
Prepare for the Talk:
Install Nix!

Nix runs perfectly on any Linux Distro
(and on macOS and WSL)

Everybody can install Nix and actively participate :)
• Visit https://determinate.systems/nix-installer/
• Follow instructions for your platform
• You can easily uninstall later

You can also use the NixOS Live ISO
• Visit https://nixos.org/download

‣ NixOS : the Linux distribution (Choose GNOME / Plasma / Minimal)

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 1 / 100

https://determinate.systems/nix-installer/
https://nixos.org/download

Nix/NixOS
Reproducible Builds,
Functional Packages

Robin Finkelmann

OpenColloq Informatik @uniwue

2025-05-21 18:00:00

Outline
1. Introduction .. 3
2. Nix: The Package Manager .. 18
3. Inner Workings .. 28
4. Nix: The Build System .. 61
5. Other Stuff ... 85
6. Appendix ... 101

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 2 / 100

1. Introduction

1.1 Motivation 1. Introduction
Imagine…

• You use a specific version of a software (e.g. KiCAD v8)
• You need to use a different version too (e.g. a KiCAD v9 project)
• But you don’t want to update your old projects yet

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 4 / 100

1.1 Motivation 1. Introduction
Imagine…

• You want to switch your Linux Distro’s Desktop / WM
• (Or, even worse, your audio backend)

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 5 / 100

1.1 Motivation 1. Introduction
Imagine…

• Your laptop SSD just broke.
• You have a backup of your home dir
• Maybe even a full backup image
• But now you need to install to a smaller SSD…
• Or reinstall and reconfigure everything…

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 6 / 100

1.1 Motivation 1. Introduction
Imagine…

• You wish to try out a piece of software
• You install it
• You try it out
• You forget it
• It floats around forever, possibly breaking future system updates

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 7 / 100

1.1 Motivation 1. Introduction
Imagine…

• You have a specific problem
• You stumble upon a Git Repo that solves your problem
• It is many years old
• It uses old python packages
• It wants to install system-wide pip packages
• It has a cursed special install script that copies files to /usr/bin
• The README is written for Debian, but not even Debian allows this

anymore (without tweaking)

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 8 / 100

1.2 Why Nix? 1. Introduction
• Developing, Building, Deploying
• Reproducible, versioned Builds (write once, deploy anywhere)
• Functional Programming Language
• 1 Language for everything
• Install multiple Versions of the same Package
• Distro-Independent, even on WSL and Darwin
• Largest Package Repo of all Distros

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 9 / 100

1.2 Why Nix? 1. Introduction

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 10 / 100

1.3 Why NixOS? 1. Introduction
• Declarative Configuration
• Atomic Upgrades
• Rolling/Unstable and 6 Month Staged/Stable

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 11 / 100

1.4 Why not Nix? 1. Introduction
• TERRIBLE Documentation

‣ Many different Formats: Nix, Nix Commands, Flakes, Nixpks, NixOS
‣ Multiple different Tools for the “same” job
‣ Many experimental Features are “the norm”
‣ Many community projects are “the norm”
‣ Aims to build everything (Eierlegende Wollmilchsau)

• Not FHS-compliant
‣ Most dynamic Binaries will not work out-of-the-box

• Not 100% stable and secure
• No LTS

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 12 / 100

1.5 Nix vs Nixpkgs vs NixOS 1. Introduction
• Nix

‣ Language / Expressions
– Functional Language
– Features for Building Packages (Derivation, Realisation)
– Builtins

‣ Commands
– Nix Store
– Nix Profiles
– Nix Commands
– Shells
– Building

‣ Available on all Linux Distros (and macOS)

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 13 / 100

1.5 Nix vs Nixpkgs vs NixOS 1. Introduction
• Nixpkgs

‣ Package and Option Collection for Nix / NixOS
‣ Includes Wrappers for most common Programming Languages
‣ Stdenv, Lib

• NixOS
‣ Linux Distro built upon Nix
‣ Packages and Options from Nixpkgs
‣ Manages System through Options and Modules

