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Planar Straight-Line Drawings

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Idea.

■ Fix outer triangle.

■ Compute coordinates of inner vertices

– based on outer triangle and

– how much space there should be for other vertices

– using weighted barycentric coordinates.

v1 v2

vn

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]

(2n− 5)× (2n− 5).

(easier to show)
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Barycentric Coordinates

x

A B

C

Recall: barycenter(x1, . . . , xk) =
∑k

i=1 xi/k

Let A,B,C form a triangle, and let x lie in △ABC.

The barycentric coordinates of x with respect to
△ABC are a triple (α, β, γ) ∈ R3

≥0 such that

■ α+ β + γ = 1 and

■ x = αA+ βB + γC.

(
1
2
, 0, 1

2

) (
1
3
, 1
3
, 1
3

)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

x

A

B

C

α+ β + γ = 1
α

β

γ
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Barycentric Representation

forbidden
triangle

A barycentric representation of a graph G is an assignment
of barycentric coordinates to the vertices of G:

f : V (G) → R3
≥0, v 7→ (v1, v2, v3)

with the following properties:
(B1) v1 + v2 + v3 = 1 for all v ∈ V (G),

(B2) for each {x, y} ∈ E(G) and each z ∈ V (G) \ {x, y},
there exists a k ∈ {1, 2, 3} with xk < zk and yk < zk.

A B

C

y

x z

max{x2, y2}

max{x1, y1}

max{x3, y3}
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Barycentric Representations of Planar Graphs

C

u

v

■ No pair of edges {u, v} and {u′, v′} crosses:

u′
i > ui, vi, v′j > uj , vj , uk > u′

k, v
′
k, vl > u′

l, v
′
l

⇒ {i, j} ∩ {k, l} = ∅
w.l.o.g. i = j = 2 ⇒ u′

2, v
′
2 > u2, v2 ⇒ separated by a straight line

■ No vertex x can lie on an edge {u, v}.

BA

Lemma.
Let f : v 7→ (v1, v2, v3) be a barycentric representation of a
planar graph G, and let A,B,C ∈ R2 be in general position.
Then the mapping

ϕ : v ∈ V 7→ v1A+ v2B + v3C

yields a planar straight-line drawing of G inside △ABC.

u′

v′

How to find a
barycentric

representation?

(Obvious by definition.)

no three points
on a line
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Schnyder Labeling

x1 > y1, z1

y2 > x2, z2

z3 > x3, y3

A

C

B

Let f : v 7→ (v1, v2, v3) be a barycentric representation of a planar
triangulation G, and let A,B,C ∈ R2 be in general position.

x

z

y
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Schnyder Labeling

x1 > y1, z1

y2 > x2, z2

z3 > x3, y3

We can label each angle in each triangle △xyz uniquely
with k ∈ {1, 2, 3}.

A

C

B

Let f : v 7→ (v1, v2, v3) be a barycentric representation of a planar
triangulation G, and let A,B,C ∈ R2 be in general position.

x

z

y

2

3
1
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Schnyder Labeling

1 1
1

We can label each angle in each triangle △xyz uniquely
with k ∈ {1, 2, 3}.

Let f : v 7→ (v1, v2, v3) be a barycentric representation of a planar
triangulation G, and let A,B,C ∈ R2 be in general position.

x

z

y

2

3
1

A Schnyder labeling of a plane triangulation G is a labeling of all
internal angles with labels 1, 2, and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2, and 3
in counterclockwise (ccw) order.

Vertices: The ccw order of labels around each vertex consists of

■ a non-empty interval of 1s,

■ followed by a non-empty interval of 2s,

■ followed by a non-empty interval of 3s.

2
2
2 3

3
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Schnyder Wood

T1

T2

T3

A Schnyder labeling induces an edge labeling.

A Schnyder wood (or Schnyder realizer) of a plane
triangulation G is a partition of the inner edges of G
into three sets of oriented edges T1, T2, T3 such that,
for each inner vertex v of G, it holds that

■ v has one outgoing edge in each of T1, T2, and T3.

■ The ccw order of edges around v is:
leaving in T1, entering in T3, leaving in T2,
entering in T1, leaving in T3, entering in T2.

1 1
1

2

3
1

2
2
2 3

3

2
3

1

2
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Schnyder Wood – Example and Properties

T1

T2

T3
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3 3 3 3

1

1

1

1

1

1
1

2

2

2

2

3

3

3

3

3

3
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c

a b

1 1
1

2
2
2 3
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3
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2
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Schnyder Wood – Example and Properties

T1

T2

T3

c

a b
(a Schnyder labeling is not unique)

1 1
1

2
2
2 3

3

2

3
1

2
3

1

2



8 - 8

Schnyder Wood – Example and Properties

■ All inner edges incident to a, b, and c
are incoming in the same set (color).

