Prepare for the Talk:
Install Nix!

Nix runs perfectly on any Linux Distro
(and on macOS and WSL)

Everybody can install Nix and actively participate :)

o Visit https://determinate.systems/nix-installer/
« Follow instructions for your platform
 You can easily uninstall later

You can also use the NixOS Live ISO
e Visit https://nixos.org/download
» NixOS : the Linux distribution (Choose GNOME / Plasma / Minimal)

2025-05-21 18:00:00 1/100

https://determinate.systems/nix-installer/
https://nixos.org/download

Nix/Ni

Reproducible Bui

OpenColloq Informatik @uni

2025-05-21 18:00:00

Outline

L. INErOAUCKION ..ttt 3
2. Nix: The Package Managerccocccveeeeeceneneneinieieeeeeeeeseeeeseeeeseesenn, 18
3. INNer WOTKINGSooiieiieieiieieiere ettt 28
4. Nix: The Build SYStemccccuecveieirieieicieeeeeeeeeee e 61
5. Other StUToeo et 85
2N 0] 7] s e § b QUSRS 101

Robin Finkelmann 2025-05-21 18:00:00 2 /100

1. Introduction

1.1 Motivation

Imagine...

 You use a specific version of a software (e.g. KiCAD v8)
« You need to use a different version too (e.g. a KiICAD v9 project)
 But you don’t want to update your old projects yet

Robin Finkelmann

2025-05-21 18:00:00 4/ 100

1.1 Motivation

Imagine...

« You want to switch your Linux Distro’s Desktop / WM
e (Or, even worse, your audio backend)

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 5/ 100

1.1 Motivation

Imagine...

 Your laptop SSD just broke.
You have a backup of your home dir

Maybe even a full backup image

But now you need to install to a smaller SSD...
Or reinstall and reconfigure everything...

Robin Finkelmann 2025-05-21 18:00:00 6 /100

1.1 Motivation

Imagine...

You wish to try out a piece of software

You install it

You try it out

You forget it

It floats around forever, possibly breaking future system updates

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 7 / 100

1.1 Motivation

Imagine...

 You have a specific problem

« You stumble upon a Git Repo that solves your problem

o It is many years old

« It uses old python packages

o It wants to install system-wide pip packages

- It has a eursed special install script that copies files to /usr/bin

« The README is written for Debian, but not even Debian allows this
anymore (without tweaking)

Robin Finkelmann 2025-05-21 18:00:00 8 /100

1.2 Why Nix?
 Developing, Building, Deploying

Reproducible, versioned Builds (write once, deploy anywhere)

Functional Programming Language

1 Language for everything

Install multiple Versions of the same Package

Distro-Independent, even on WSL and Darwin

Largest Package Repo of all Distros

Robin Finkelmann 2025-05-21 18:00:00 9 /100

1.2 Why Nix?

Nix builds any version

of any software

on any machine

1.3 Why NixOS?

« Declarative Configuration
 Atomic Upgrades
« Rolling/Unstable and 6 Month Staged/Stable

2025-05-21 18:00:00 11/ 100

1.4 Why not Nix?
« TERRIBLE Documentation
» Many different Formats: Nix, Nix Commands, Flakes, Nixpks, NixOS
» Multiple different Tools for the “same” job
» Many experimental Features are “the norm”
» Many community projects are “the norm”
» Aims to build everything (Eierlegende Wollmilchsau)
« Not FHS-compliant
» Most dynamic Binaries will not work out-of-the-box
« Not 100% stable and secure
« No LTS

2025-05-21 18:00:00 12 / 100

Robin Finkelmann

1.5 Nix vs Nixpkgs vs NixOS
« Nix

» Language / Expressions
— Functional Language
— Features for Building Packages (Derivation, Realisation)
— Builtins

» Commands
— Nix Store
— Nix Profiles
— Nix Commands
— Shells
— Building

» Available on all Linux Distros (and macOS)

Robin Finkelmann 2025-05-21 18:00:00 13 /100

1.5 Nix vs Nixpkgs vs NixOS

 Nixpkgs
» Package and Option Collection for Nix / NixOS
» Includes Wrappers for most common Programming Languages
» Stdenv, Lib

« NixOS
» Linux Distro built upon Nix
» Packages and Options from Nixpkgs
» Manages System through Options and Modules