• Home Manager
‣ Community Project
‣ Manages your Dotfiles and User Environment declaratively
‣ Also available on all Linux Distros (and macOS)

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 14 / 100

1.6 Stable vs Experimental Nix 1. Introduction
Stable Nix Commands
• nix-<command>, e.g. nix-shell
• Some are somewhat outdated
• Still occasionally used

Experimental Nix Commands
• nix <>, e.g. nix shell
• More up-to-date
• Often better
• Widely used
• No feature parity

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 15 / 100

1.7 Ad-hoc vs Declarative Nix 1. Introduction
• Ad-hoc refers to using Nix ‘on the fly’, i.e. in a shell environment

‣ Ad-hoc use is optimal for experimenting
• Declarative refers to writing files that specify your actions

‣ Declarative use is optimal for reuse

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 16 / 100

1.8 Installation of Nix / Lix 1. Introduction
Nix runs perfectly on any Linux Distro (and on macOS and WSL)

Everybody can install Nix and actively participate :)

I recommend the Nix Installer from Determinate Systems
• More deterministic, easy uninstall, Experimental Features enabled
• Visit https://determinate.systems/nix-installer/

Or if you are a bit edgy want a faster community fork of Nix:
• Visit https://lix.systems/install/

You can also use the NixOS Live ISO (and then directly install NixOS)
• Visit https://nixos.org/download

‣ NixOS : the Linux distribution (Choose GNOME / Plasma / Minimal)

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 17 / 100

https://determinate.systems/nix-installer/
https://lix.systems/install/
https://nixos.org/download

2. Nix: The Package
Manager

2.1 nix-shell 2. Nix: The Package Manager
Warning: nix-shell is a stable nix command.

Start a shell with GNU Hello in your environment.

1 nix-shell -p hello Shell

You are now dropped in a Bash Shell and can run hello.

1 hello Shell

CTRL+D quits the shell again.

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 19 / 100

2.1 nix-shell 2. Nix: The Package Manager
You can also specify a command to run (instead of interactive bash):

1 nix-shell -p hello --run hello Shell

For some more fun, I recommend this little script:

1 nix-shell -p lolcat cowsay --run \ Shell
2 "cowsay Hello, Nix! | lolcat"

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 20 / 100

2.2 nix shell 2. Nix: The Package Manager
Warning: nix shell is an experimental nix command.

Start a shell with GNU Hello in your environment.

1 nix shell nixpkgs#hello Shell

This seems inconvenient for just using nixpkgs, but the syntax is more
versatile!

Like using Repos (Flakes, more later):

1 nix shell github:nixos/nixpkgs#hello Shell
2 hello

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 21 / 100

2.3 shell.nix 2. Nix: The Package Manager
Warning: shell.nix is a stable nix convention.

Write shells declaratively!

1 { pkgs ? import <nixpkgs> {} }: Nix
2 pkgs.mkShell {
3 packages = [pkgs.lolcat pkgs.cowsay];
4 inputsFrom = [];
5 shellHook = ''
6 echo Hello Shell!
7 '';
8 }

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 22 / 100

2.4 nix run 2. Nix: The Package Manager
Warning: nix run is an experimental nix command.

And to run directly:

1 nix run github:nixos/nixpkgs#hello Shell

Add branch:

1 nix shell github:nixos/nixpkgs/nixos-24.11#hello Shell

More infos about this in later Chapter about Flakes!

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 23 / 100

2.5 direnv 2. Nix: The Package Manager
Automatically loads a shell env when entering a directory

• Install nix-direnv via Home Manager or NixOS
• Create a file called .envrc in the directory
• Create a shell.nix in the directory

-Used with default.nix, shell.nix, or a Flake (more details later)

1 use nix envrc

1 use flake envrc

https://github.com/nix-community/nix-direnv

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 24 / 100

https://github.com/nix-community/nix-direnv

2.6 Install packages: nix-env 2. Nix: The Package Manager
Warning: Usage not encouraged!
Consider using Shells/Direnv, Home Manager or NixOS instead!
• Installs packages into a profile in user’s home directory

