcities

Flow network.
$$N_{F,f_0}(G) = ((W,E');b;\ell;u)$$

- $W = \{v \in V(G) \mid v \text{ source or sink}\} \cup F(G)$ $E' = \{(v,f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$b(w) = \begin{cases} 1 & \forall w \in W \cap V(G) \\ -(A(w) - 1) & \forall w \in F(G) \setminus \{f_0\} \end{cases}$$



Idea. Flow (v, f) = 1

from global source / sink v to the incident face f its large angle gets assigned to.

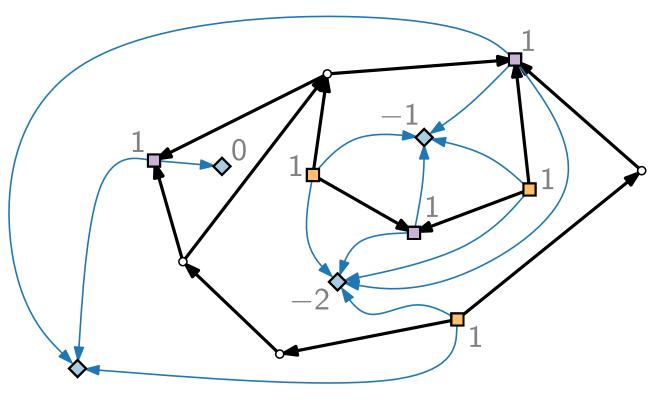
nodes of flow network edges of flow network

lower/upper bounds on edge capcities

Flow network.
$$N_{F,f_0}(G) = ((W,E');b;\ell;u)$$

- $W = \{v \in V(G) \mid v \text{ source or sink}\} \cup F(G)$ $E' = \{(v,f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$b(w) = \begin{cases} 1 & \forall w \in W \cap V(G) \\ -(A(w) - 1) & \forall w \in F(G) \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$$



Idea. Flow (v, f) = 1

from global source / sink v to the incident face f its large angle gets assigned to.

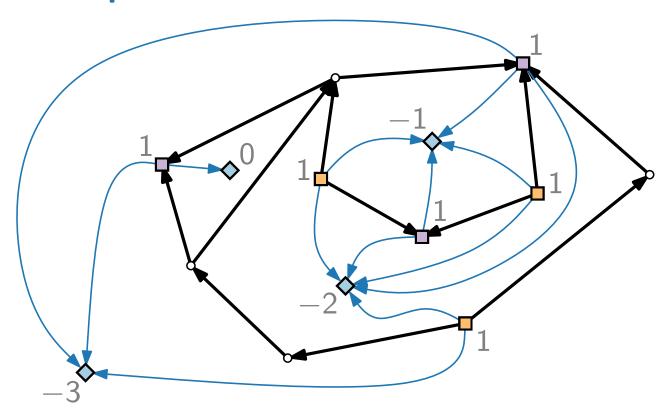
nodes of flow network edges of flow network

lower/upper bounds on edge capcities

Flow network.
$$N_{F,f_0}(G) = ((W,E');b;\ell;u)$$

- $W = \{v \in V(G) \mid v \text{ source or sink}\} \cup F(G)$ $E' = \{(v,f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

$$b(w) = \begin{cases} 1 & \forall w \in W \cap V(G) \\ -(A(w) - 1) & \forall w \in F(G) \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$$



Idea. Flow (v, f) = 1

from global source / sink v to the incident face f its large angle gets assigned to.

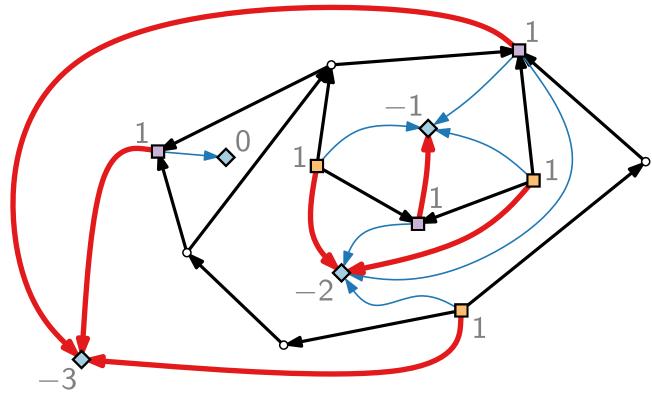
nodes of flow network edges of flow network

lower/upper bounds on edge capcities

Flow network.
$$N_{F,f_0}(G) = ((W,E');b;\ell;u)$$

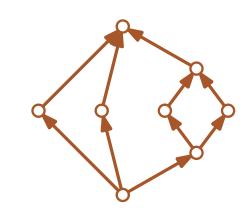
- $W = \{v \in V(G) \mid v \text{ source or sink}\} \cup F(G)$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

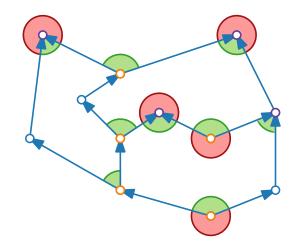
$$b(w) = \begin{cases} 1 & \forall w \in W \cap V(G) \\ -(A(w) - 1) & \forall w \in F(G) \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$$



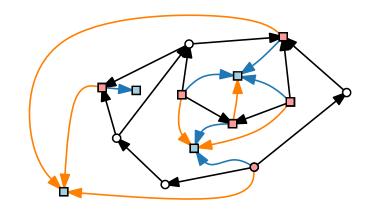
Visualization of Graphs

Lecture 5: Upward Planar Drawings





Part II: Series-Parallel Graphs

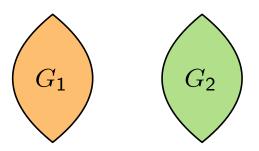


A graph G is series-parallel if

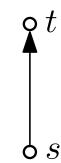
 \blacksquare it contains a single (directed) edge (s,t), or

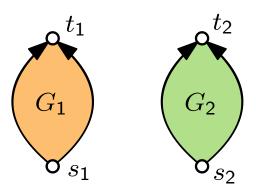
- \blacksquare it contains a single (directed) edge (s, t), or
- \blacksquare it consists of two series-parallel graphs G_1 , G_2



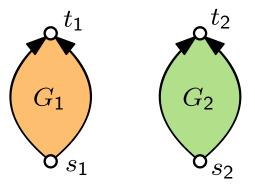


- \blacksquare it contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2





- \blacksquare it contains a single (directed) edge (s,t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:

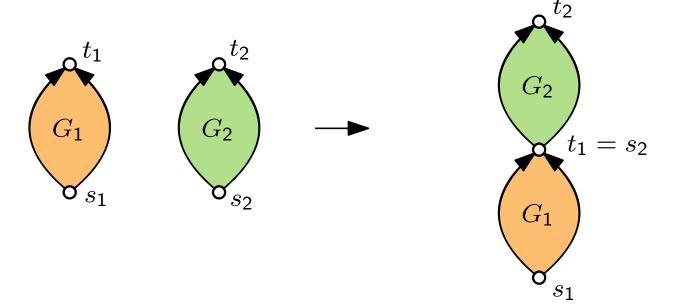


Series-Parallel Graphs

A graph G is series-parallel if

- \blacksquare it contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:

Series composition

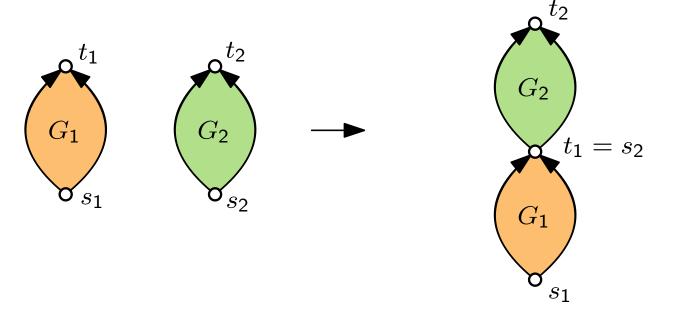


Series-Parallel Graphs

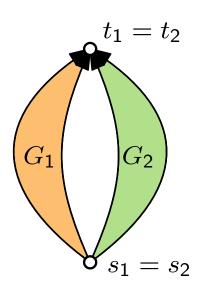
A graph G is series-parallel if

- \blacksquare it contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:

Series composition



Parallel composition



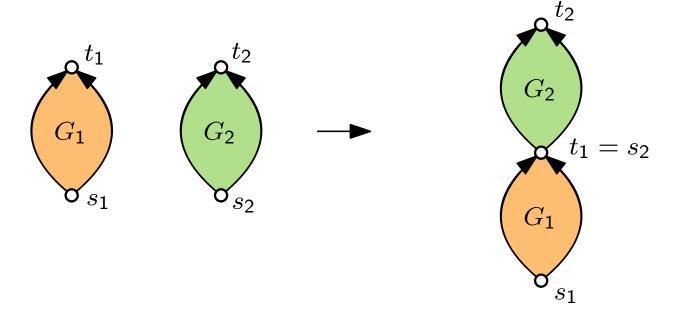
Series-Parallel Graphs

A graph G is series-parallel if

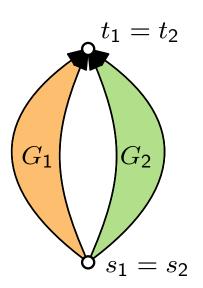
- \blacksquare it contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:

Convince yourself that series-parallel graphs are (upward) planar!

Series composition



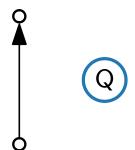
Parallel composition



A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q.

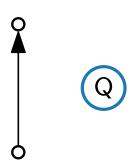
A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q.

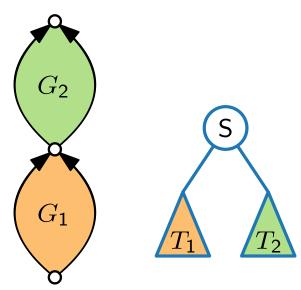
■ A Q-node represents a single edge.



A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q.

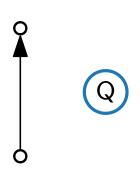
- A Q-node represents a single edge.
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2 .

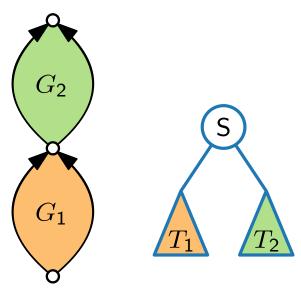


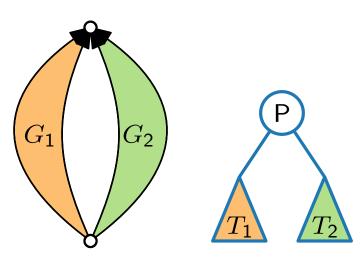


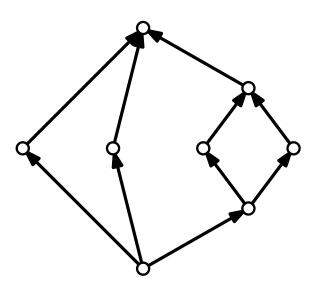
A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q.