- Home Manager
» Community Project
» Manages your Dotfiles and User Environment declaratively
» Also available on all Linux Distros (and macOS)

2025-05-21 18:00:00 14 / 100

1.6 Stable vs Experimental Nix

Stable Nix Commands

e nix-<command>, e.g. nix-shell
« Some are somewhat outdated

o Still occasionally used

Experimental Nix Commands

nix <>, e.g. nix shell

More up-to-date
Often better

Widely used
No feature parity

Robin Finkelmann 2025-05-21 18:00:00 15/100

1.7 Ad-hoc vs Declarative Nix

« Ad-hoc refers to using Nix ‘on the fly’, i.e. in a shell environment
» Ad-hoc use is optimal for experimenting

 Declarative refers to writing files that specity your actions
» Declarative use is optimal for reuse

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 16 / 100

1.8 Installation of Nix / Lix
Nix runs perfectly on any Linux Distro (and on macOS and WSL)

Everybody can install Nix and actively participate :)

I recommend the Nix Installer from Determinate Systems
« More deterministic, easy uninstall, Experimental Features enabled
« Visit https://determinate.systems/nix-installer/

Or if you are-abit-edgy want a faster community fork of Nix:
e Visit https://lix.systems/install/

You can also use the NixOS Live ISO (and then directly install NixOS)
e Visit https://nixos.org/download

» NixOS : the Linux distribution (Choose GNOME / Plasma / Minimal)

2025-05-21 18:00:00 17 / 100

https://determinate.systems/nix-installer/
https://lix.systems/install/
https://nixos.org/download

2. Nix: The Package
Manager

2.1 nix-shell

Warning: nix-shell is a stable nix command.

Start a shell with GNU Hello in your environment.

1 nix-shell -p hello [@ Shell]

You are now dropped in a Bash Shell and can run hello.

1 hello 9 Shell)

CTRL+D quits the shell again.

Robin Finkelmann 2025-05-21 18:00:00 19/ 100

2.1 nix-shell

You can also specify a command to run (instead of interactive bash):

1 nix-shell -p hello --run hello [@ Shell]

For some more fun, I recommend this little script:

1 nix-shell -p lolcat cowsay --run \ [@ Shell]
2 "cowsay Hello, Nix! | lolcat”

Robin Finkelmann 2025-05-21 18:00:00 20/ 100

2.2 nix shell

Warning: nix shell is an experimental nix command.

Start a shell with GNU Hello in your environment.

1 nix shell nixpkgs#hello [@ Shell]

This seems inconvenient for just using nixpkgs, but the syntax is more
versatile!

Like using Repos (Flakes, more later):

1 nix shell github:nixos/nixpkgs#hello [(B Shell]
2 hello

Robin Finkelmann 2025-05-21 18:00:00 21/ 100

2.3 shell.nix

Warning: shell.nix is a stable nix convention.

Write shells declaratively!

{ pkgs ? import <nixpkgs> {} }: Nix
pkgs.mkShell {
packages = [pkgs.lolcat pkgs.cowsay];
inputsFrom = [];
shellHook = '
echo Hello Shell!

[}
’

00 N OO U1 B~ W NN -

Robin Finkelmann 2025-05-21 18:00:00 22 /100

2.4 nix run

Warning: nix run is an experimental nix command.

And to run directly:

1 nix run github:nixos/nixpkgs#hello [@ Shell]

Add branch:

1 nix shell github:nixos/nixpkgs/nixos-24.11#hello [CB Shell]

More infos about this in later Chapter about Flakes!

Robin Finkelmann 2025-05-21 18:00:00 23/100

2.5 direnv

Automatically loads a shell env when entering a directory

o Install nix-direnv via Home Manager or NixOS
o Create a file called .envrc in the directory
 Create a shell.nix in the directory

-Used with default.nix, shell.nix, or a Flake (more details later)

1 use nix

1 use flake envrc

https://github.com/nix-community/nix-direnv

Robin Finkelmann

2025-05-21 18:00:00 24 /100

https://github.com/nix-community/nix-direnv

2.6 Install packages: nix-env

Warning: Usage not encouraged!
Consider using Shells/Direnv, Home Manager or NixOS instead!
- Installs packages into a profile in user’s home directory

search for package [ﬁBShell]
install package

nix-env -qaP fastfetch

nix-env -1iA fastfetch
nix-env -e fastfetch remove package

nix-env -uA fastfetch upgrade a package

Ul Hh W N -
* HF O H

nix-env -u upgrade all packages

https://howarddo2208.github.io/posts/02-nix-beginner-guide/

Robin Finkelmann 2025-05-21 18:00:00 25/100

https://howarddo2208.github.io/posts/02-nix-beginner-guide/

2.7 Install packages: Home Manager

 Simply add packages to your user’s environment with Home Manager
- Home Manager is also available independent of NixOS
« More about Home Manager later