1 nix-env -qaP fastfetch # search for package Shell
2 nix-env -iA fastfetch # install package
3 nix-env -e fastfetch # remove package
4 nix-env -uA fastfetch # upgrade a package
5 nix-env -u # upgrade all packages

https://howarddo2208.github.io/posts/02-nix-beginner-guide/

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 25 / 100

https://howarddo2208.github.io/posts/02-nix-beginner-guide/

2.7 Install packages: Home Manager 2. Nix: The Package Manager
• Simply add packages to your user’s environment with Home Manager
• Home Manager is also available independent of NixOS
• More about Home Manager later

1 home.packages = [pkgs.fastfetch]; Nix

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 26 / 100

2.8 Install Packages: NixOS 2. Nix: The Package Manager
• Simply add packages to your system environment with NixOS
• Services must be installed using options

‣ More about that later

1 environment.systemPackages = [pkgs.fastfetch]; Nix

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 27 / 100

3. Inner Workings

3.1 Inspiration 3. Inner Workings
Strongly inspired by:
• https://youtu.be/5D3nUU1OVx8

More info at
• https://nix.dev/tutorials/nix-language.html
• https://nixos.org/guides/nix-pills/

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 29 / 100

https://youtu.be/5D3nUU1OVx8
https://nix.dev/tutorials/nix-language.html
https://nixos.org/guides/nix-pills/

3.2 Language 3. Inner Workings
First things first: Nix can be interactively evaluated using:

1 nix repl Shell

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 30 / 100

3.2 Language 3. Inner Workings
Comments:

1 # Comment Nix
2 /*
3 Comment
4 */

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 31 / 100

3.2 Language 3. Inner Workings
Numbers:

1 123 # Integer Nix
2 123.4 # Float

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 32 / 100

3.2 Language 3. Inner Workings
Strings:

1 "abcdef" Nix
2
3 ''abc
4 def''
5
6 "${pkgs.echo}/bin/echo Hello world!"

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 33 / 100

3.2 Language 3. Inner Workings
List:

1 [123 "abc"] Nix

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 34 / 100

3.2 Language 3. Inner Workings
Attribute Set:

1 { Nix
2 name = "Nix";
3 fun = 42;
4 }

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 35 / 100

3.2 Language 3. Inner Workings
Functions:

1 # Defining Nix
2 # f = ...
3 a: a + 1
4 # g = ...
5 {x, y ? 0}: x + y
6
7 # Calling (pretending 'f' and 'g' exists)
8 f 2
9 g {1,2}

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 36 / 100

3.2 Language 3. Inner Workings
Let in:

1 let Nix
2 g = {x, y ? 0}: x + y;
3 f = a: g a;
4 in
5 f 20

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 37 / 100

3.2 Language 3. Inner Workings
With (discouraged):

1 let Nix
2 attrs = {a = 1; b = 2; c = 3;};
3 in
4 with attrs;
5 a + b + c

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 38 / 100

3.2 Language 3. Inner Workings
Inherit:

1 let Nix
2 attrs = {a = 1; b = 2; c = 3;};
3 inherit (attrs) a b c;
4 in
5 a + b + c

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 39 / 100

3.2 Language 3. Inner Workings
Builtins: e.g. builtins.attrNames and buildins.functionArgs

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 40 / 100

3.2 Language 3. Inner Workings
Imports:

1 import ./a.nix Nix
2 import "./b.nix"

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 41 / 100

3.3 Nix Store 3. Inner Workings
• Content-addressable, immutable
• /nix/store/<hash>-<name>-<version>/...
• Every nix derivation and realization lives here
• Everything can be added:

‣ nix store add-file
‣ nix store add-path

• Everything is symlinked into the store
‣ Results, Profiles, Binaries, Libraries, …

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 42 / 100

3.4 Derivations 3. Inner Workings
• Declarative building instructions
• Native Nix language feature
• Produces intermediate representation .drv