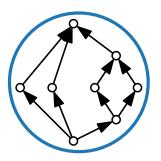
- A Q-node represents a single edge.
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2 .
- A P-node represents a parallel composition; its children T_1 and T_2 represent G_1 and G_2

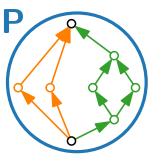


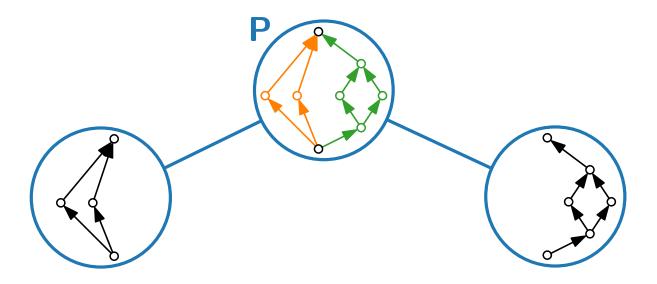


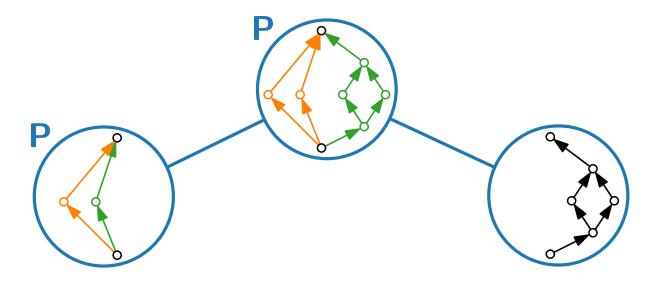


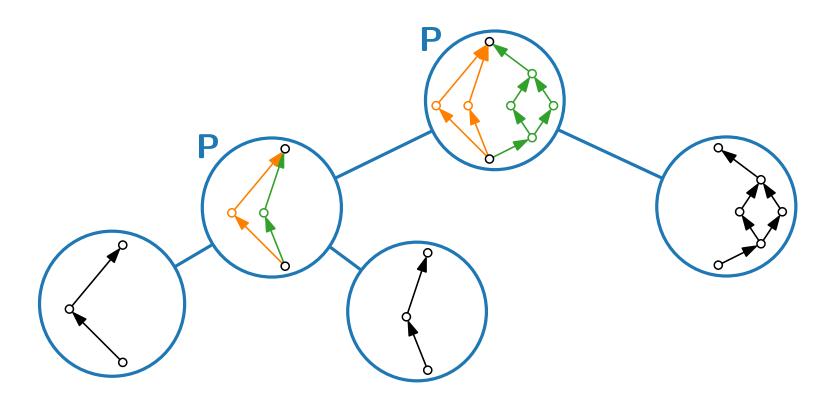


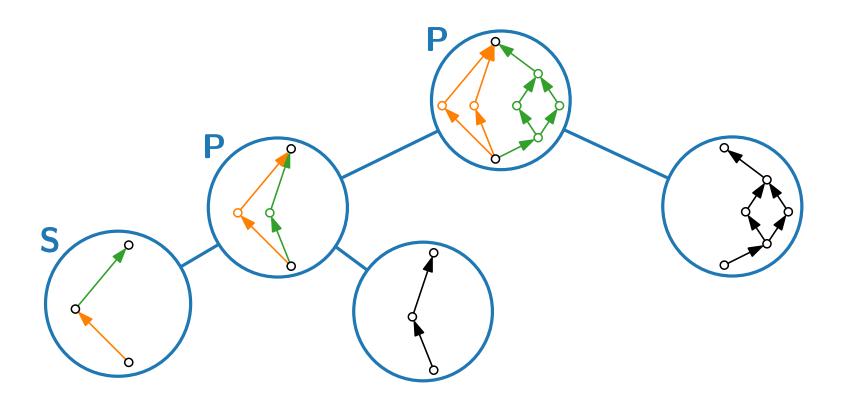


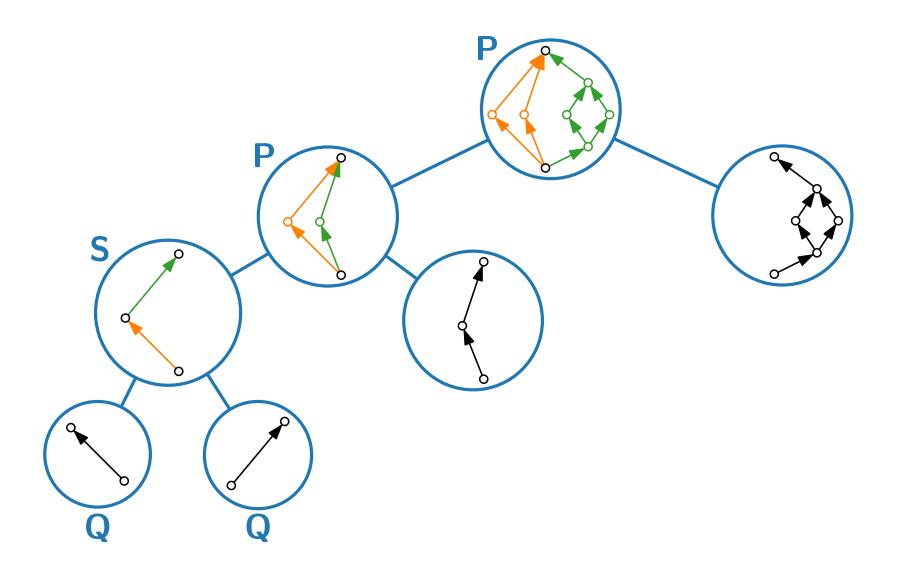


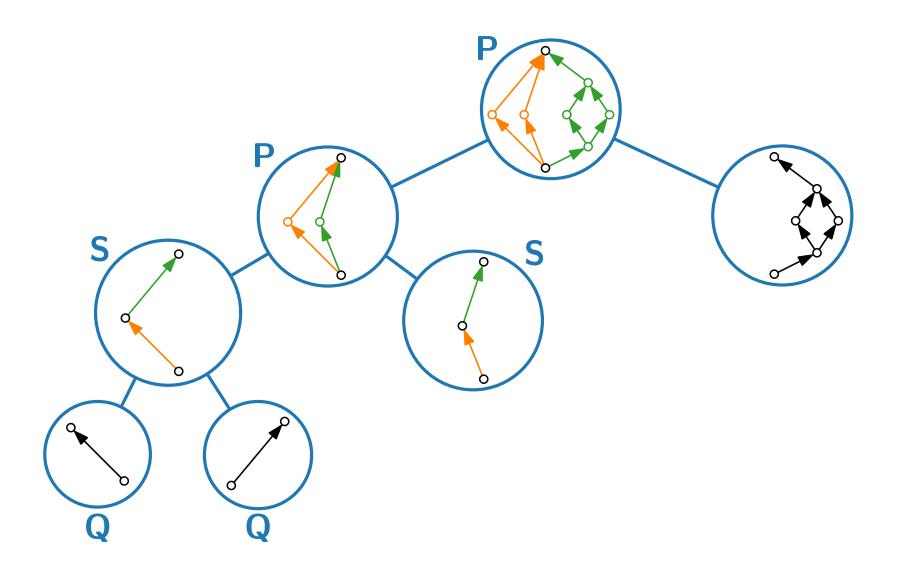


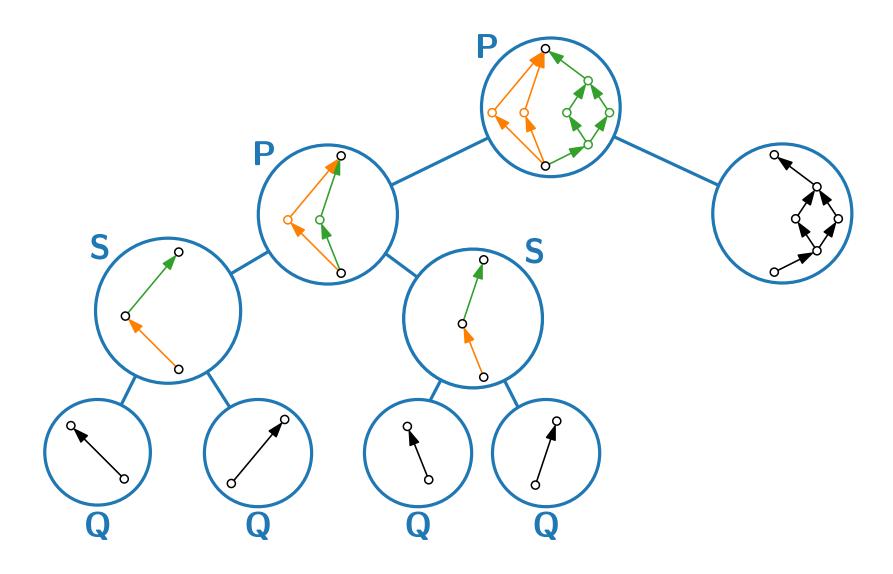


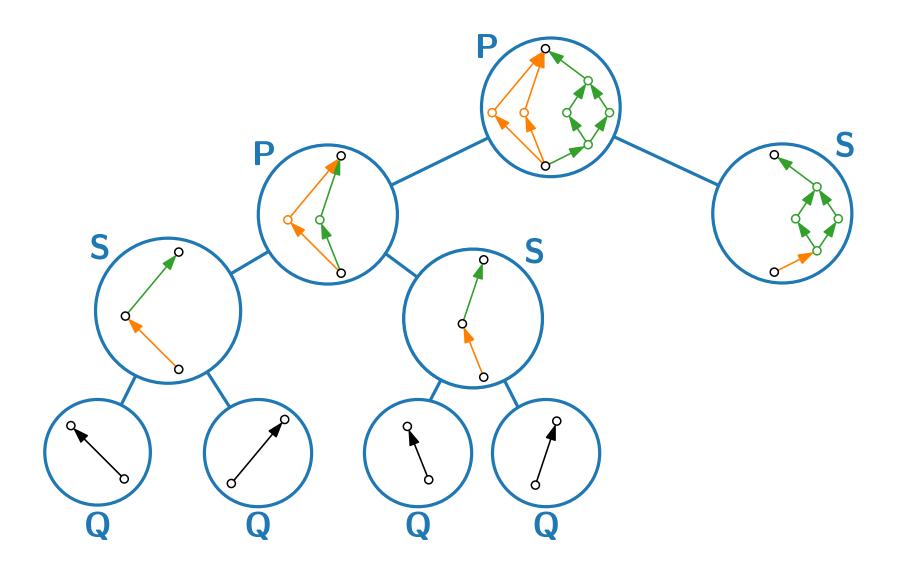


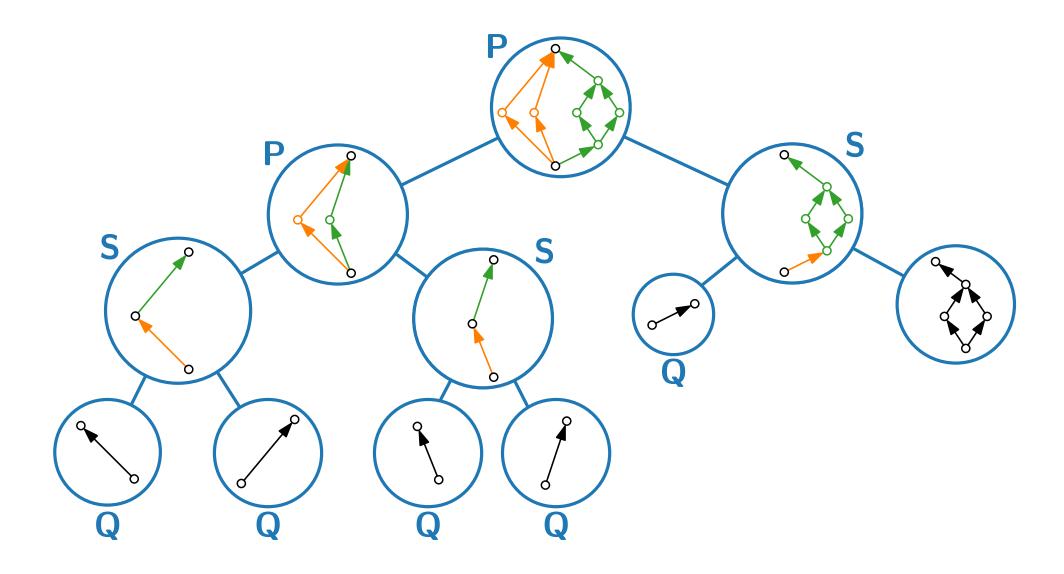


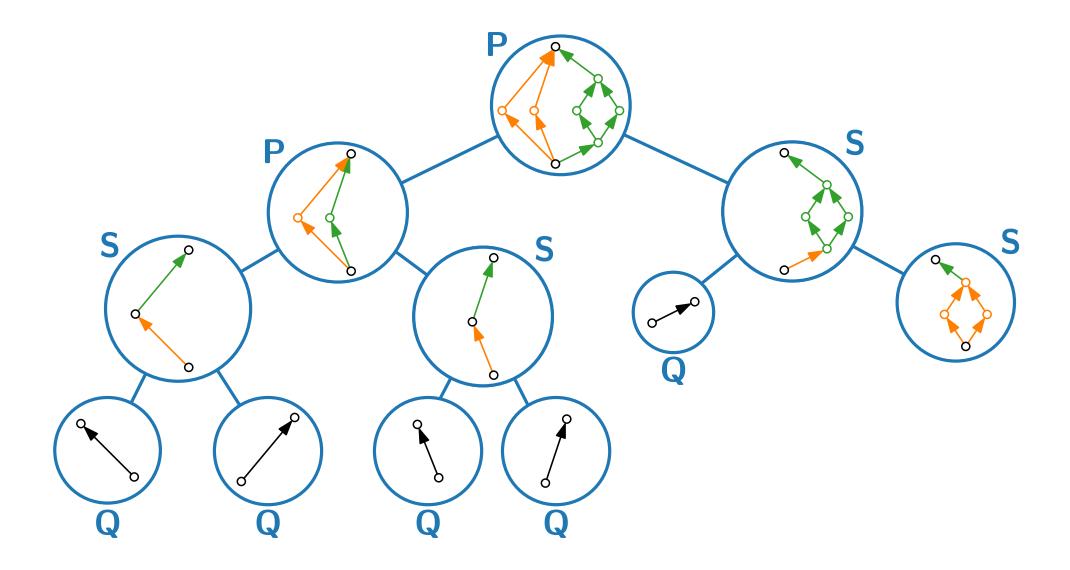


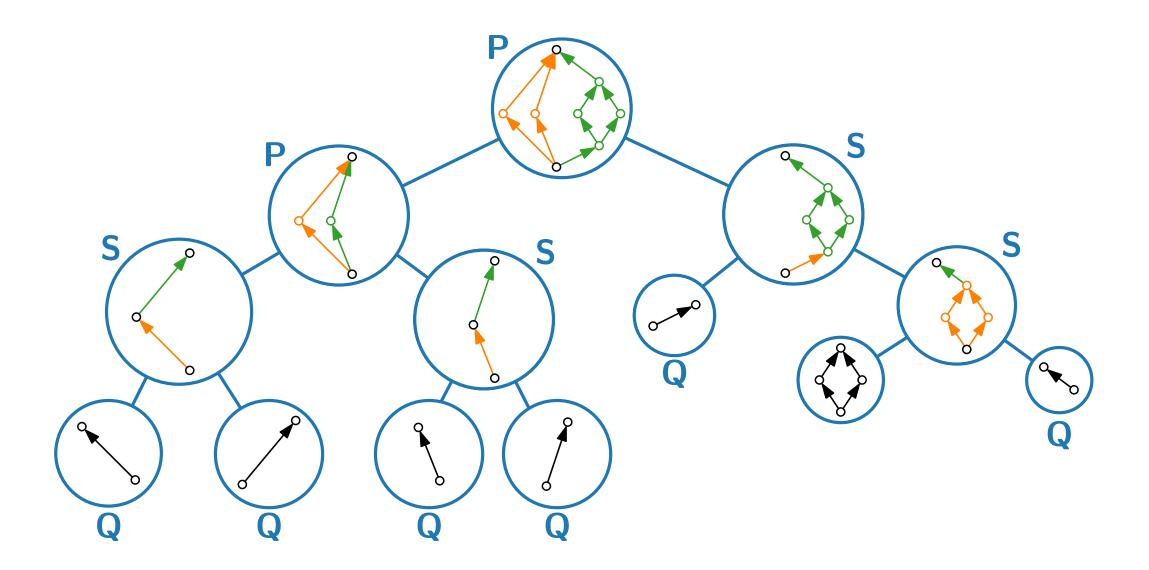


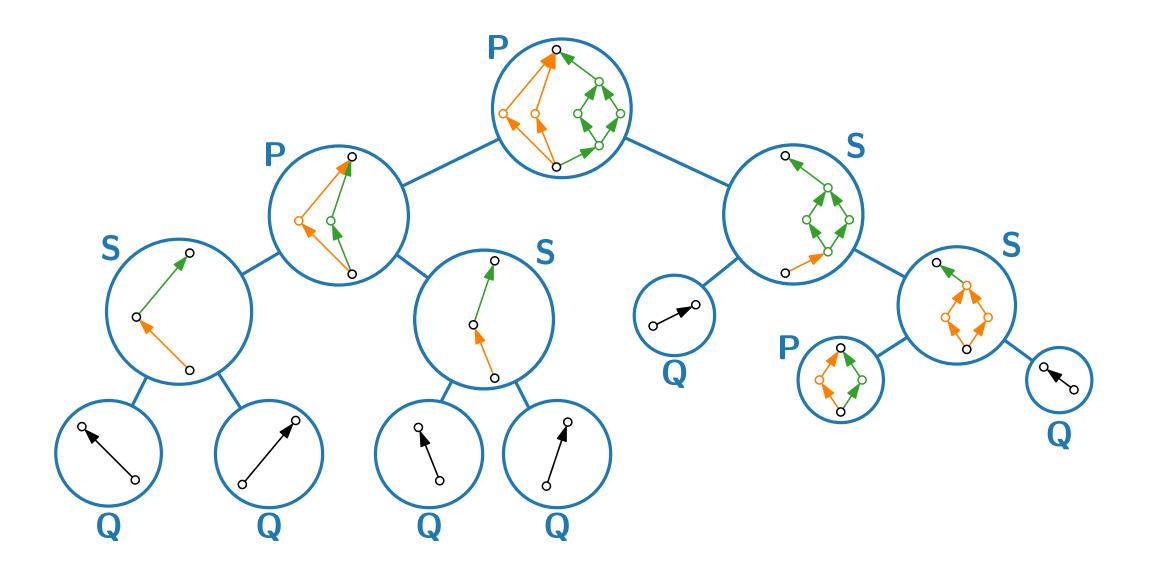


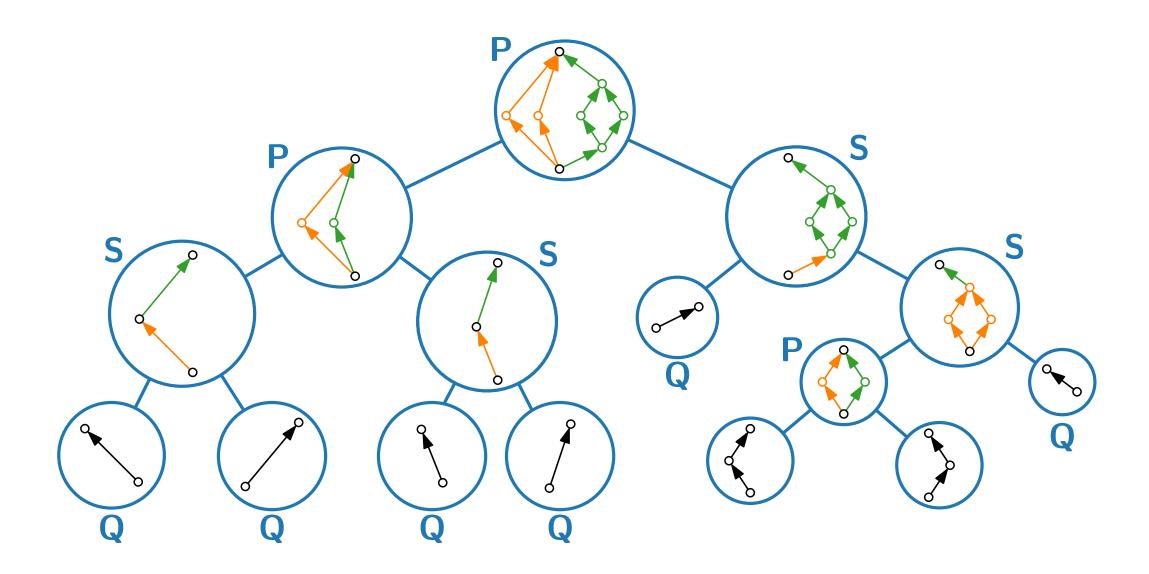


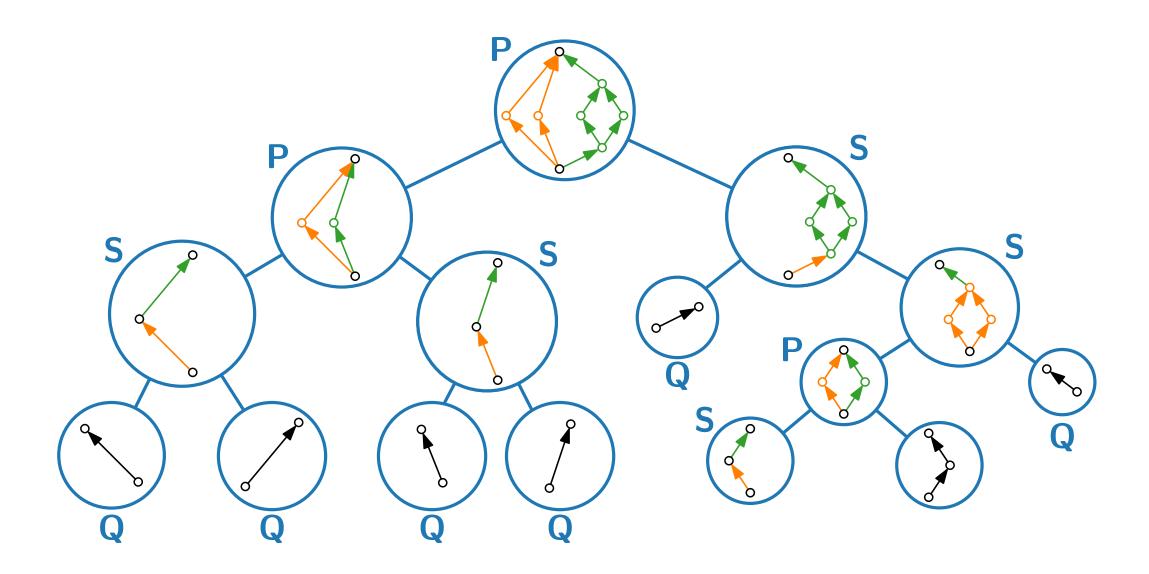


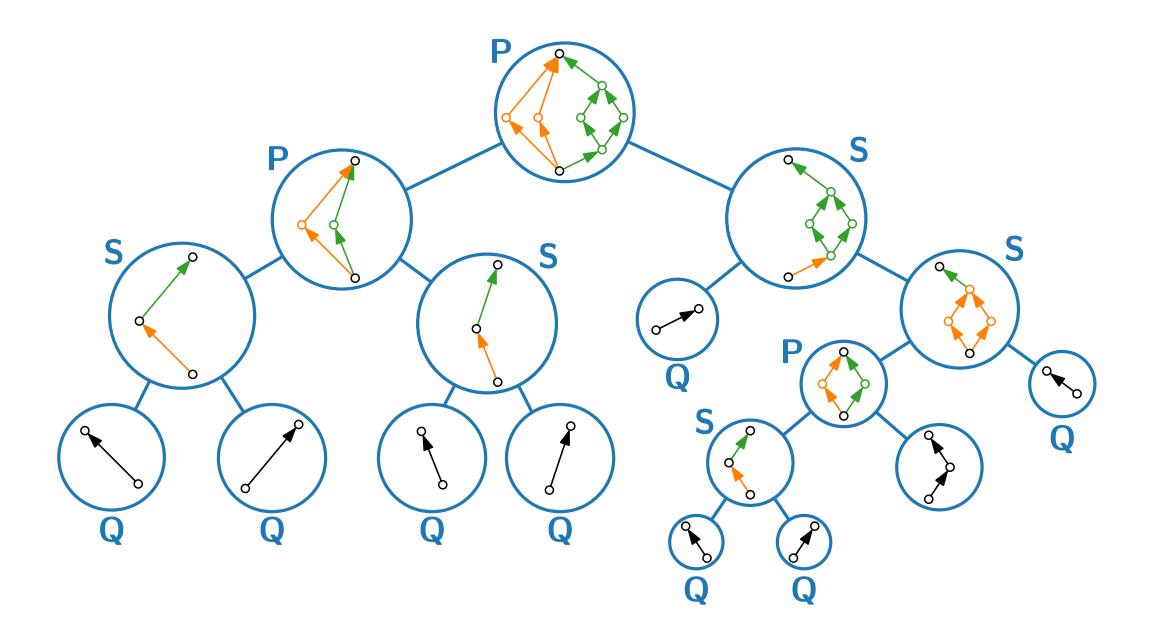


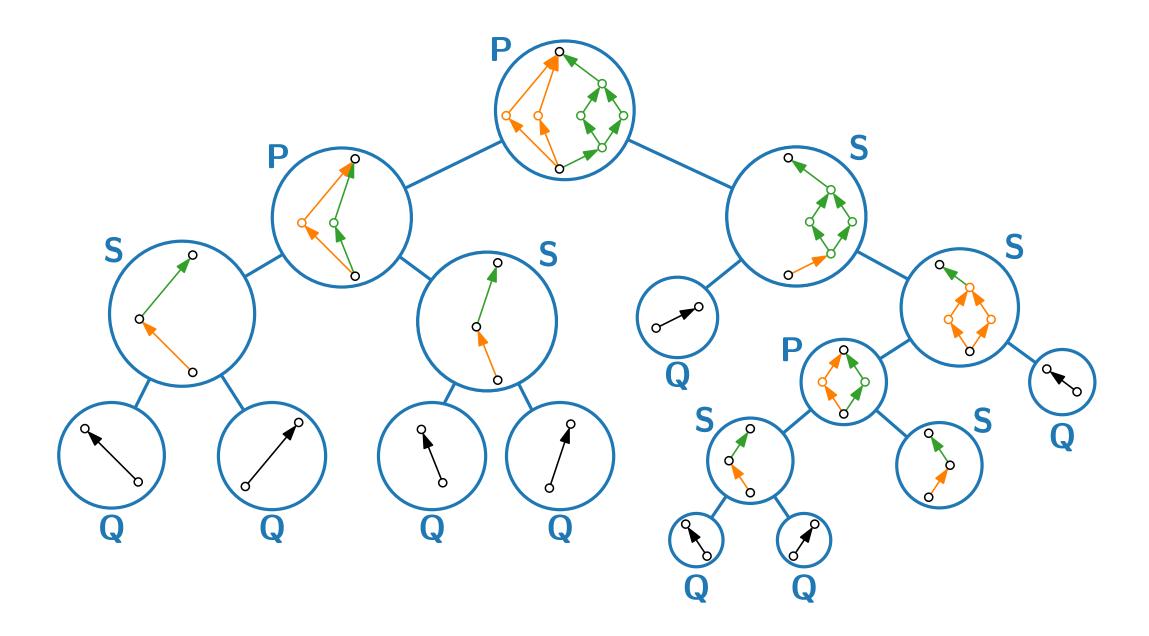


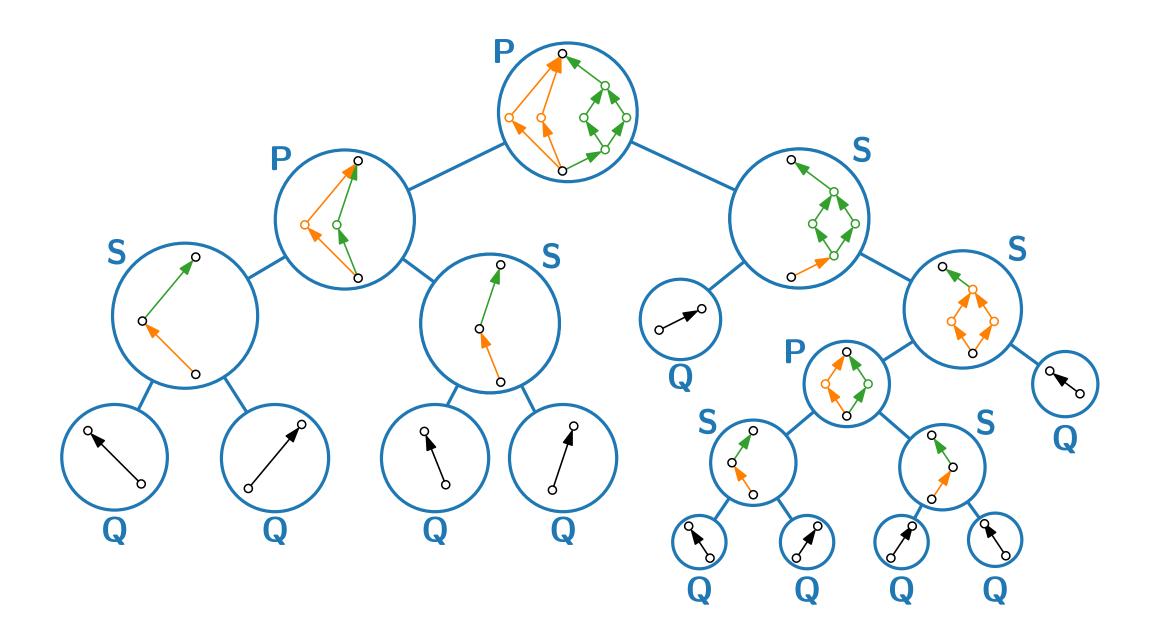




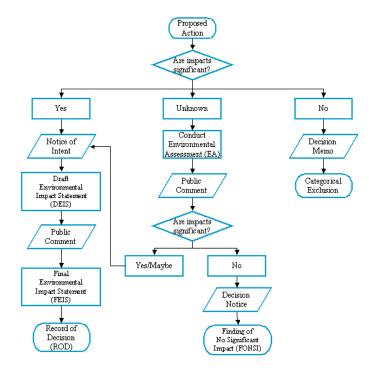




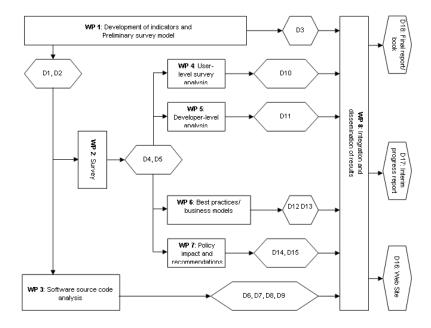




Series-Parallel Graphs – Applications



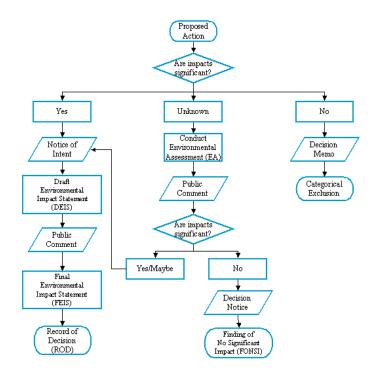
Flowcharts



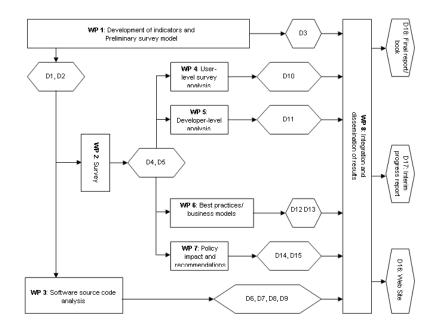
PERT-Diagrams

(Program Evaluation and Review Technique)

