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Planar Straight-Line Drawings

Every n-vertex planar graph has a planar straight-line
drawing of size (2n — 4) x (n — 2).

Theorem. [Schnyder "90]
Every n-vertex planar graph has a planar straight line

drawing of size D*@(Zn — (2n — 5).

Idea. (eaS|er to show)

B Fix outer triangle.
B Compute coordinates of inner vertices
— based on outer triangle and
— how much space there should be for other vertices

— using weighted barycentric coordinates.



Barycentric Coordinates

Recall: barycenter(xy,...,x1) = Zle x; [k

Let A, B, C form a triangle, and let = lie in AABC.

The barycentric coordinates of = with respect to
AABC are a triple (o, 3,7) € RY, such that

mao+8+~v=1and
B x=cA+ 3B +~C.




Barycentric Representation

C
A barycentric representation of a graph G is an assignment _
of barycentric coordinates to the vertices of G- for{”ddle” max{x2, Y2}
triangle

f:V(G)— R?’ZO, v — (v1, V2, V3) max{zs, y3 } Y
with the following properties: /}/ 2\
(B1) v1 + s+ v3 = 1 for all v € V(Q), AT B
(B2) for each {z,y} € E(G) and each z € V(G) \ {z,y}, max{z1, Y1}

there exists a k € {1,2,3} with z; < z; and yr < 2.



Barycentric Representations of Planar Graphs

L no three points
emma. on a line

Let f: v — (v1,v2,03) be a barycentric representation of a J
planar graph G, and let A, B, (' € R? be in general position.

Then the mapping

¢ZUEVI—>U1A—|-UQB—|—U3C /

U

,'/ /
S AU
yields a planar straight-line drawing of GG inside AABC'. u/\
B No vertex x can lie on an edge {u,v}. u/\
A : B

B No pair of edges {u,v} and {u',v'} crosses:
uh > up, v, UL > wg, v, up > uh, v, v > ug,
i 1y Vg J 79 Y75 k ks Vs [ 1 Y

= {i,j} N {k, 1} =0
w.lo.g. 1 =7 =2 = u,,v5 > us, v, = separated by a straight line

How to find a
barycentric
representation?



Schnyder Labeling

Let f: v — (v1,v2,v3) be a barycentric representation of a planar
triangulation G, and let A, B, C' € R? be in general position.

r1 > Y1, 21
Yp > T2, 22

Z3 > I3,Y3



Schnyder Labeling .

Let f: v — (v1,v2,v3) be a barycentric representation of a planar
triangulation G, and let A, B, C' € R? be in general position.

We can label each angle in each triangle Azyz uniquely
with k € {1,2,3}.

r1 > Y1, 21

Yp > T2, 22

Z3 > I3,Y3



Schnyder Labeling

Let f: v — (v1,v2,v3) be a barycentric representation of a planar
triangulation G, and let A, B, C' € R? be in general position.

z
We can label each angle in each triangle Azyz uniquely 3
with k € {1,2,3}. o 1 5
A Schnyder labeling of a plane triangulation G is a labeling of all 7y
internal angles with labels 1, 2, and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2, and 3 AL[ 1

in counterclockwise (ccw) order. 2

Vertices: The ccw order of labels around each vertex consists of 73

B a non-empty interval of Is,
m followed by a non-empty interval of 2s,

B followed by a non-empty interval of 3s.

- 14



Schnyder Wood

A Schnyder labeling induces an edge labeling.

A Schnyder wood (or Schnyder realizer) of a plane

triangulation G is a partition of the inner edges of G 3
into three sets of oriented edges 17, 1>, 15 such that, 1 >
for each inner vertex v of (G, it holds that 2

B v has one outgoing edge in each of 711, 15, and 75.

B The ccw order of edges around v is:
leaving in 17, entering in 13, leaving in 15,
entering in 11, leaving in 13, entering in 15.






Schnyder Wood — Example and Properties

(a Schnyder labeling is not unique) 13




Schnyder Wood — Example and Properties

B All inner edges incident to a, b, and ¢
are incoming in the same set (color).

m /i, I>, and 753 are trees.
Each spans all inner vertices and one
outer vertex (its root).

A1

1

T3 »/2233
T

2
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Schnyder Wood — Existence

Lemma. [Kampen 1976]
Let GG be a plane triangulation with vertices a, b, ¢ on the outer face.

Then there exists a contractible edge {a, 2z} in G with x & {b, c}.

- v
Y4 U3 contracting 4 Us
I\
v2  Ha,x} U2
(] U1
a a

... requires that a and = have exactly two common neighbors.



Schnyder Wood — Existence

Lemma. [Kampen 1976]
Let G be a plane triangulation with vertices a, b, ¢ on the outer face.
Then there exists a contractible edge {a,z} in G with x & {b, c}.