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 43 / 100

3.4 Derivations 3. Inner Workings
File called my-derivation.nix

1 derivation { Nix
2 name = "my-program";
3 system = "x86_64-linux";
4 builder = "/bin/bash";
5 src = ./main.c;
6 args = ["-c" ''
7 /usr/bin/clang $src
8 '']
9 }

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 44 / 100

3.4 Derivations 3. Inner Workings

1 nix-instantiate my-derivation.nix Shell
2 nix derivation show <store-path>
3
4 nix-store --realize <store-path>

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 45 / 100

3.4 Derivations 3. Inner Workings
File called my-derivation.nix

1 derivation { Nix
2 name = "my-program";
3 system = "x86_64-linux";
4 builder = "/bin/bash";
5 src = ./main.c;
6 args = ["-c" ''
7 /usr/bin/clang $src -o $out
8 '']
9 }

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 46 / 100

3.4 Derivations 3. Inner Workings

1 nix-build my-derivation.nix Shell

Depending on environment, either succeeds or fails.

Heavily impure!

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 47 / 100

3.4 Derivations 3. Inner Workings

Figure 1: Proper bootstrapping of all build tools into Nix

This is where Nixpkgs and Stdenv come into play!

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 48 / 100

3.4 Derivations 3. Inner Workings

1 { Nix

2
 pkgs ? import (fetchTarball "https://github.com/NixOS/
nixpkgs/archive/06278c77b5d162e62df170fec307e83f1812d94
b.tar.gz") {}

3 }:
4 derivation {
5 name = "my-program";
6 system = "x86_64-linux";
7 builder = "${pkgs.bash}/bin/bash";
8 src = ./main.c;
9 args = ["-c" ''

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 49 / 100

3.4 Derivations 3. Inner Workings

10 ${pkgs.clang}/bin/clang $src -o $out
11 '']
12 }

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 50 / 100

3.4 Derivations 3. Inner Workings

1 { Nix

2
 pkgs ? import (fetchTarball "https://github.com/NixOS/
nixpkgs/archive/06278c77b5d162e62df170fec307e83f1812d94
b.tar.gz") {}

3 }:
4 pkgs.stdenv.mkDerivation {
5 name = "my-program";
6 system = "x86_64-linux";
7 nativeBuildInputs = []; # Build-Time
8 buildInputs = []; # Runtime
9 dontUnpack = true;

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 51 / 100

3.4 Derivations 3. Inner Workings

10 buildPhase = ''
11 clang $src -o my-program
12 '';
13 installPhase = ''
14 mkdir -p $out/bin
15 cp my-program out/bin
16 '';
17 }

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 52 / 100

3.5 Nixpkgs 3. Inner Workings

Figure 2: Linux Distro’s Repo’s Package Counts

• https://repology.org/repositories/graphs

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 53 / 100

https://repology.org/repositories/graphs

3.5 Nixpkgs 3. Inner Workings
• https://github.com/NixOS/nixpkgs

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 54 / 100

https://github.com/NixOS/nixpkgs

3.6 Channels 3. Inner Workings
Warning: Channels are a stable nix feature.

• Provide an atomic version of nixpkgs

1 nix-channel --list Shell

2
nix-channel --add https://nixos.org/channels/nixpkgs-
unstable nixpkgs

3
nix-channel --add https://nixos.org/channels/nixos-
unstable nixos

4
nix-channel --add https://nixos.org/channels/nixos-25.05
nixos

5 nix-channel --update

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 55 / 100

3.7 NARs 3. Inner Workings
Nix Archives

https://nix.dev/manual/nix/2.22/protocols/nix-archive

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 56 / 100

https://nix.dev/manual/nix/2.22/protocols/nix-archive

3.8 Profiles, GC 3. Inner Workings
Profiles: Atomic collection of symlinks into the Nix Store

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 57 / 100

3.8 Profiles, GC 3. Inner Workings

Figure 3: https://nix.dev/manual/nix/2.22/protocols/nix-archive

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 58 / 100

3.8 Profiles, GC 3. Inner Workings
• nix-env manipulates user-profiles
• NixOS manipulates system profiles

1 ls -la /nix/var/nix/profiles/ Shell

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 59 / 100

3.8 Profiles, GC 3. Inner Workings
Store paths can be marked as Garbage Collection roots.
• GC Roots will never be deleted
• Dependencies will never be deleted

1 nix-env --delete-generations old Shell
2 nix-store --gc
3 nix-collect-garbage -d
4 nix-collect-garbage --delete-older-than 30d
5
6 nix profile ...
7 nix gc ...