■ T1, T2, and T3 are trees.
Each spans all inner vertices and one
outer vertex (its root).

■ For each v there exists a directed
red, blue, and green path from v to
a, b, c.

■ They divide G into three regions.

T1

T2

T3

c

a b

1 1
1

2
2
2 3

3
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Schnyder Wood – Existence

v1

v2

v3v4

a

v1

v2

v3v4

x

contracting

{a, x}

. . . requires that a and x have exactly two common neighbors.

a

Lemma.
Let G be a plane triangulation with vertices a, b, c on the outer face.
Then there exists a contractible edge {a, x} in G with x ̸∈ {b, c}.

[Kampen 1976]
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Schnyder Wood – Existence

v1

v2

v3v4

a

v1

v2

v3v4

x
2

3

1
1 2

3

23

1

contracting

{a, x}

. . . requires that a and x have exactly two common neighbors.

Proof by induction on # vertices via edge contractions.

2

3

1 2
3

233

2
1

2
3

1 1
1

a

Lemma.
Let G be a plane triangulation with vertices a, b, c on the outer face.
Then there exists a contractible edge {a, x} in G with x ̸∈ {b, c}.

[Kampen 1976]

This constructive
proof yields an
algorithm for
computing a
Schnyder labeling.
It can be imple-
mented to run in
O(n) time.

→ Exercise

Theorem.
Every plane triangulation has a Schnyder labeling and a Schnyder wood.

expanding
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Schnyder Wood – More Properties

Lemma.

■ P1(v), P2(v), P3(v) cross only at v.

■ For inner vertices u ̸= v, it holds that
u ∈ Ri(v) ⇒ Ri(u) ⊊ Ri(v).

■ |R1(v)|+ |R2(v)|+ |R3(v)| = 2n− 5

– directed red path P1(v) to a,

– directed blue path P2(v) to b, and

– directed green path P3(v) to c.

P1(v)

P3(v)

P2(v)

Pi(v): unique path from v to root of Ti

R1(v): set of faces bounded by ⟨P2(v), bc, P3(v)⟩
R2(v): set of faces bounded by ⟨P3(v), ca, P1(v)⟩
R3(v): set of faces bounded by ⟨P1(v), ab, P2(v)⟩

T1

T2

T3

c

a b

v

■ From each vertex v there exists a unique
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Schnyder Wood – More Properties

Lemma.

■ P1(v), P2(v), P3(v) cross only at v.

■ For inner vertices u ̸= v, it holds that
u ∈ Ri(v) ⇒ Ri(u) ⊊ Ri(v).

■ |R1(v)|+ |R2(v)|+ |R3(v)| = 2n− 5

– directed red path P1(v) to a,

– directed blue path P2(v) to b, and

– directed green path P3(v) to c.

P1(v)

P3(v)

P2(v)

Pi(v): unique path from v to root of Ti

R1(v): set of faces bounded by ⟨P2(v), bc, P3(v)⟩
R2(v): set of faces bounded by ⟨P3(v), ca, P1(v)⟩
R3(v): set of faces bounded by ⟨P1(v), ab, P2(v)⟩R1(v)

R2(v)

R3(v)

c

a b

v

■ From each vertex v there exists a unique
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Schnyder Wood – More Properties

Lemma.

■ P1(v), P2(v), P3(v) cross only at v.

■ For inner vertices u ̸= v, it holds that
u ∈ Ri(v) ⇒ Ri(u) ⊊ Ri(v).

■ |R1(v)|+ |R2(v)|+ |R3(v)| = 2n− 5

– directed red path P1(v) to a,

– directed blue path P2(v) to b, and

– directed green path P3(v) to c.

P1(v)

P3(v)

P2(v)

Pi(v): unique path from v to root of Ti

R1(v): set of faces bounded by ⟨P2(v), bc, P3(v)⟩
R2(v): set of faces bounded by ⟨P3(v), ca, P1(v)⟩
R3(v): set of faces bounded by ⟨P1(v), ab, P2(v)⟩R1(v)

R2(v)

R3(v)

c

a b

v

u
R1(u)

■ From each vertex v there exists a unique
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Schnyder Wood – More Properties

Lemma.

■ P1(v), P2(v), P3(v) cross only at v.

■ For inner vertices u ̸= v, it holds that
u ∈ Ri(v) ⇒ Ri(u) ⊊ Ri(v).

■ |R1(v)|+ |R2(v)|+ |R3(v)| = 2n− 5

– directed red path P1(v) to a,

– directed blue path P2(v) to b, and

– directed green path P3(v) to c.