1 home.packages = [pkgs.fastfetch]; Nix

Robin Finkelmann 2025-05-21 18:00:00 26/ 100

2.8 Install Packages: NixOS

 Simply add packages to your system environment with NixOS
. Services must be installed using options
» More about that later

1 environment.systemPackages = [pkgs.fastfetch]; & Nix

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 27/ 100

3. Inner Workings

3.1 Inspiration
Strongly inspired by:
e https://youtu.be/5D3nUU10Vx8
More info at

e https://nix.dev/tutorials/nix-language.html
o https://nixos.org/guides/nix-pills/

2025-05-21 18:00:00 29/100

https://youtu.be/5D3nUU1OVx8
https://nix.dev/tutorials/nix-language.html
https://nixos.org/guides/nix-pills/

3.2 Language

First things first: Nix can be interactively evaluated using:

1 nix repl [@ Shell]

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 30/ 100

3.2 Language

Comments:
1 # Comment 2 Nix
2 /*
3 Comment
4

*/

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 31/ 100

3.2 Language

Numbers:

1 123 # Integer o Nix
2 123.4 # Float

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 32 /100

3.2 Language
Strings:

1 "abcdef" 3 Nix
2

3 ‘''abc

4 def''
5
6

"${pkgs.echo}/bin/echo Hello world!"

2025-05-21 18:00:00 33/100

3.2 Language
List:

1 [123 "abc"] - Nix

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 34 /100

3.2 Language
Attribute Set:

{ 2 Nix
name = "Nix";
fun = 42;

A W NN =

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 35/ 100

3.2 Language

Functions:

Defining o Nix
#f = ...

a: a + 1

#9g = ...

{x, y 70} x+y

Calling (pretending 'f' and 'g' exists)
f 2

g {1,2}

© 00 N O U1 B W NN -

2025-05-21 18:00:00 36 /100

3.2 Language

Let in:

1 let 2 Nix
2 g=9x, y 7?0} x+y,;
3 f a: g a;

4 1in

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 37 /100

3.2 Language

With (discouraged):

1 let - Nix
2 attrs = {a =1; b =2; c = 3:};

3 1n

4 with attrs;
5 a+ b+ c

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 38 /100

3.2 Language
Inherit:

1 let - Nix
2 attrs = {a =1; b =2; ¢c = 3;};

3 inherit (attrs) a b c;

4 1in

5 a+ b+ c

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 39/ 100

3.2 Language

Builtins: e.g. builtins.attrNames and buildins. functionArgs

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 40 / 100

3.2 Language

Imports:

1 import ./a.nix - Nix

2 import "./b.nix"

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 41/ 100

3.3 Nix Store

« Content-addressable, immutable
e /nix/store/<hash>-<name>-<version>/...
 Every nix derivation and realization lives here
 Everything can be added:

» Nix store add-file

» N1x store add-path
 Everything is symlinked into the store

» Results, Profiles, Binaries, Libraries, ...

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 42 /100

3.4 Derivations

« Declarative building instructions
« Native Nix language feature
 Produces intermediate representation .drv

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 43 /100

3.4 Derivations

File called my-derivation.nix

1 derivation { * Nix
2 name = "my-program";

3 system = "x86 64-linux";

4 builder = "/bin/bash";

5 src = ./main.c;

6 args = ["-c" "'

7 /usr/bin/clang $src

8 ']

9 }

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 44 /100

3.4 Derivations

nix-instantiate my-derivation.nix [@ Shell]

1
2 nix derivation show <store-path>
3

4 nix-store --realize <store-path>

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 45 /100

3.4 Derivations

File called my-derivation.nix

1 derivation { x Nix
2 name = "my-program";

3 system = "x86 64-linux";

4 builder = "/bin/bash";

5 src = ./main.c;

6 args = ["-c" "'

7 /usr/bin/clang $src -o $out

8 ']

9 }

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 46 / 100

3.4 Derivations

1 nix-build my-derivation.nix s Shell

Depending on environment, either succeeds or fails.