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 60 / 100

4. Nix: The Build System

4.1 nix-build (ad-hoc) 4. Nix: The Build System
Warning: nix-build is a stable nix command.

1 nix-build -E "with import <nixpkgs> { }; hello" Shell
2 ./result/bin/hello
3 rm result

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 62 / 100

4.2 nix-build (default.nix) 4. Nix: The Build System
Warning: default.nix is a stable nix convention.

Create a file named default.nix with the following content:

1 let Nix
2 pkgs = import <nixpkgs> {};
3 in
4 pkgs.hello

Build this expression using nix-build. A result symlink will appear.

1 nix-build Shell
2 ./result/bin/hello

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 63 / 100

4.2 nix-build (default.nix) 4. Nix: The Build System

3 rm result

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 64 / 100

4.3 nix vs nix flakes 4. Nix: The Build System
Both default.nix and shell.nix are the stable Nix way of doing
things. The experimental successor is Flakes.

I try to use flakes whenever possible, only using ad-hoc, default.nix
and shell.nix for quick’n’dirty usecases.

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 65 / 100

4.4 Flakes 4. Nix: The Build System
Flakes! Not scary at all!

However, a lot of confusion what flakes actually are

First, take a look at a flake:

1 nix flake init Shell
2 cat flake.nix
3 nix flake show
4 cat flake.lock
5 nix flake update

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 66 / 100

4.4 Flakes 4. Nix: The Build System

1 { Nix
2 description = "A very basic flake";
3 inputs = {

4
 nixpkgs.url = "github:nixos/nixpkgs?ref=nixos-
unstable";

5 };
6 outputs = { self, nixpkgs }: {

7
 packages.x86_64-linux.hello =
nixpkgs.legacyPackages.x86_64-linux.hello;

8
 packages.x86_64-linux.default =
self.packages.x86_64-linux.hello;

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 67 / 100

4.4 Flakes 4. Nix: The Build System

9 };
10 }

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 68 / 100

4.4 Flakes 4. Nix: The Build System
So, a flake is only another way to write nix expressions
• Specify inputs
• Specify outputs
• Less implied context like default.nix, shell.nix or nixpkgs

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 69 / 100

4.4 Flakes 4. Nix: The Build System
Ease of use:
• Combine all possible outputs into one file flake.nix

‣ We know shell.nix and default.nix, but also NixOS Configs etc.
• Flakes can easily be used as inputs for other flakes

‣ Typically, nixpkgs is used as a flake input

Reproducability out of the box:
• Locks inputs in a flake.lock file (just like Rust’s cargo.lock)

‣ In most cases a Link (e.g. Git Revision) and a Hash
• Exactly specify which architecture a package is for

‣ i.e. x86_64-linux

But also, added complexity (no sane person can write flakes by memory)

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 70 / 100

4.4 Flakes 4. Nix: The Build System
Now, look at a comlpete flake template

1 { Nix
2 description = "A very basic flake";
3
4 inputs = {

5
 nixpkgs.url = "github:nixos/nixpkgs?ref=nixos-
unstable";

6 };
7
8 outputs = { self, ... }@inputs:
9 {

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 71 / 100

4.4 Flakes 4. Nix: The Build System

10 # Executed by `nix flake check`
11 checks."<system>"."<name>" = derivation;
12 # Executed by `nix build .#<name>`
13 packages."<system>"."<name>" = derivation;
14 # Executed by `nix build .`
15 packages."<system>".default = derivation;
16 # Executed by `nix run .#<name>`
17 apps."<system>"."<name>" = {
18 type = "app";
19 program = "<store-path>";
20 };