Pi(v): unique path from v to root of Ti

R1(v): set of faces bounded by ⟨P2(v), bc, P3(v)⟩
R2(v): set of faces bounded by ⟨P3(v), ca, P1(v)⟩
R3(v): set of faces bounded by ⟨P1(v), ab, P2(v)⟩

c

a b

R1(a)

R2(a) = ∅

R3(a) = ∅

■ From each vertex v there exists a unique
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Schnyder Drawing

(B1) v1 + v2 + v3 = 1 for all v ∈ V (G)

(B2) for each {x, y} ∈ E(G) and each z ∈ V (G) \ {x, y}
there exists k ∈ {1, 2, 3} with xk < zk and yk < zk

Theorem.
For a plane triangulation G, the mapping

f : v 7→ (v1, v2, v3) =
1

2n− 5
(|R1(v)|, |R2(v)|, |R3(v)|)

is a barycentric representation of G and, thus, yields a planar
straight-line drawing of G on the (2n− 5)× (2n− 5) grid.

✓
y

x

z

■ {x, y} must lie in Ri(z) for some i ∈ {1, 2, 3}

[Schnyder ’90]
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Schnyder Drawing

(B1) v1 + v2 + v3 = 1 for all v ∈ V (G)

(B2) for each {x, y} ∈ E(G) and each z ∈ V (G) \ {x, y}
there exists k ∈ {1, 2, 3} with xk < zk and yk < zk

Set A = (0, 0), B = (2n− 5, 0), and C = (0, 2n− 5).

Theorem.
For a plane triangulation G, the mapping

f : v 7→ (v1, v2, v3) =
1

2n− 5
(|R1(v)|, |R2(v)|, |R3(v)|)

is a barycentric representation of G and, thus, yields a planar
straight-line drawing of G on the (2n− 5)× (2n− 5) grid.

✓
y

x

z

■ {x, y} must lie in Ri(z) for some i ∈ {1, 2, 3}
✓

[Schnyder ’90]

■ x, y ∈ Ri(z) ⇒ Ri(x), Ri(y) ⊊ Ri(z)

⇒ |Ri(x)|, |Ri(y)| < |Ri(z)|
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Schnyder Drawing – Example

a = v1 b = v2

c = v7

v3
v4

v5
v6

f(v1) = (9, 0, 0)

f(v2) = (0, 9, 0)

f(v3) =

n = 7; 2n− 5 = 9

(2, 6, 1)

(5, 2, 2)

(1, 2, 6)

(4, 1, 4)
A B

C

9

1
2

3
4

5
6

7
8

0

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

0

9

f(v7) = (0, 0, 9)

f(v4) =

f(v5) =

f(v6) =
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Schnyder Drawing – Example

a = v1 b = v2

c = v7

v3
v4

v5
v6

f(v1) = (9, 0, 0)

f(v2) = (0, 9, 0)

f(v3) =

n = 7; 2n− 5 = 9

(2, 6, 1)

(5, 2, 2)

(1, 2, 6)

(4, 1, 4)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

0
a b

c
9

v3

v4

v5

v6

f(v7) = (0, 0, 9)

f(v4) =

f(v5) =

f(v6) =
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Weak Barycentric Representation

interior
of triangle
forbidden

A weak barycentric representation of a graph G is an
assignment of barycentric coordinates to V (G):

f : V (G) → R3
≥0, v 7→ (v1, v2, v3)

with the following properties:
(W1) v1 + v2 + v3 = 1 for all v ∈ V (G),

(W2) for each {x, y} ∈ E(G) and each z ∈ V (G) \ {x, y},
there exists a k ∈ {1, 2, 3} with
(xk, xk+1) <lex (zk, zk+1) and (yk, yk+1) <lex (zk, zk+1).

A B

C

y

x
z

i.e., either yk < zk or
(yk = zk and yk+1 < zk+1)

Lemma.
For a weak barycentric representation f : v 7→ (v1, v2, v3) and
a triangle △ABC, the mapping ϕ : V (G) → R3 with

v 7→ v1A+ v2B + v3C

yields a planar drawing of G inside △ABC.
Proof. → Exercise!

indices modulo 3
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Counting Vertices

P1(v)

P3(v)

P2(v)

R1(v)

R2(v)

R3(v)

c

a b

v

Pi(v): unique path from v to root of Ti

R1(v): subgraph bounded by ⟨P2(v), bc, P3(v)⟩
R2(v): subgraph bounded by ⟨P3(v), ca, P1(v)⟩
R3(v): subgraph bounded by ⟨P1(v), ab, P2(v)⟩
vi = |V (Ri(v))| − |V (Pi−1(v))| (indices modulo 3)
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Counting Vertices