Heavily impure!

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 47 /100

3.4 Derivations

Build machine

usr/
1lib/
libc.dylib

libc++.dylib
libpcre.dylib

Figure 1: Proper bootstrapping of all build tools into Nix

This is where Nixpkgs and Stdenv come into play!

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 48 /100

3.4 Derivations

1 | Nix
pkgs 7 import (fetchTarball "https://github.com/Nix0S/

2 nixpkgs/archive/06278c77b5d162e62df170fec307e8311812d94
b.tar.gz") {}

}:
derivation {
name = "my-program”;
system = "x86 64-linux";
builder = "${pkgs.bash}/bin/bash";
src = ./main.c;

© 00 N OO U1 &~ W

args = ["-c"

2025-05-21 18:00:00 49 /100

3.4 Derivations

10 ${pkgs.clang}/bin/clang $src -o $out
11 ||]
12 }

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 50/ 100

3.4 Derivations

1 | Nix
pkgs 7 import (fetchTarball "https://github.com/Nix0S/

2 nixpkgs/archive/06278c77b5d162e62df170fec307e8311812d94
b.tar.gz") {}

}:

pkgs.stdenv.mkDerivation {
name = "my-program”;
system = "x86 64-linux";
nativeBuildInputs = []; # Build-Time
buildInputs = []; # Runtime
dontUnpack = true;

© 00 N OO U1 &~ W

2025-05-21 18:00:00 51/100

3.4 Derivations

10 buildPhase = ''

11 clang $src -o my-program
12 P

13 installPhase = "'

14 mkdir -p $out/bin

15 Cp my-program out/bin
16 Y

17 }

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 52 /100

.5 Nixpkgs

nixpkgs Unstable

68000
nixpkgs stable 24.11
. nixpkgs stable 24.05
2
c -
iE nixpkgs stable 23.11
I nixpkgs stable 23.05
2
= nixpkgs stable 22.11
£ nixpkgs stable 22.05
-
]
nixpkgs stable 21,11
E ®AUR
®CRAN
®Racohian Testing
@t ehlan
oryPI @Frecasp @ LLILLROlING
IS Haciage @ Ubuntu 25.04
®Fedora Rawhide
remdd ®Ubuntu 24.10
Ll Ll ®Ubuntu 24.04
@Fedora 40 ®Raspbian Stable
ot 12
tui22:04istable
2lzantium
20104
110000

oe LT fgn
u - : of in repository

Figure 2: Linux Distro’s Repo’s Package Counts

« https://repology.org/repositories/graphs

Nix/NixOS

https://repology.org/repositories/graphs

3.5 Nixpkgs
e https://github.com/NixOS/nixpkgs

Robin Finkelmann 2025-05-21 18:00:00 54 /100

https://github.com/NixOS/nixpkgs

3.6 Channels

Warning: Channels are a stable nix feature.

« Provide an atomic version of nixpkgs

1 nix-channel --1list [@ Shell]

nix-channel --add https://nixos.org/channels/nixpkgs -
unstable nixpkgs

2

nix-channel --add https://nixos.org/channels/nixos-
unstable nixos

nix-channel --add https://nixos.org/channels/nixos-25.05
Nixos

5 nix-channel --update

Robin Finkelmann 2025-05-21 18:00:00 55/ 100

3.7 NARs
Nix Archives

https://nix.dev/manual/nix/2.22/protocols/nix-archive

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 56 / 100

https://nix.dev/manual/nix/2.22/protocols/nix-archive

3.8 Profiles, GC

Profiles: Atomic collection of symlinks into the Nix Store

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 57 / 100

3.8 Profiles, GC

PATH=~/.nix-profile /nix/var/nix/profiles /nix/store
_ ;idefault _»0c1p5z4kda11...-user-env
£ Jhomel/alice i i L bin
E‘ : T R L
H .nix-profile- |g_f‘l?':lefault-42-l|nk ----- SVt
"*-._;"‘"“]" g -I-Bawzpdyxzjfc...—user—Ehvh__‘
’%‘ﬂjﬂmefbnh — default-43-link--" i bin '
i — .nix-profile-" | e = firefox
1 —carol e\
.;‘hﬂmefca rol , i .L_ 5mqg2jcn36ldl.. -subuersmn-’f 1.2
nix-profile--" —carol-23-link 7 ¢ bin e
. sy
."-.__ — dpmvp969yhdq...-subversion-1.1.3
bin
R R svn
. L—g32imf68vvbw...-firefox-1.0.1
“...ﬂ_h_ bin
firefox