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 72 / 100

4.4 Flakes 4. Nix: The Build System

21 # Executed by `nix run . -- <args?>`

22
 apps."<system>".default = { type = "app"; program =
"..."; };

23
24 # Formatter (alejandra, nixfmt or nixpkgs-fmt)
25 formatter."<system>" = derivation;

26
 # Used for nixpkgs packages, also accessible via
`nix build .#<name>`

27 legacyPackages."<system>"."<name>" = derivation;
28 # Overlay, consumed by other flakes
29 overlays."<name>" = final: prev: { };

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 73 / 100

4.4 Flakes 4. Nix: The Build System

30 # Default overlay
31 overlays.default = final: prev: { };
32 # Nixos module, consumed by other flakes

33
 nixosModules."<name>" = { config, ... }: { options =
{}; config = {}; };

34 # Default module

35
 nixosModules.default = { config, ... }: { options =
{}; config = {}; };

36
 # Used with `nixos-rebuild switch --
flake .#<hostname>`

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 74 / 100

4.4 Flakes 4. Nix: The Build System

37
 #
nixosConfigurations."<hostname>".config.system.build.toplevel
must be a derivation

38 nixosConfigurations."<hostname>" = {};
39 # Used by `nix develop .#<name>`
40 devShells."<system>"."<name>" = derivation;
41 # Used by `nix develop`
42 devShells."<system>".default = derivation;
43 # Hydra build jobs
44 hydraJobs."<attr>"."<system>" = derivation;
45 # Used by `nix flake init -t <flake>#<name>`

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 75 / 100

4.4 Flakes 4. Nix: The Build System

46 templates."<name>" = {
47 path = "<store-path>";
48 description = "template description goes here?";
49 };
50 # Used by `nix flake init -t <flake>`

51
 templates.default = { path = "<store-path>";
description = ""; };

52 }
53 }

https://wiki.nixos.org/wiki/Flakes

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 76 / 100

https://wiki.nixos.org/wiki/Flakes

4.4 Flakes 4. Nix: The Build System
Some other important tools related to flakes:
• flake-compat: Interface between default.nix, shell.nix and
flake.nix
‣ https://github.com/edolstra/flake-compat

• flake-utils: easily use multiple systems
‣ https://github.com/numtide/flake-utils

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 77 / 100

https://github.com/edolstra/flake-compat
https://github.com/numtide/flake-utils

4.4 Flakes 4. Nix: The Build System
Let’s have a look at more Flakes!

• Behold, my NixOS Config!

• Nixpkgs

• 4rth wall break

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 78 / 100

4.5 nix develop 4. Nix: The Build System
Enters a development environment for a given package. Useful for
debugging the build process.

1 nix develop nixpkgs#hello Shell
2 unpackPhase
3 cd <name>
4 configurePhase
5 mkdir build && cd build
6 buildPhase
7 checkPhase
8 installPhase
9 installCheckPhase

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 79 / 100

4.5 nix develop 4. Nix: The Build System

10 ../outputs/out/bin/hello

CTRL+D quits again.

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 80 / 100

4.6 Shells / nix shell 4. Nix: The Build System
Now you better understand how Nix works, how does this work:

1 nix shell nixpkgs#hello Shell

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 81 / 100

4.6 Shells / nix shell 4. Nix: The Build System
Shells can be put inside a Flake.

1
nix flake init -t "github:determinatesystems/
zero-to-nix#cpp-dev" Shell

1
nix flake init -t "github:determinatesystems/
zero-to-nix#rust-dev" Shell

1 nix shell Shell

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 82 / 100

4.7 Packages / nix build 4. Nix: The Build System
Packages can be put inside a Flake.

1
nix flake init -t "github:determinatesystems/
zero-to-nix#cpp-pkg" Shell

1
nix flake init -t "github:determinatesystems/
zero-to-nix#rust-pkg" Shell

1 nix build Shell

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 83 / 100

4.8 A “better” Nix Command 4. Nix: The Build System
nix-output-monitor makes the building process prettier
• Drop-in wrapper for