P1(v)

P3(v)

P2(v)
R3(v)

c

a b

v
v1 = 10− 3 = 7

v2 = 6− 3 = 3

v3 = 8− 3 = 5

Pi(v): unique path from v to root of Ti

R1(v): subgraph bounded by ⟨P2(v), bc, P3(v)⟩
R2(v): subgraph bounded by ⟨P3(v), ca, P1(v)⟩
R3(v): subgraph bounded by ⟨P1(v), ab, P2(v)⟩
vi = |V (Ri(v))| − |V (Pi−1(v))| (indices modulo 3)
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Counting Vertices

P1(v)

P3(v)

P2(v)

R1(v)

c

a b

v
v1 = 10− 3 = 7

v2 = 6− 3 = 3

v3 = 8− 3 = 5

Lemma.

■ For inner vertices u ̸= v, it holds that
u ∈ Ri(v) ⇒ (ui, ui+1) <lex (vi, vi+1).

■ v1 + v2 + v3 = n− 1

u

Pi(v): unique path from v to root of Ti

R1(v): subgraph bounded by ⟨P2(v), bc, P3(v)⟩
R2(v): subgraph bounded by ⟨P3(v), ca, P1(v)⟩
R3(v): subgraph bounded by ⟨P1(v), ab, P2(v)⟩
vi = |V (Ri(v))| − |V (Pi−1(v))| (indices modulo 3)
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Counting Vertices

c

a b

a2 = 1

a3 = 0

v1 = 10− 3 = 7

v2 = 6− 3 = 3

v3 = 8− 3 = 5

Lemma.

■ For inner vertices u ̸= v, it holds that
u ∈ Ri(v) ⇒ (ui, ui+1) <lex (vi, vi+1).

■ v1 + v2 + v3 = n− 1

a1 = n− 2

Pi(v): unique path from v to root of Ti

R1(v): subgraph bounded by ⟨P2(v), bc, P3(v)⟩
R2(v): subgraph bounded by ⟨P3(v), ca, P1(v)⟩
R3(v): subgraph bounded by ⟨P1(v), ab, P2(v)⟩
vi = |V (Ri(v))| − |V (Pi−1(v))| (indices modulo 3)
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Schnyder Drawing⋆

Theorem.
For a plane triangulation G, the mapping

f : v 7→ 1

n− 1
(v1, v2, v3)

is a weak barycentric representation of G and, thus, yields a
planar straight-line drawing of G on the (n− 2)× (n− 2) grid.

[Schnyder ’90]

Set A = (0, 0), B = (n− 1, 0), and C = (0, n− 1).
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Schnyder Drawing⋆ – Example

a = v1 b = v2

c = v16

v15
v13

v14
v12

v10
v9

v8 v7

v6
v5

v4
v3

n = 16, n− 1 = 15, n− 2 = 14

0 5

5

10

15

10 15

f(a) =

a
b

c v11

f(b) = (0, 14, 1)

f(c) = (1, 0, 14)

f(v3) = (7, 7, 1)

f(v4) = (6, 7, 2)

f(v5) = (2, 10, 3)

..
.

(14, 1, 0)
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Results & Variations

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.

Exercise!

a b

c

a b

c

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(n− 2)× (n− 2). Such a drawing can be computed in O(n) time.
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Results & Variations

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.

Exercise!

Theorem. [Dolev, Leighton, Trickey ’84]
There exist n-vertex plane graphs such that any planar straight-line
drawing of them has an area of at least (2n/3− 1)× (2n/3− 1).

[Frati, Patrignani ’07] Area at least n2/9 + Ω(n) in the variable-embedding setting.

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(n− 2)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Brandenburg ’08]
Every n-vertex planar graph has a planar straight-line drawing of size
4n/3× 2n/3. Such a drawing can be computed in O(n) time.
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Results & Variations
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Results & Variations

Theorem. [Kant ’96]
Every n-vertex 3-connected planar graph has a planar straight-line drawing
of size (2n− 4)× (n− 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.

Theorem. [Felsner ’01]
Every 3-connected planar graph with f faces has a planar straight-line
drawing of size (f − 1)× (f − 1) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.

Theorem. [Chrobak & Kant ’97]
Every n-vertex 3-connected planar graph has a planar straight-line drawing
of size (n− 2)× (n− 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.
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Literature

■ [PGD Ch. 4.3] for detailed explanation of Schnyder woods etc.

■ [Sch90] “Embedding planar graphs on the grid”, Walter Schnyder, SoCG 1990 –
original paper on Schnyder realizer method.
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