Figure 3: https://nix.dev/manual/nix/2.22/protocols/nix-archive

Robin Finkelmann

Nix/NixOS

2025-05-21 18:00:00 58 /100

3.8 Profiles, GC

 nix-env manipulates user-profiles
« NixOS manipulates system profiles

1 1s -la /nix/var/nix/profiles/ 9 Shell |

Robin Finkelmann 2025-05-21 18:00:00 59 /100

3.8 Profiles, GC

Store paths can be marked as Garbage Collection roots.
« GC Roots will never be deleted
« Dependencies will never be deleted

nix-env --delete-generations old [@ Shell]

nix-store --gc
nix-collect-garbage -d
nix-collect-garbage --delete-older-than 30d

nix profile ...

N O O B W N

nix gc ...

Robin Finkelmann 2025-05-21 18:00:00 60/ 100

4. Nix: The Build System

4.1 nix-build (ad-hoc)

Warning: nix-build is a stable nix command.

1 nix-build -E "with import <nixpkgs> { }; hello" [@ Shell]
2 ./result/bin/hello
3 rm result

Robin Finkelmann 2025-05-21 18:00:00 62 /100

4.2 nix-build (default.nix)

Warning: default.nix is a stable nix convention.

Create a file named default.nix with the following content:

1 let Nix
2 pkgs = import <nixpkgs> {};

3 1n

4 pkgs.hello

Build this expression using nix-build. A result symlink will appear.

1 nix-build 9 Shell |
2 ./result/bin/hello

2025-05-21 18:00:00 63/ 100

Robin Finkelmann

4.2 nix-build (default.nix)

3 rm result

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 64 /100

4.3 nix vs nix flakes

Both default.nix and shell.nix are the stable Nix way of doing
things. The experimental successor is Flakes.

I try to use flakes whenever possible, only using ad-hoc, default.nix
and shell.nix for quick'n’dirty usecases.

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 65 /100

4.4 Flakes
Flakes! Not scary at all!

However, a lot of confusion what flakes actually are

First, take a look at a flake:

nix flake init Shell
cat flake.nix

nix flake show
cat flake.lock
nix flake update

g B~ W N =

Robin Finkelmann 2025-05-21 18:00:00 66 /100

4.4 Flakes

{ Nix
2 description = "A very basic flake";
inputs = {
4 nixpkgs.url = "github:nixos/nixpkgs?ref=nixos-
unstable";
b
outputs = { self, nixpkgs }: {
7 packages.x86 64-linux.hello =
nixpkgs. legacyPackages.x86 64-linux.hello;
g packages.x86 64-linux.default =

self.packages.x86 64-1linux.hello;

Robin Finkelmann 2025-05-21 18:00:00 67 /100

4.4 Flakes

< b
10 }

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 68 /100

4.4 Flakes

So, a flake is only another way to write nix expressions

o Specity inputs

« Specity outputs

« Less implied context like default.nix, shell.nix or nixpkgs

Robin Finkelmann Nix/NixOS

2025-05-21 18:00:00 69 /100

4.4 Flakes

Ease of use:
« Combine all possible outputs into one file flake.nix

» We know shell.nix and default.nix, but also NixOS Configs etc.
o Flakes can easily be used as inputs for other flakes

» Typically, nixpkgs is used as a flake input

Reproducability out of the box:

 Locks inputs in a flake. lock file (just like Rust’s cargo. lock)
» In most cases a Link (e.g. Git Revision) and a Hash

« Exactly specify which architecture a package is for
» 1.e. x86 64-1linux

But also, added complexity (no sane person can write flakes by memory)

Robin Finkelmann 2025-05-21 18:00:00 70 / 100

4.4 Flakes

Now, look at a comlpete flake template

1 | * Nix

2 description = "A very basic flake";

3

4 inputs = {

5 nixpkgs.url = "github:nixos/nixpkgs?ref=nixos-
unstable";

6 s

7

8 outputs = { self, ... }@inputs:

9 {

Robin Finkelmann 2025-05-21 18:00:00 71/ 100

4.4 Flakes

10 # Executed by nix flake check"