Series-Parallel Graphs – Applications



Flowcharts



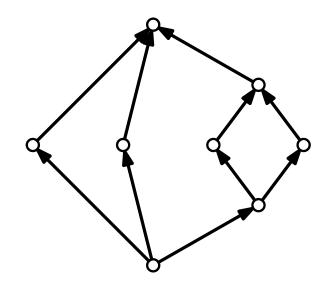
PERT-Diagrams

(Program Evaluation and Review Technique)

Computational complexity:

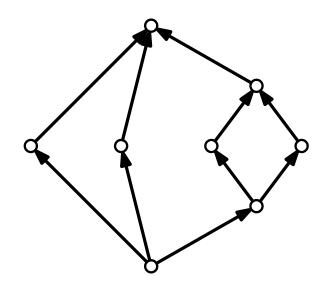
Series-parallel graphs often admit linear-time algorithms for problems that are NP-hard in general, e.g., minimum maximal matching, maximum independent set, Hamiltonian completion.

Drawing conventions



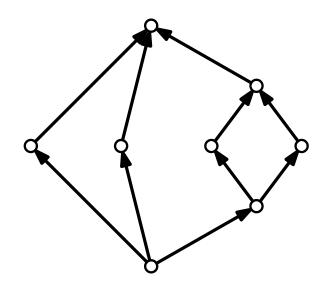
Drawing conventions

Planarity



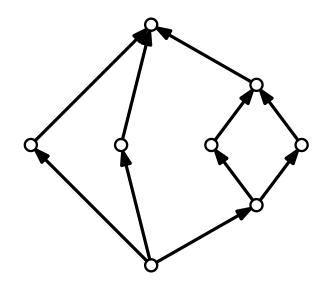
Drawing conventions

- Planarity
- Straight-line edges



Drawing conventions

- Planarity
- Straight-line edges
- Upward

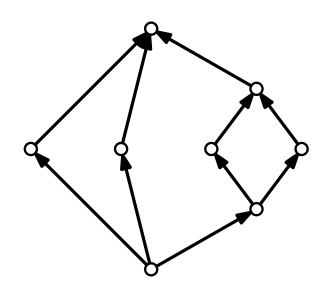


Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics to optimize

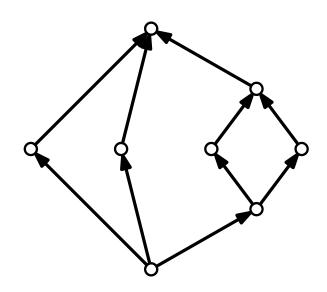
Area



Drawing conventions

- Planarity
- Straight-line edges
- Upward

- Area
- Symmetry

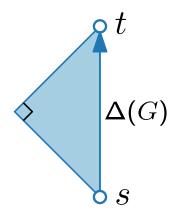


Series-Parallel Graphs – Straight-Line Drawings

Divide-and-conquer algorithm using the decomposition tree

Divide-and-conquer algorithm using the decomposition tree

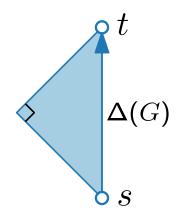
Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

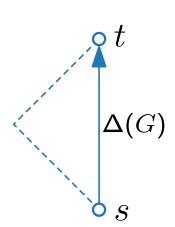


Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes



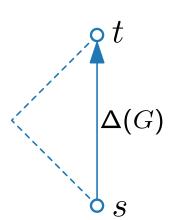


Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

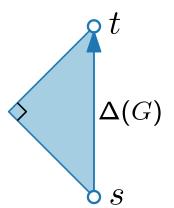
 $\Delta(G)$

Base case: Q-nodes Divide: Draw G_1 and G_2 first

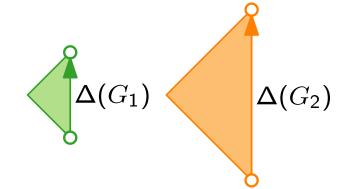


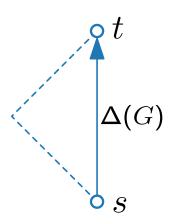
Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top



Base case: Q-nodes Divide: Draw G_1 and G_2 first





Divide-and-conquer algorithm using the decomposition tree

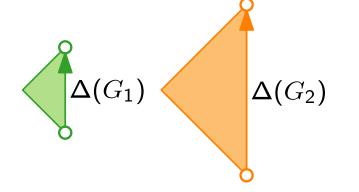
Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

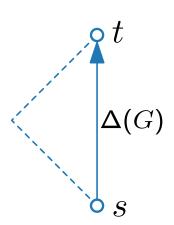
 $\Delta(G)$

Base case: Q-nodes

Divide: Draw G_1 and G_2 first

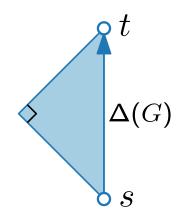
Conquer:





Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

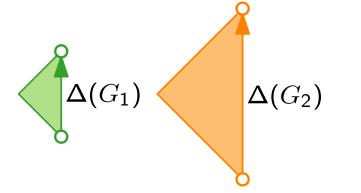


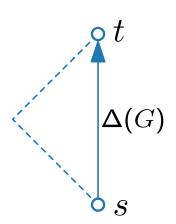
Base case: Q-nodes

Divide: Draw G_1 and G_2 first

Conquer:

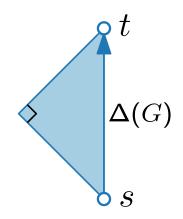
S-nodes: series compositions





Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

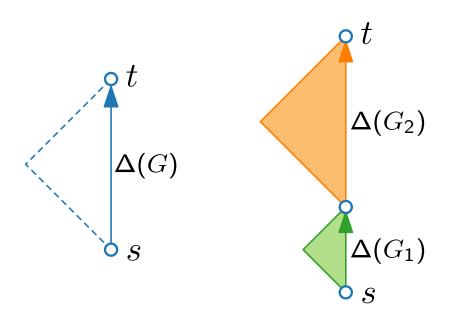


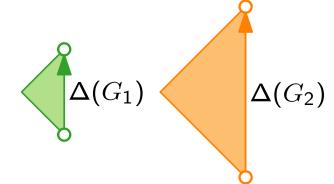
Base case: Q-nodes

Divide: Draw G_1 and G_2 first

Conquer:

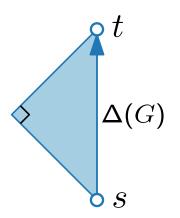
S-nodes: series compositions





Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

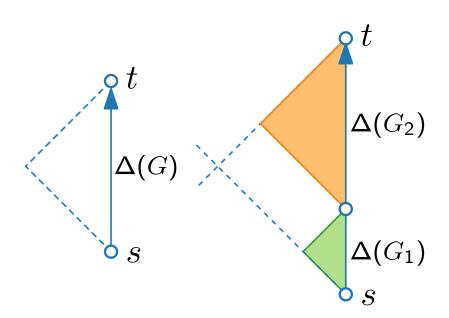


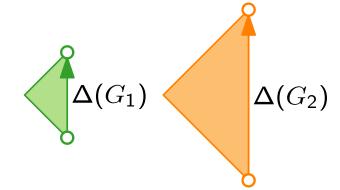
Base case: Q-nodes

Divide: Draw G_1 and G_2 first

Conquer:

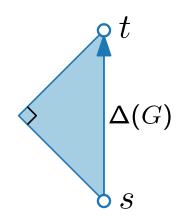
S-nodes: series compositions





Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

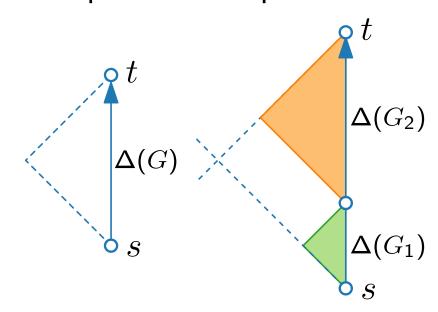


Base case: Q-nodes

Divide: Draw G_1 and G_2 first

Conquer:

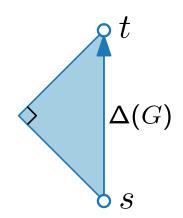
S-nodes: series compositions





Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

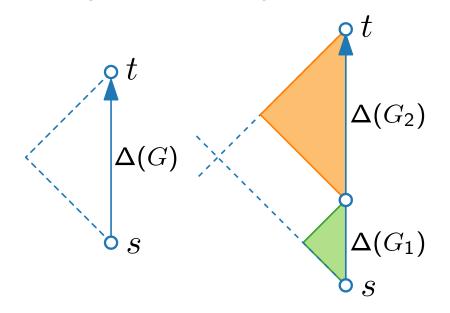


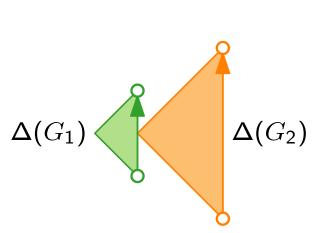
Base case: Q-nodes

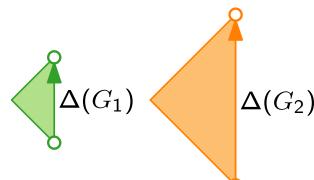
Divide: Draw G_1 and G_2 first

Conquer:

S-nodes: series compositions







Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

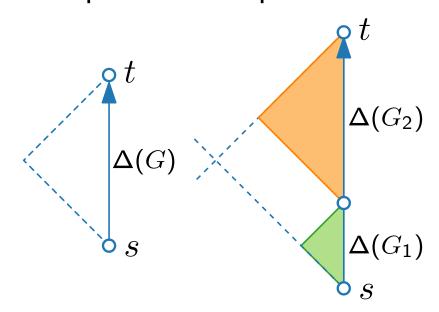
 $\Delta(G)$

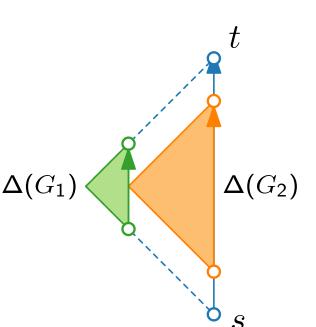
Base case: Q-nodes

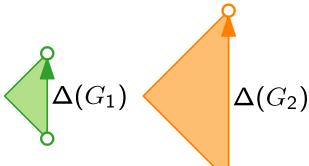
Divide: Draw G_1 and G_2 first

Conquer:

S-nodes: series compositions







Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

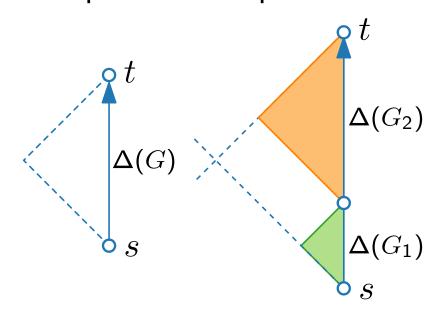
 $\Delta(G)$

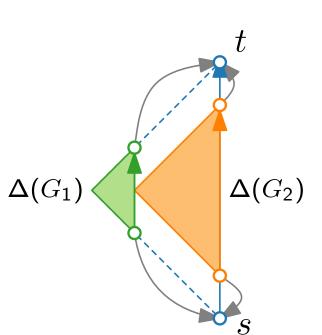
Base case: Q-nodes

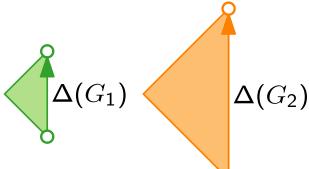
Divide: Draw G_1 and G_2 first

Conquer:

S-nodes: series compositions







Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

 $\Delta(G)$

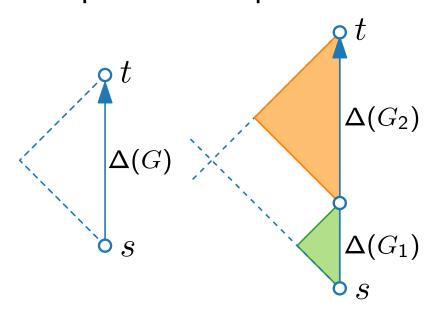
Base case: Q-nodes

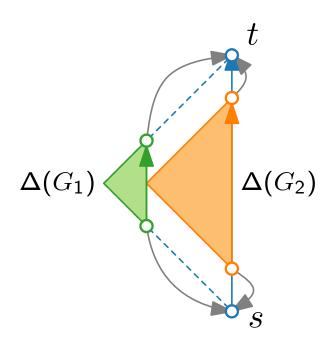
Divide: Draw G_1 and G_2 first

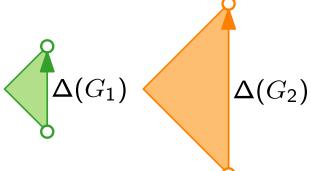
Conquer:

S-nodes: series compositions

■ P-nodes: parallel compositions



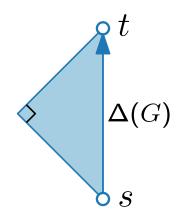




Do you see any problem?

Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top



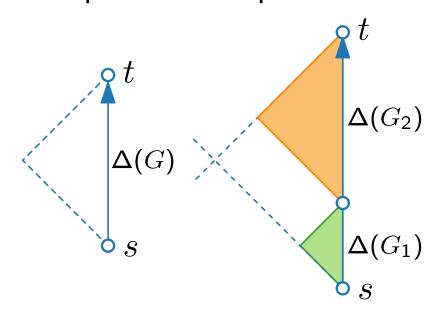
Base case: Q-nodes

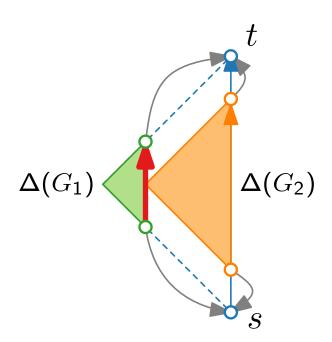
Divide: Draw G_1 and G_2 first

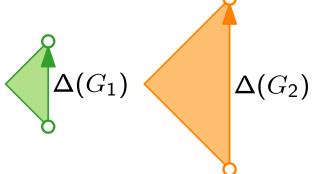
Conquer:

S-nodes: series compositions

■ P-nodes: parallel compositions



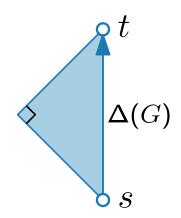




Do you see any problem? single edge

Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top



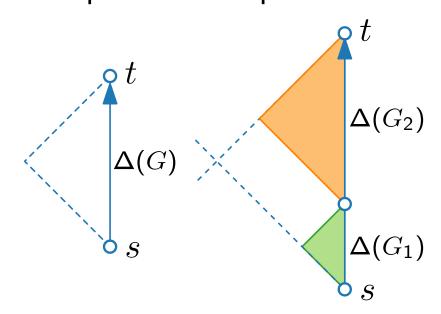
Base case: Q-nodes

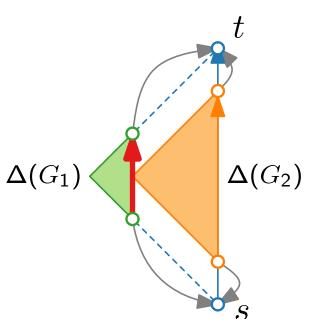
Divide: Draw G_1 and G_2 first

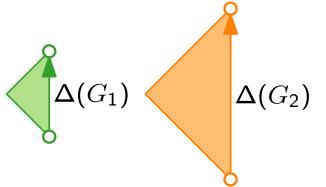
Conquer:

S-nodes: series compositions

P-nodes: parallel compositions





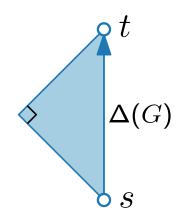


Do you see any problem?

single edge
change embedding!

Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

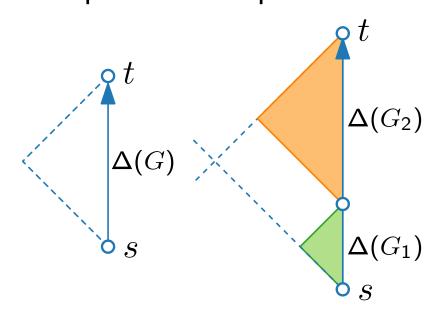


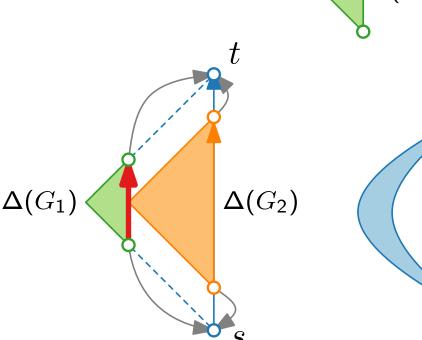
Base case: Q-nodes

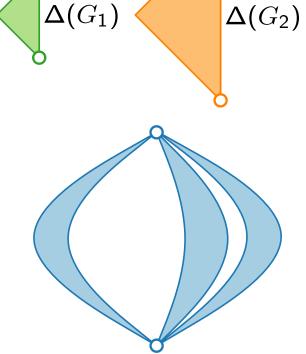
Divide: Draw G_1 and G_2 first

Conquer:

S-nodes: series compositions







Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

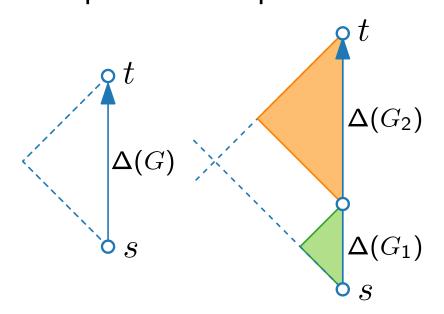
 $\Delta(G)$

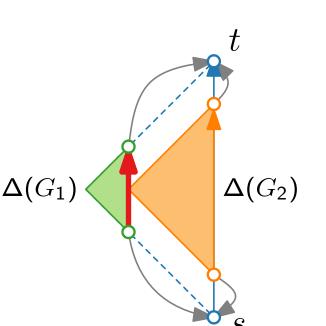
Base case: Q-nodes Divide: Draw

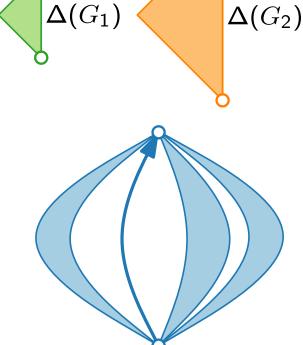
Divide: Draw G_1 and G_2 first

Conquer:

S-nodes: series compositions







Divide-and-conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

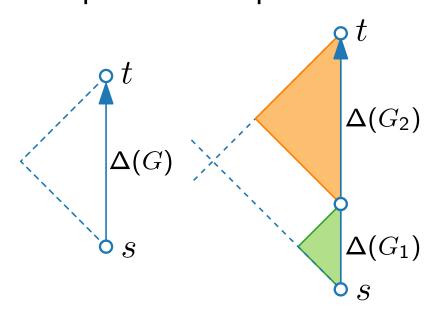
 $\Delta(G)$

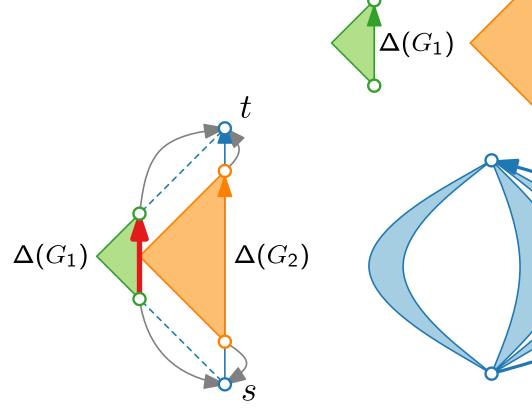
 $\Delta(G_2)$

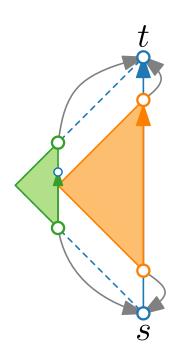
Base case: Q-nodes Divide: Draw G_1 and G_2 first

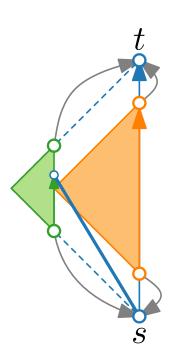
Conquer:

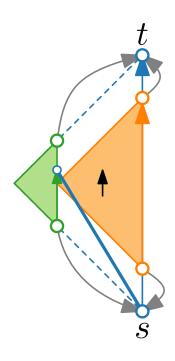
S-nodes: series compositions

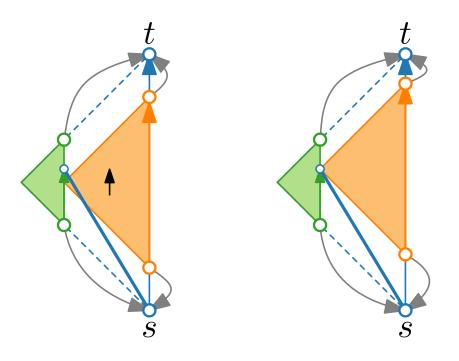


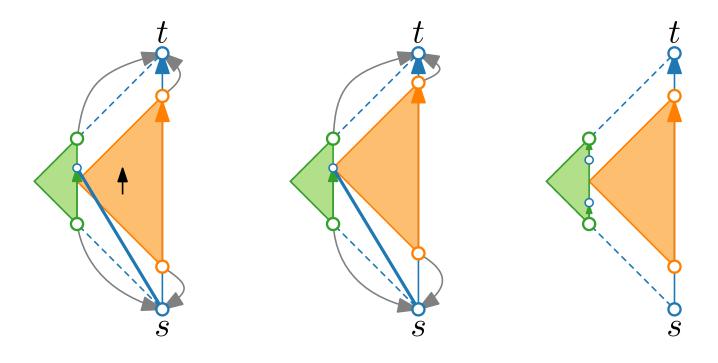


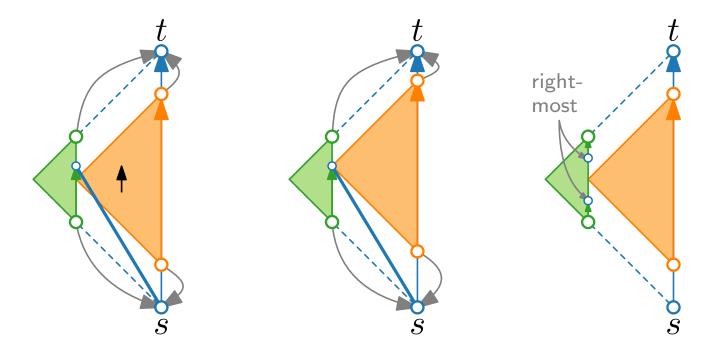


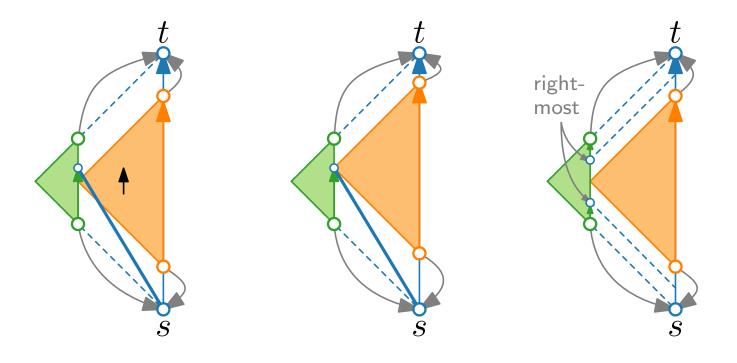


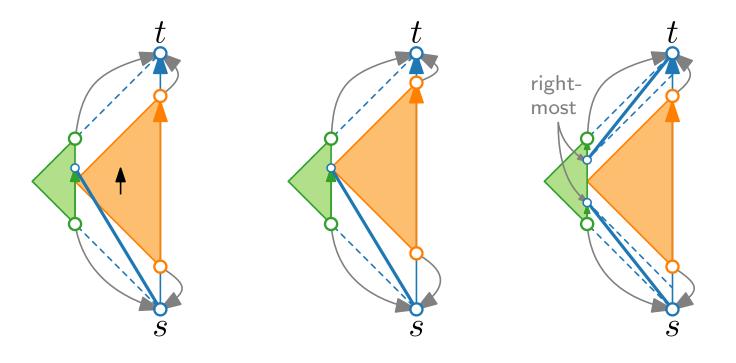


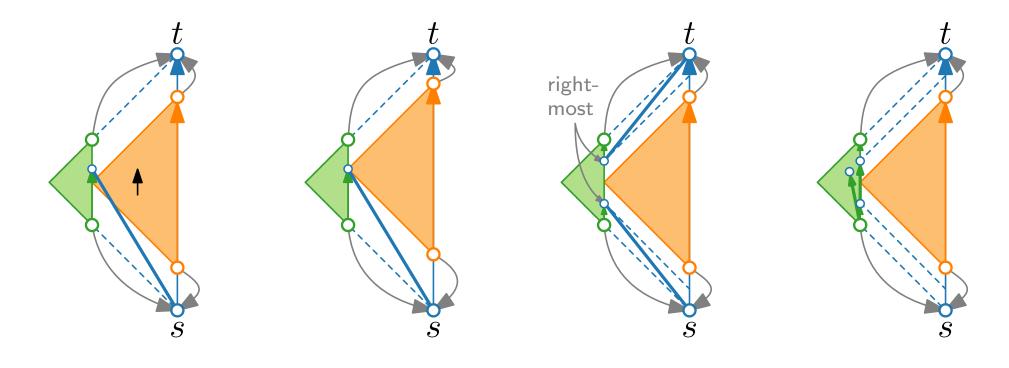


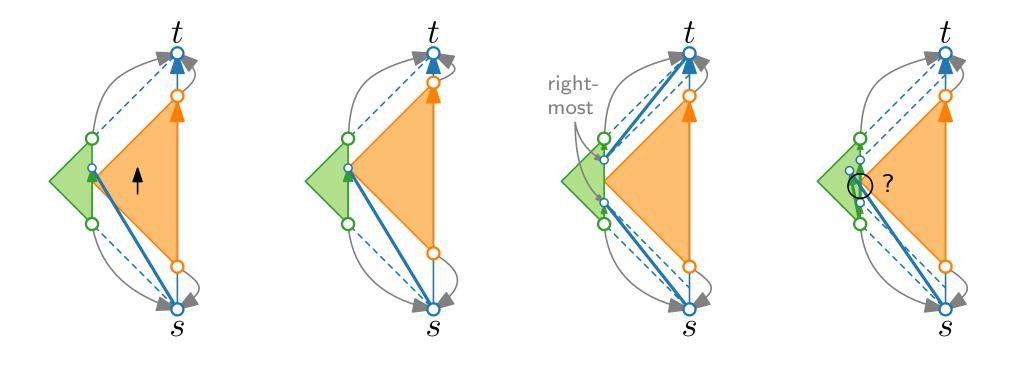


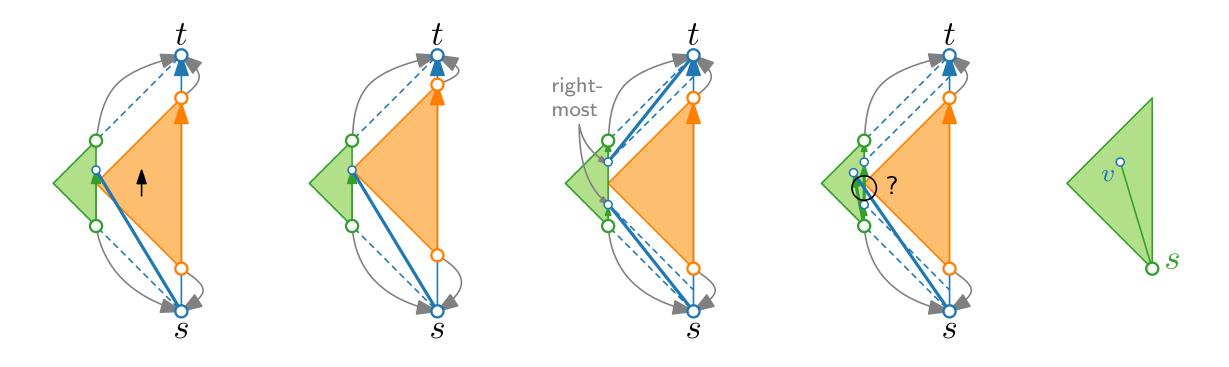


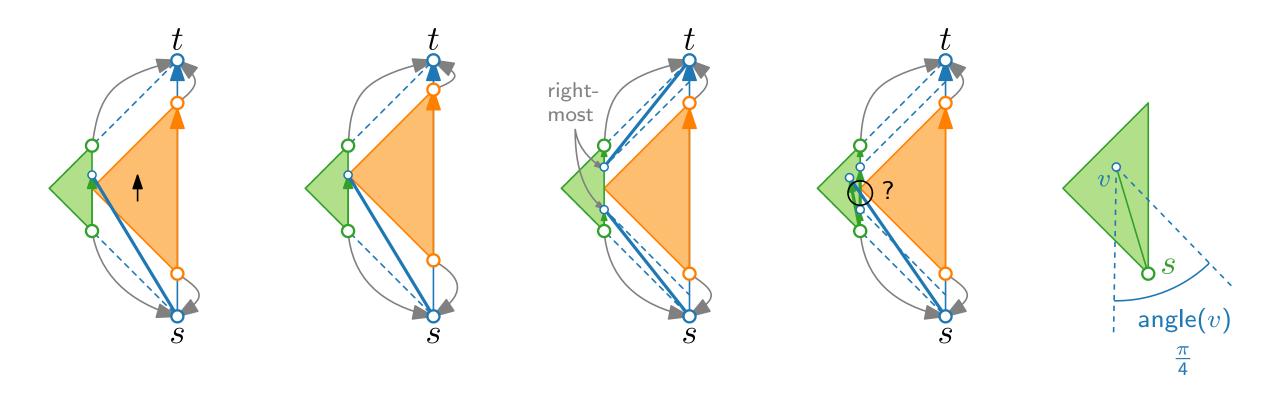




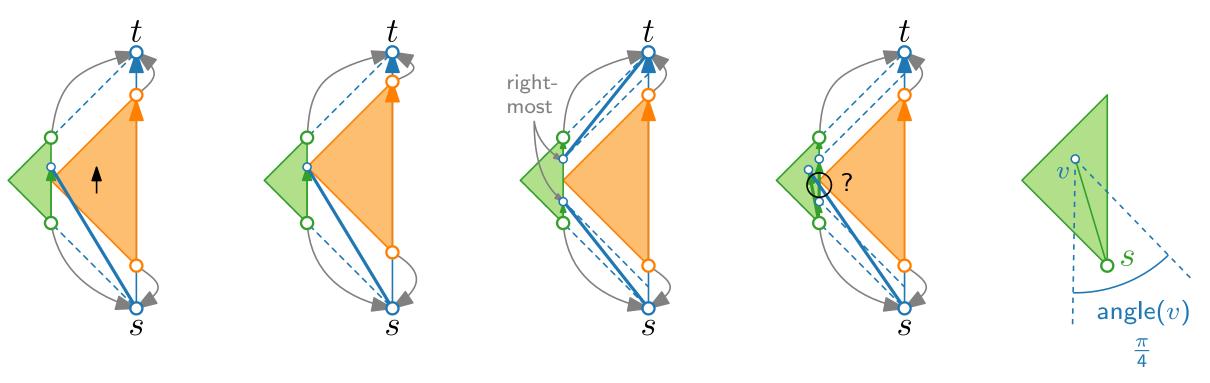






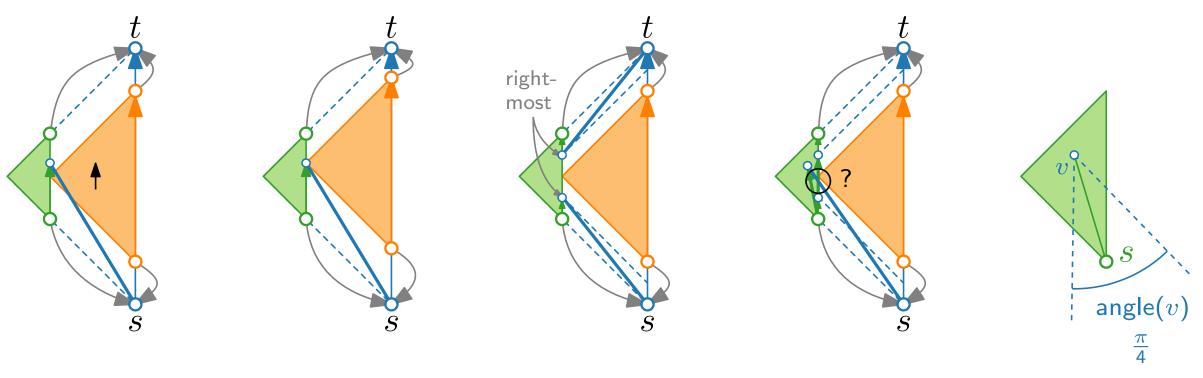


What makes parallel composition possible without creating crossings?