‣ nix-build and nix build
‣ nix-shell and nix shell
‣ nix develop

• Just replace nix with nom

Test it out like this:

1 nix shell nixpkgs#nix-output-monitor Shell
2 nom shell nixpkgs#linux --no-substitute

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 84 / 100

5. Other Stuff

5.1 NixOS 5. Other Stuff
• https://nixos.org/manual/nixos/stable/

5.1.1 configuration.nix
configuration.nix

5.1.2 hardware-configuration.nix
hardware-configuration.nix

5.1.3 The Module System
modules

5.1.4 Options
Options

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 86 / 100

https://nixos.org/manual/nixos/stable/

5.1 NixOS 5. Other Stuff
5.1.5 nh
• https://github.com/nix-community/nh

5.1.6 nix-tree
• https://github.com/utdemir/nix-tree

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 87 / 100

https://github.com/nix-community/nh
https://github.com/utdemir/nix-tree

5.2 Home Manager 5. Other Stuff
Home Manager declaratively manages your home’s dotfiles.

1 programs.git = { Nix
2 enable = true;
3 userName = "my_git_username";
4 userEmail = "my_git_username@gmail.com";
5 };
6 programs.direnv = {
7 enable = true;
8 nix-direnv.enable = true;
9 };
10 programs.fish.enable = true;

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 88 / 100

5.2 Home Manager 5. Other Stuff

1 programs.git = { Nix
2 enable = true;
3 userName = "my_git_username";
4 userEmail = "my_git_username@gmail.com";
5 };
6 programs.direnv = {
7 enable = true;
8 nix-direnv.enable = true;
9 };

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 89 / 100

5.3 Fix dynamically linked Binaries 5. Other Stuff
For running most binaries, add pkgs.autoPatchelfHook to your env,
either ad-hoc or in the nativeBuildInputs of a package.

1 nix shell nixpkgs#autoPatchelfHook Shell

Or write a FHS env. Or do whatever this is:

Figure 4: Official FAQ from https://nix.dev/guides/faq

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 90 / 100

https://nix.dev/guides/faq

5.4 FHS 5. Other Stuff
Nixpkgs provides a pkgs.buildFHSEnv function, calling .env on it drops
you in its shell.

1 { pkgs ? import <nixpkgs> {} }: Nix
2 (pkgs.buildFHSEnv {
3 name = "buildroot-fhs-env";
4 multiPkgs = pkgs: (with pkgs; [hello]);
5 runScript = "fish";
6 }).env

https://nixos.org/manual/nixpkgs/stable/#sec-fhs-environments

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 91 / 100

https://nixos.org/manual/nixpkgs/stable/#sec-fhs-environments

5.5 Cross Compilation 5. Other Stuff
Cross compilation can be achieved by using pkgsCross.<architecture>
instead of pkgs, e.g by executing

1 nix build nixpkgs#pkgsCross.riscv64.hello Shell

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 92 / 100

5.6 CUDA 5. Other Stuff
CUDA

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 93 / 100

5.7 Binary Caching, Cachix 5. Other Stuff
Binary Caching, Cachix

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 94 / 100

5.8 Sharing Nix Stores 5. Other Stuff
Sharing Nix Stores

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 95 / 100

5.9 Distributed Builds 5. Other Stuff
Distributed Builds

https://nix.dev/tutorials/nixos/distributed-builds-setup.html

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 96 / 100

https://nix.dev/tutorials/nixos/distributed-builds-setup.html

5.10 Hydra 5. Other Stuff
Hydra

https://github.com/NixOS/hydra https://wiki.nixos.org/wiki/Hydra
https://hydra.nixos.org/

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 97 / 100

https://github.com/NixOS/hydra
https://wiki.nixos.org/wiki/Hydra
https://hydra.nixos.org/

5.11 Darwin 5. Other Stuff
Darwin

https://github.com/nix-darwin/nix-darwin

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 98 / 100

https://github.com/nix-darwin/nix-darwin

5.12 Disko 5. Other Stuff

Figure 5: Official Disko Logo

Disko enables declarative Disk Partitioning for NixOS
• https://github.com/nix-community/disko