11 checks."<system>"."<name>" = derivation;
12 # Executed by nix build .#<name>"

13 packages."<system>"."<name>" = derivation;
14 # Executed by nix build

15 packages."<system>".default = derivation;
16 # Executed by nix run .#<name>

17 apps."<system>"."<name>" = {

18 type = "app";

19 program = "<store-path>";

20 }i

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 72 /100

4.4 Flakes

21 # Executed by "nix run . -- <args?>"

5 apps."<system>".default = { type = "app"; program =
RIS ¥

23

24 # Formatter (alejandra, nixfmt or nixpkgs-fmt)

25 formatter."<system>" = derivation;

6 7 Used for nixp?gs packages, also accessible via
nix build .#<name>

27 legacyPackages. "<system>"."<name>" = derivation;

28 # Overlay, consumed by other flakes

29 overlays. "<name>" = final: prev: { };

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 73 /100

4.4 Flakes

30 # Default overlay

31 overlays.default = final: prev: { };

32 # Nixos module, consumed by other flakes

33 nixosModules. "<name>" = { config, ... }: { options =
{}; config = {}; };

34 # Default module

35 nixosModules.default = { config, ... }: { options =

{}; config = {}; };
36 # Used with "nixos-rebuild switch --
flake .#<hostname>"

2025-05-21 18:00:00 74 / 100

4.4 Flakes

#
37 nixosConfigurations."<hostname>".config.system.build. topl

must be a derivation

38 nixosConfigurations. "<hostname>" = {};

39 # Used by nix develop .#<name>

40 devShells. "<system>","<name>" = derivation;
41 # Used by nix develop’

42 devShells. "<system>".default = derivation;
43 # Hydra build jobs

44 hydraJdobs."<attr>"."<system>" = derivation;

45 # Used by nix flake init -t <flake>#<name>"

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 75/ 100

4.4 Flakes

46 templates. "<name>" = {

47 path = "<store-path>";

48 description = "template description goes here?";

49 }i

50 # Used by nix flake init -t <flake>"

51 templates.default = { path = "<store-path>";
description = ""; };

52 }

53 }

https://wiki.nixos.org/wiki/Flakes

Robin Finkelmann 2025-05-21 18:00:00 76 / 100

https://wiki.nixos.org/wiki/Flakes

4.4 Flakes

Some other important tools related to flakes:

. flake-compat: Interface between default.nix, shell.nix and
flake.nix

» https://github.com/edolstra/flake-compat
. flake-utils: easily use multiple systems
» https://github.com/numtide/flake-utils

Robin Finkelmann 2025-05-21 18:00:00 77 / 100

https://github.com/edolstra/flake-compat
https://github.com/numtide/flake-utils

4.4 Flakes

Let’s have a look at more Flakes!
 Behold, my NixOS Config!
« Nixpkgs

e 4rth wall break

2025-05-21 18:00:00 78 / 100

4.5 nix develop

Enters a development environment for a given package. Useful for

debugging the build process.

nix develop nixpkgs#hello [@ Shell]
unpackPhase

cd <name>
configurePhase

mkdir build && cd build
buildPhase

checkPhase

installPhase
installCheckPhase

© 00 N O U1 A~ W NN -

Robin Finkelmann 2025-05-21 18:00:00 79 / 100

4.5 nix develop

10 ../outputs/out/bin/hello

CTRL+D quits again.

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 80/ 100

4.6 Shells / nix shell

Now you better understand how Nix works, how does this work:

1 nix shell nixpkgs#hello [@ Shell]

Robin Finkelmann 2025-05-21 18:00:00 81/ 100

4.6 Shells / nix shell
Shells can be put inside a Flake.

1 nix ﬂake_init -t "Igl;ithub:determinatesystems/ [@ Shell]
zero-to-nix#cpp-dev
1 nix flake init -t "github:determinatesystems/ [@ Shell]

zero-to-nix#rust-dev"

1 nix shell s Shell

Robin Finkelmann 2025-05-21 18:00:00 82 /100

4.7 Packages / nix build

Packages can be put inside a Flake.