Assume the following holds: the only vertex in angle(v) is s

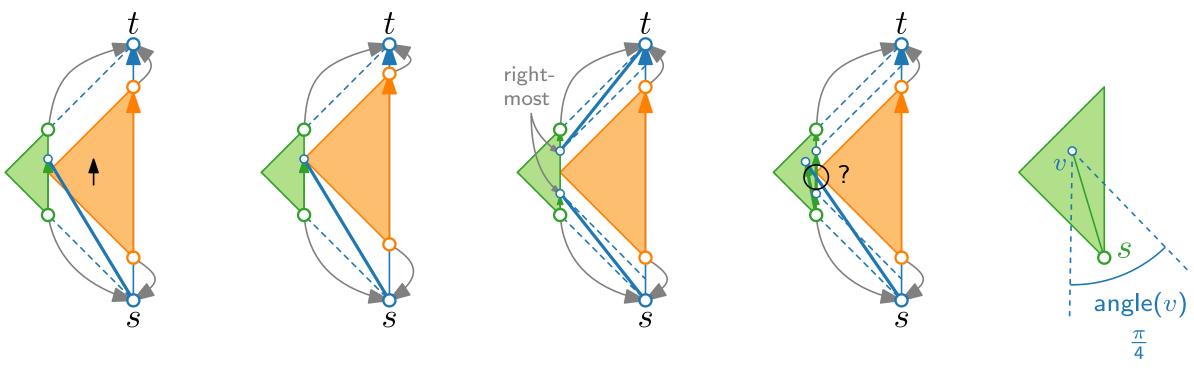
What makes parallel composition possible without creating crossings?



■ This condition **is** preserved during the induction step.

Assume the following holds: the only vertex in angle(v) is s

What makes parallel composition possible without creating crossings?



■ This condition **is** preserved during the induction step.

Assume the following holds: the only vertex in angle(v) is s

Lemma.

The drawing produced by the algorithm is planar.

Series-Parallel Graphs – Result

Theorem.

Let G be a series-parallel graph. Then G (with **variable embedding**) admits a drawing Γ that

Series-Parallel Graphs – Result

Theorem.

Let G be a series-parallel graph. Then G (with **variable embedding**) admits a drawing Γ that

is upward planar,

Theorem.

Let G be a series-parallel graph. Then G (with **variable embedding**) admits a drawing Γ that

- is upward planar,
- is straight-line, and

Theorem.

Let G be a series-parallel graph. Then G (with **variable embedding**) admits a drawing Γ that

- is upward planar,
- is straight-line, and
- uses quadratic area.

Theorem.

Let G be a series-parallel graph. Then G (with **variable embedding**) admits a drawing Γ that

- is upward planar,
- is straight-line, and
- uses quadratic area.
- Isomorphic components of G have congruent drawings up to translation.

Theorem.

Let G be a series-parallel graph. Then G (with **variable embedding**) admits a drawing Γ that

- is upward planar,
- is straight-line, and
- uses quadratic area.
- Isomorphic components of G have congruent drawings up to translation.

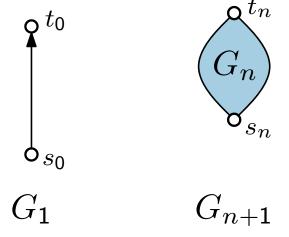
Γ can be computed in linear time.

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]

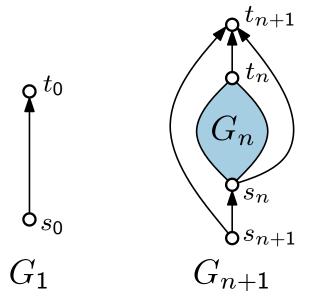
Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]



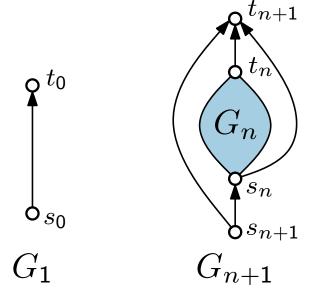
Theorem.

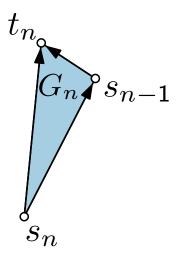
[Bertolazzi, Di Battista, Mannino, Tamassia '94]



Theorem.

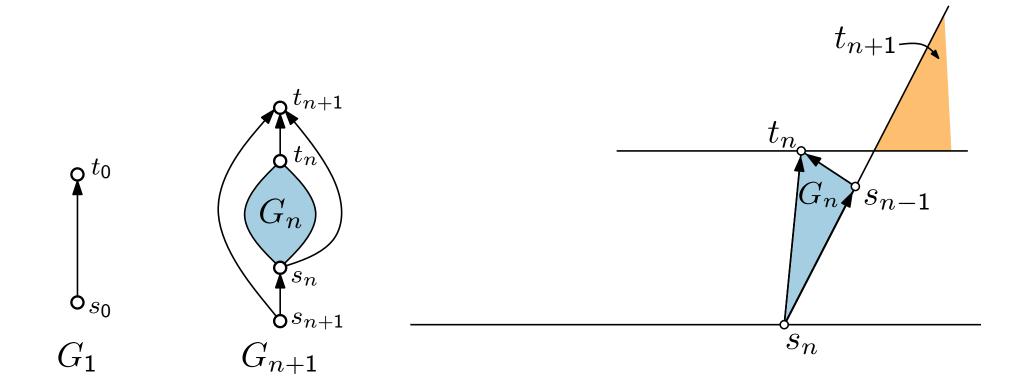
[Bertolazzi, Di Battista, Mannino, Tamassia '94]





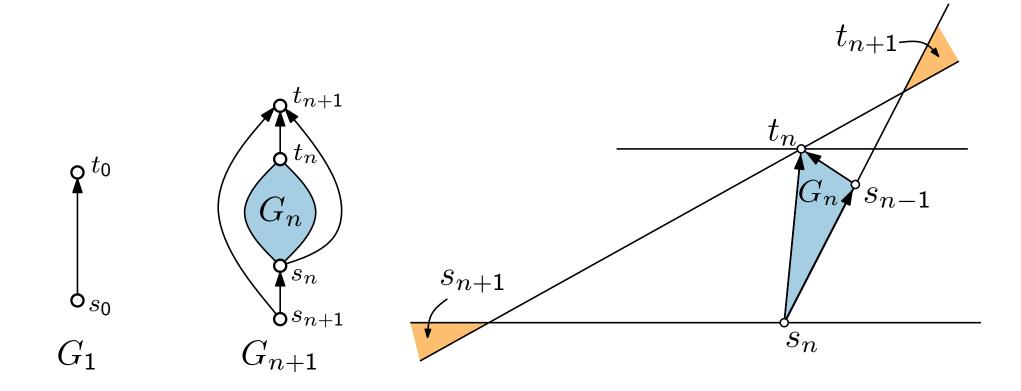
Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]



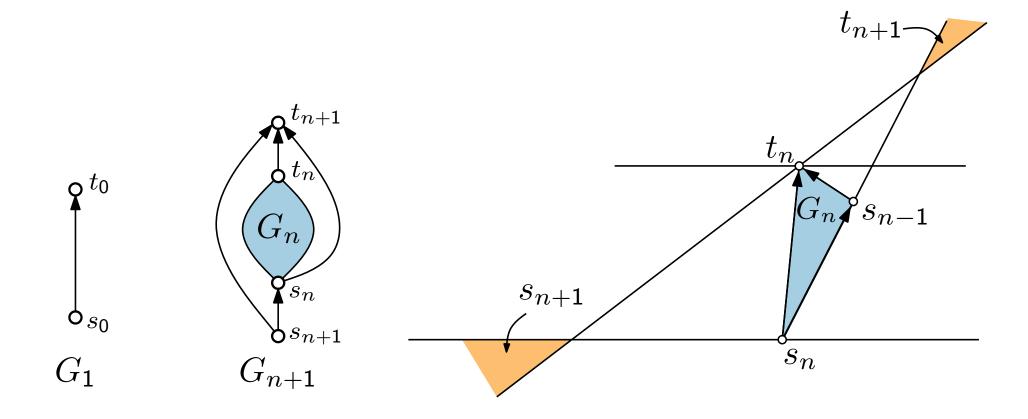
Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]



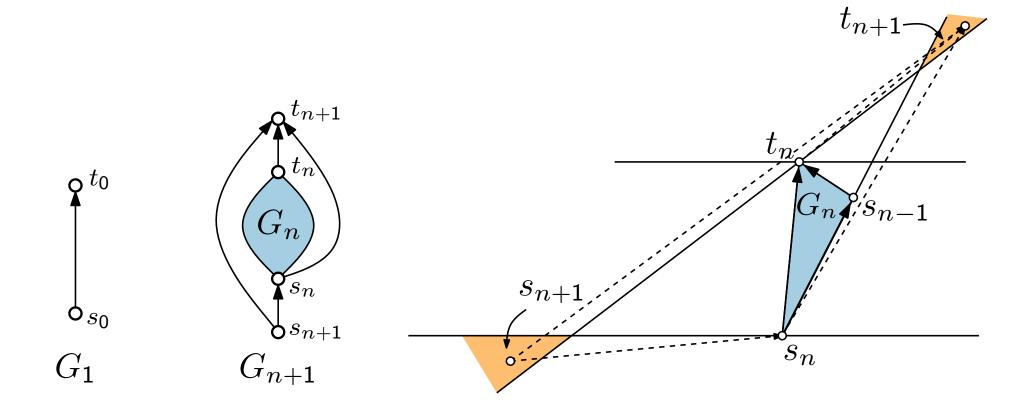
Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]



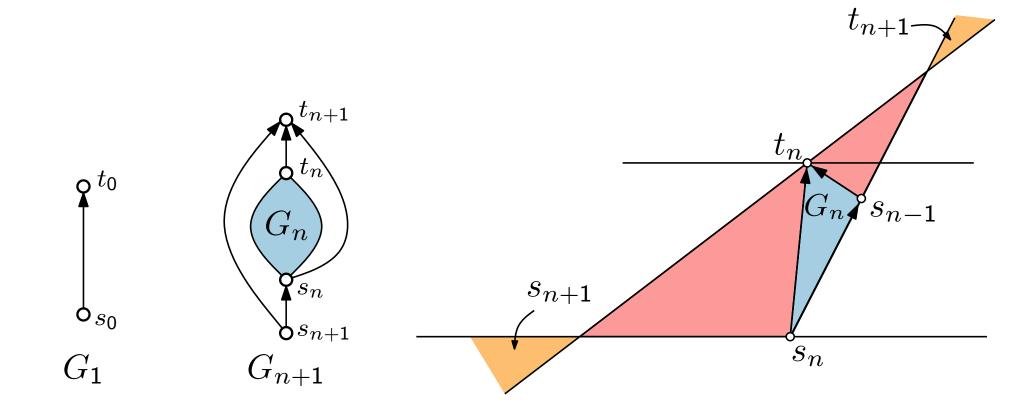
Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]