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 99 / 100

5.13 SOPS / Age-Nix 5. Other Stuff
• https://github.com/ryantm/agenix (recommended)
• https://github.com/Mic92/sops-nix (also possible)

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 100 / 100

https://github.com/ryantm/agenix
https://github.com/Mic92/sops-nix

6. Appendix

6.1 Important Websites 6. Appendix
Nix: Package Management
• https://search.nixos.org/

‣ Official Package and Option Index
• https://github.com/nixos/nixpks

‣ Repo for Nixpkgs

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 102 / 100

6.1 Important Websites 6. Appendix
Nix: Development
• https://nix.dev/

‣ Good Reference for using Nix productively, especially for Devs
• https://noogle.dev/

‣ Nix Function Search, Function of the day
• https://zero-to-nix.com/

‣ Very good tutorials!
• https://nixos.org/manual/nixpkgs/stable/

‣ Official Manual for Nixpkgs

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 103 / 100

6.1 Important Websites 6. Appendix
NixOS
• https://wiki.nixos.org/

‣ Official Wiki, good for NixOS users
‣ Warning: The older Community Wiki https://nixos.wiki is still

online and often pops up when googling!
• https://nixos.org/manual/nixos/stable/

‣ Official Manual for NixOS
• https://github.com/nix-community/nixos-hardware

‣ Repo for NixOS modules for specific hardware
• https://www.youtube.com/@vimjoyer

‣ Good, quick tutorials

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 104 / 100

6.1 Important Websites 6. Appendix
Just great:
• https://github.com/nix-community/awesome-nix

‣ List of many community projects
• https://nixos.org/guides/nix-pills/

‣ Explaining Nix from the ground up (tho somewhat dated)
• https://edolstra.github.io/pubs/phd-thesis.pdf

‣ The PHD of Eelco Dolstra about developing Nix

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 105 / 100

6.2 Other stuff 6. Appendix

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 106 / 100

6.2 Other stuff 6. Appendix
https://guix.gnu.org/
• Guile Scheme as Language
• No non-FOSS packages
• Hurd Kernel sometime?

https://luj.fr/blog/how-nixos-could-have-detected-xz.html

https://guix.gnu.org/en/blog/2023/the-full-source-bootstrap-building-
from-source-all-the-way-down/

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 107 / 100

https://luj.fr/blog/how-nixos-could-have-detected-xz.html
https://guix.gnu.org/en/blog/2023/the-full-source-bootstrap-building-from-source-all-the-way-down/
https://guix.gnu.org/en/blog/2023/the-full-source-bootstrap-building-from-source-all-the-way-down/

	Introduction
	Motivation
	Why Nix?
	Why NixOS?
	Why not Nix?
	Nix vs Nixpkgs vs NixOS
	Stable vs Experimental Nix
	Ad-hoc vs Declarative Nix
	Installation of Nix / Lix

	Nix: The Package Manager
	nix-shell
	nix shell
	shell.nix
	nix run
	direnv
	Install packages: nix-env
	Install packages: Home Manager
	Install Packages: NixOS

	Inner Workings
	Inspiration
	Language
	Nix Store
	Derivations
	Nixpkgs
	Channels
	NARs
	Profiles, GC

	Nix: The Build System
	nix-build (ad-hoc)
	nix-build (default.nix)
	nix vs nix flakes
	Flakes
	nix develop
	Shells / nix shell
	Packages / nix build
	A "better" Nix Command

	Other Stuff
	NixOS
	configuration.nix
	hardware-configuration.nix
	The Module System
	Options
	nh
	nix-tree

	Home Manager
	Fix dynamically linked Binaries
	FHS
	Cross Compilation
	CUDA
	Binary Caching, Cachix
	Sharing Nix Stores
	Distributed Builds
	Hydra
	Darwin
	Disko
	SOPS / Age-Nix

	Appendix
	Important Websites
	Other stuff