. nix flake_init _t --?ithub:determinatesystems/ [@ Shell]
zero-to-nix#cpp-pkg
1 nix flake init -t "github:determinatesystems/ [9 Shell]

zero-to-nix#rust-pkg"

1 nix build s Shell

Robin Finkelmann 2025-05-21 18:00:00 83 /100

4.8 A “better” Nix Command

nix-output-monitor makes the building process prettier
 Drop-in wrapper for

» nix-build and nix build
» nix-shell and nix shell
» Nix develop

« Just replace nix with nom

Test it out like this:

1 nix shell nixpkgs#nix-output-monitor [@ Shell]
2 nom shell nixpkgs#linux --no-substitute

Robin Finkelmann

2025-05-21 18:00:00 84 /100

5. Other Stuft

5.1 NixOS$S

o https://nixos.org/manual/nixos/stable/

5.1.1 configuration.nix

configuration.nix

5.1.2 hardware-configuration.nix

hardware-configuration.nix

5.1.3 The Module System

modules

5.1.4 Options
Options

Robin Finkelmann 2025-05-21 18:00:00 86 /100

https://nixos.org/manual/nixos/stable/

5.1 NixOS$S
5.1.5 nh
e https://github.com/nix-community/nh

5.1.6 nix-tree

e https://github.com/utdemir/nix-tree

Robin Finkelmann 2025-05-21 18:00:00 87 /100

https://github.com/nix-community/nh
https://github.com/utdemir/nix-tree

5.2 Home Manager

Home Manager declaratively manages your home’s dotfiles.

programs.git = { o Nix
enable = true;
userName = "my git username";
userEmail = "my git username@gmail.com";

b
programs.direnv = {
enable = true;
nix-direnv.enable = true;
b

10 programs.fish.enable = true;

© 00 N O U1 B W NN -

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 88 /100

5.2 Home Manager

programs.git = { * Nix
enable = true;
userName = "my git username";
userEmail = "my git username@gmail.com";

b

programs.direnv = {
enable = true;
nix-direnv.enable = true;

O© 00 N O U1 &~ W N =

}i

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 89 /100

5.3 Fix dynamically linked Binaries

For running most binaries, add pkgs .autoPatchelfHook to your env,
either ad-hoc or in the nativeBuildInputs of a package.

1 nix shell nixpkgs#autoPatchelfHook [(B Shell]

Or write a FHS env. Or do whatever this is:

e Run your program in the FHS-like environment made for the Steam package using

$ nix-shell -p steam-run --run "steam-run <command>"

Figure 4: Official FAQ from https://nix.dev/guides/faq

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 90/ 100

https://nix.dev/guides/faq

5.4 FHS

Nixpkgs provides a pkgs.buildFHSEnv function, calling .env on it drops

you in its shell.

multiPkgs

runScript

OO U1 &~ W N -

}).env

{ pkgs ? import <nixpkgs> {} }:
(pkgs.buildFHSEnv {
name = "buildroot-fhs-env";

pkgs: (with pkgs;
"fish";

[hello]);

- Nix

https://nixos.org/manual/nixpkgs/stable/#sec-ths-environments

Robin Finkelmann

2025-05-21 18:00:00

91/ 100

https://nixos.org/manual/nixpkgs/stable/#sec-fhs-environments

5.5 Cross Compilation

Cross compilation can be achieved by using pkgsCross.<architecture>
instead of pkgs, e.g by executing

1 nix build nixpkgs#pkgsCross.riscv64.hello [@ Shell]

Robin Finkelmann 2025-05-21 18:00:00 92/ 100

5.6 CUDA
CUDA

Robin Finkelmann Nix/NixOS 2025-05-21 1 93/ 100

5.7 Binary Caching, Cachix
Binary Caching, Cachix

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 94 / 100

5.8 Sharing Nix Stores
Sharing Nix Stores

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 95 /100

5.9 Distributed Builds
Distributed Builds

https://nix.dev/tutorials/nixos/distributed-builds-setup.html

Robin Finkelmann 2025-05-21 18:00:00 96 / 100

https://nix.dev/tutorials/nixos/distributed-builds-setup.html

5.10 Hydra
Hydra

https://github.com/NixOS/hydra https://wiki.nixos.org/wiki/Hydra
https://hydra.nixos.org/

2025-05-21 18:00:00 97 / 100

https://github.com/NixOS/hydra
https://wiki.nixos.org/wiki/Hydra
https://hydra.nixos.org/