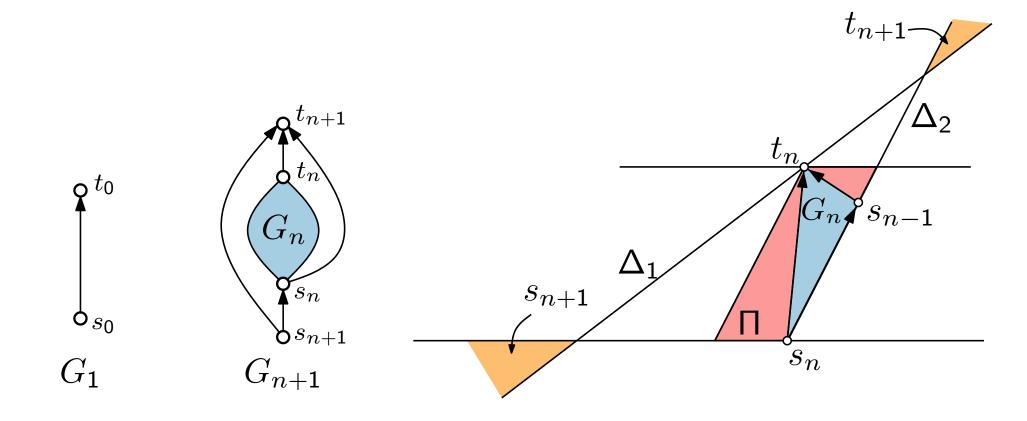
Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]



Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]

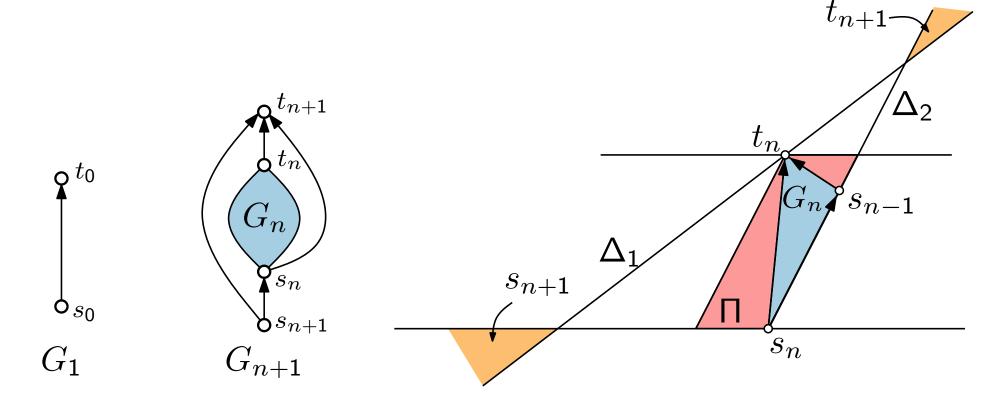


Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any $n \ge 1$, there exists a 2n-vertex series-parallel graph G_n in an embedding such that any upward planar straight-line drawing of G_n that respects the given embedding requires $\Omega(4^n)$ area.

 $lacksquare 2 \cdot \operatorname{Area}(G_n) < \operatorname{Area}(\Pi)$

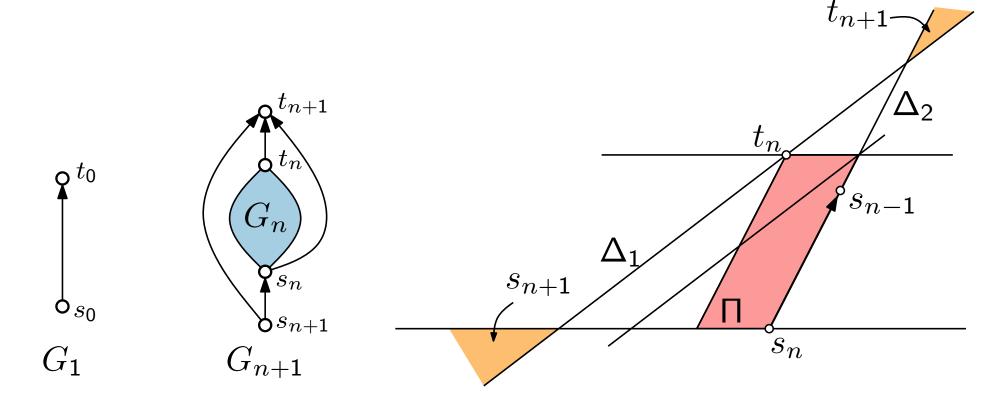


Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any $n \ge 1$, there exists a 2n-vertex series-parallel graph G_n in an embedding such that any upward planar straight-line drawing of G_n that respects the given embedding requires $\Omega(4^n)$ area.

 $lacksquare 2 \cdot \operatorname{Area}(G_n) < \operatorname{Area}(\Pi)$

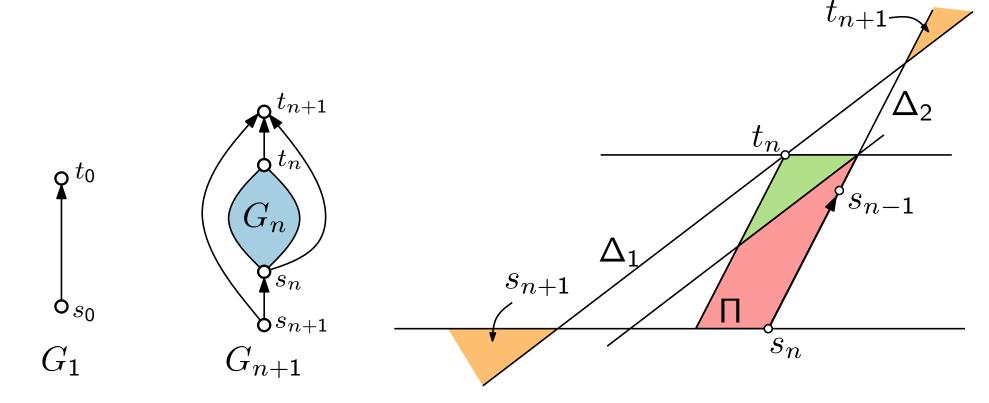


Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any $n \ge 1$, there exists a 2n-vertex series-parallel graph G_n in an embedding such that any upward planar straight-line drawing of G_n that respects the given embedding requires $\Omega(4^n)$ area.

 $lacksquare 2 \cdot \operatorname{Area}(G_n) < \operatorname{Area}(\Pi)$

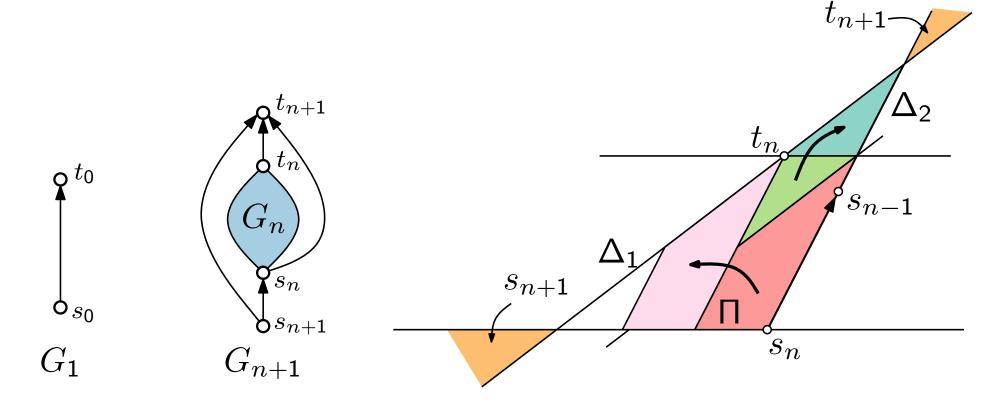


Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any $n \ge 1$, there exists a 2n-vertex series-parallel graph G_n in an embedding such that any upward planar straight-line drawing of G_n that respects the given embedding requires $\Omega(4^n)$ area.

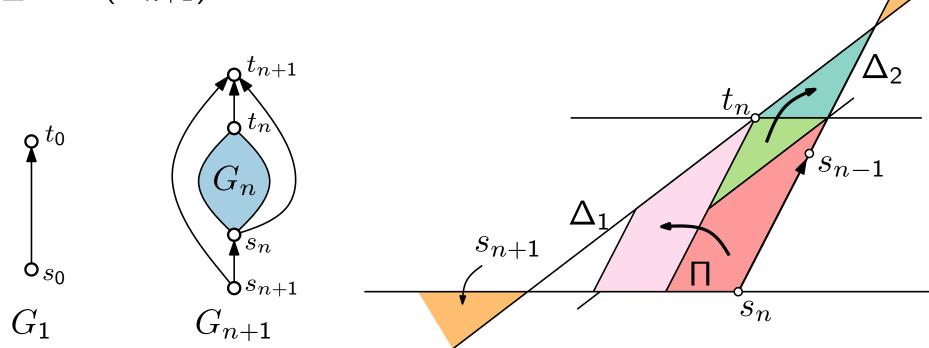
lacksquare 2 · Area (G_n) < Area (Π)



Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]

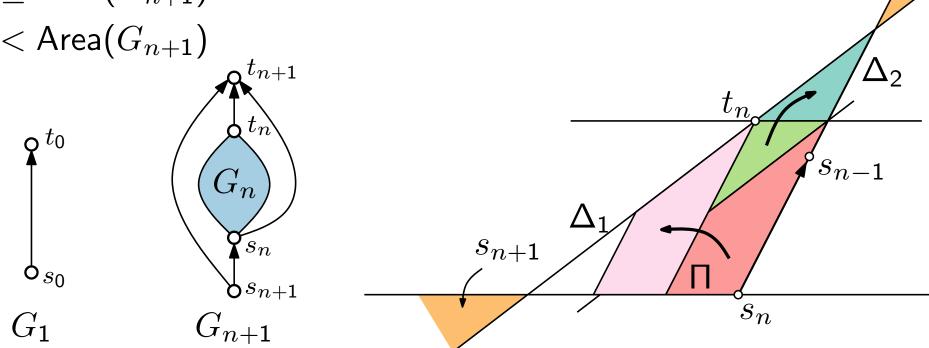
- $lacksquare 2 \cdot \operatorname{Area}(G_n) < \operatorname{Area}(\Pi)$
- lacksquare 2 · Area (Π) \leq Area (G_{n+1})



Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]

- $lacksquare 2 \cdot \operatorname{Area}(G_n) < \operatorname{Area}(\Pi)$
- lacksquare 2 · Area (Π) \leq Area (G_{n+1})
- $\Rightarrow 4 \cdot \text{Area}(G_n) < \text{Area}(G_{n+1})$



Discussion

■ There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy & Lynch 2005, Didimo et al. 2009]

Discussion

■ There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy & Lynch 2005, Didimo et al. 2009]

■ Finding a consistent assignment (Theorem 2) can be sped up to $\mathcal{O}(n+r^{1.5})$, where r=# sources. [Abbasi, Healy, Rextin 2010]

Discussion

■ There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy & Lynch 2005, Didimo et al. 2009]

- Finding a consistent assignment (Theorem 2) can be sped up to $\mathcal{O}(n+r^{1.5})$, where r=# sources. [Abbasi, Healy, Rextin 2010]
- Many related concepts have been studied: upward drawings of mixed graphs, upward drawings with layers for the vertices, upward planarity on cylinder/torus, upward k-planarity, . . .

Literature

- [GD Ch. 6] Detailed explanation on upward planarity.
- [GD Ch. 3] Divide-and-conquer methods for series-parallel graphs.

Orginal papers referenced:

- [Kelly '87] Fundamentals of Planar Ordered Sets
- [Di Battista & Tamassia '88] Algorithms for Plane Representations of Acyclic Digraphs
- [Garg &Tamassia '95]
 On the Computational Complexity of Upward and Rectilinear Planarity Testing
- [Hutton & Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs
- [Bertolazzi, Di Battista, Mannino, Tamassia '94]
 Upward Drawings of Triconnected Digraphs
- [Healy & Lynch '05] Building Blocks of Upward Planar Digraphs
- [Didimo, Giordano, Liotta '09] Upward Spirality and Upward Planarity Testing
- [Abbasi, Healy, Rextin '10]
 Improving the running time of embedded upward planarity testing