5.11 Darwin

Darwin

https://github.com/nix-darwin/nix-darwin

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 98 / 100

https://github.com/nix-darwin/nix-darwin

5.12 Disko

Figure 5: Official Disko Logo

Disko enables declarative Disk Partitioning for NixOS
e https://github.com/nix-community/disko

2025-05-21 18:00:00 99 /100

Robin Finkelmann

5.13 SOPS / Age-Nix

« https://github.com/ryantm/agenix (recommended)
e https://github.com/Mic92/sops-nix (also possible)

2025-05-21 18:00:00 100 / 100

https://github.com/ryantm/agenix
https://github.com/Mic92/sops-nix

6. Appendix

6.1 Important Websites

Nix: Package Management
« https://search.nixos.org/
» Official Package and Option Index
e https://github.com/nixos/nixpks
» Repo for Nixpkgs

Robin Finkelmann 2025-05-21 18:00:00 102 / 100

6.1 Important Websites

Nix: Development
e https://nix.dev/
» Good Reference for using Nix productively, especially for Devs
« https://noogle.dev/
» Nix Function Search, Function of the day
« https://zero-to-nix.com/
» Very good tutorials!
e« https://nixos.org/manual/nixpkgs/stable/
» Official Manual for Nixpkgs

Robin Finkelmann 2025-05-21 18:00:00 103 / 100

6.1 Important Websites

NixOS§
e https://wiki.nixos.org/
» Official Wiki, good for NixOS users
» Warning: The older Community Wiki https://nixos.wiki is still
online and often pops up when googling!
e« https://nixos.org/manual/nixos/stable/
» Official Manual for NixOS
e https://github.com/nix-community/nixos-hardware
» Repo for NixOS modules for specific hardware
e https://www.youtube.com/@vimjoyer
» Good, quick tutorials

Robin Finkelmann 2025-05-21 18:00:00 104 / 100

6.1 Important Websites

Just great:
e https://github.com/nix-community/awesome-nix
» List of many community projects
« https://nixos.org/quides/nix-pills/
» Explaining Nix from the ground up (tho somewhat dated)
« https://edolstra.github.io/pubs/phd-thesis.pdf
» The PHD of Eelco Dolstra about developing Nix

Robin Finkelmann 2025-05-21 18:00:00 105/ 100

6.2 Other stuft

A
x

Customers Who Bought This Iltem Also Bought

Robin Finkelmann Nix/NixOS 2025-05-21 18:00:00 106 / 100

6.2 Other stuff
https://quix.gnu.org/
e Guile Scheme as Language
« No non-FOSS packages
« Hurd Kernel sometime?

https://luj.fr/blog/how-nixos-could-have-detected-xz.html

https://guix.gnu.org/en/blog/2023/the-tull-source-bootstrap-building-
from-source-all-the-way-down/

2025-05-21 18:00:00 107 / 100

https://luj.fr/blog/how-nixos-could-have-detected-xz.html
https://guix.gnu.org/en/blog/2023/the-full-source-bootstrap-building-from-source-all-the-way-down/
https://guix.gnu.org/en/blog/2023/the-full-source-bootstrap-building-from-source-all-the-way-down/

	Introduction
	Motivation
	Why Nix?
	Why NixOS?
	Why not Nix?
	Nix vs Nixpkgs vs NixOS
	Stable vs Experimental Nix
	Ad-hoc vs Declarative Nix
	Installation of Nix / Lix

	Nix: The Package Manager
	nix-shell
	nix shell
	shell.nix
	nix run
	direnv
	Install packages: nix-env
	Install packages: Home Manager
	Install Packages: NixOS

	Inner Workings
	Inspiration
	Language
	Nix Store
	Derivations
	Nixpkgs
	Channels
	NARs
	Profiles, GC

	Nix: The Build System
	nix-build (ad-hoc)
	nix-build (default.nix)
	nix vs nix flakes
	Flakes
	nix develop
	Shells / nix shell
	Packages / nix build
	A "better" Nix Command

	Other Stuff
	NixOS
	configuration.nix
	hardware-configuration.nix
	The Module System
	Options
	nh
	nix-tree

	Home Manager
	Fix dynamically linked Binaries
	FHS
	Cross Compilation
	CUDA
	Binary Caching, Cachix
	Sharing Nix Stores
	Distributed Builds
	Hydra
	Darwin
	Disko
	SOPS / Age-Nix

	Appendix
	Important Websites
	Other stuff