Theorem.
Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

... requires that a and = have exactly two common neighbors.

This constructive
proof yields an
algorithm for
computing a
Schnyder labeling.
It can be imple-
mented to run in
O(n) time.

— Exercise @

- 16
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Schnyder Wood — More Properties

15 B From each vertex v there exists a unique
— directed red path P;(v) to a,

- directed blue path P (v) to b, and
P3(0) T — directed green path P;(v) to c.

P;(v): unique path from v to root of T;

Pi(v) A N Lemma.
o B P (v), P»(v), Ps(v) cross only at v.




Schnyder Wood — More Properties

10 - 13

B From each vertex v there exists a unique

— directed red path P;(v) to a,
— directed blue path P (v) to b, and
Ps3(v) ) — directed green path P;(v) to c.
R>(v) P;(v): unique path from v to root of T;
] ' R1(v): set of faces bounded by (P> (v), be, P5(v))
{ 3 Ry(v): set of faces bounded by (FP5(v), ca, Pi(v))
A Ry(v) R3(v): set of faces bounded by (P;(v), ab, P>(v))
Pi(v) o | . i Lemma.
o P(0) B P (v), P»(v), Ps(v) cross only at v.
2\U : : :
Rs(v) m For inner vertices u # v, it holds that

u € R;(v) = R;i(u) € R;(v).



Schnyder Wood — More Properties

10 - 16

B From each vertex v there exists a unique
red path P;(v) to a,

blue path P (v) to b, and
green path P3(v) to c.

— directec
— directed
Ps(v) — directec

Ry (v) \ P;(v): unique path from v to root of T;

Ri(v): set of faces
Ry (v): set of faces
R3(v): set of faces

Lemma.

pounda

poundaec

pounda

€

€d

oy (P>(v), be, P3(v))
oy (P3(v), ca, P1(v))

by (P1(v), ab, Px(v))

B P (v), P»(v), Ps(v) cross only at v.

m For inner vertices u # v, it holds that
u € Ri(v) = Ri(u) € R;(v).



Schnyder Wood — More Properties

10 - 20

B From each vertex v there exists a unique

R (wv): set of faces bound

R3(wv): set of faces bound

Lemma.

b

€

€d

— directed red path P;(v) to a,
— directed blue path P (v) to b, and
— directed green path P;(v) to c.

P;(v): unique path from v to root of T;
R1(v): set of faces bounded

oy (P>(v), be, P3(v))
oy (P3(v), ca, P1(v))

by (P1(v), ab, Px(v))

B P (v), P»(v), Ps(v) cross only at v.

m For inner vertices u # v, it holds that
u € Ri(v) = Ri(u) € R;(v).
Bs(a) =1 B |Ry(0)] + | Ra(0)] + | Rs(0)] = 20— 5



Schnyder Drawing

Theorem. [Schnyder '90]
For a plane triangulation &, the mapping

1
Iy — 5(‘R1(v) ; |R2(v)‘7 ‘R3(v)|)

Is a barycentric representation of GG and, thus, yields a planar
straight-line drawing of GG

f:ve (v1,v,v3) =

(B1) v1+ o+ uvs=1forallve V(G) v

(B2) for each {z,y} € E(G) and each z € V(G) \ {z,y}
there exists k € {1,2,3} with x; < z; and ¥y < 2z

B {z,y} must lie in R;(z) for some i € {1,2,3}

>

/:CJ

11 -



11-13

Schnyder Drawing

Set A=(0,0), B=(2n—5,0), and C' = (0,2n — 5).

Theorem. [Schnyder '90]
For a plane triangulation &, the mapping

1
———(|R1(0)], [ Ra(0)], s (0) )

Is a barycentric representation of GG and, thus, yields a planar
straight-line drawing of G on the (2n — 5) x (2n — 5) grid.

f:ve (v1,v,v3) =

(B1) v1+ o+ uvs=1forallve V(G) v

(B2) for each {x,y} € E(G) and each z € V(G) \ {z,y}
there exists k € {1,2,3} with x; < zx and yr < 2z v z

B {z,y} must lie in R;(z) for some i € {1,2,3} T
By € Ri(z)= Ri(x), Ri(y) C R;(2)
= |Ri(z)|, |Ri(y)| < |Ri(2)



12 - 18

Schnyder Drawing — Example

C
90,
3
6
3 avl b?]g
2 n=7 2m—5=9 f(vs)=(522)
1 f(v1) =(9,0,0) f(vs) = (1,2,0)
Ad SN | o F2)=(0,90) f(ve) = (4,1,4)
091 2 3 4 5 6 7 89 flvs) = (2,6,1)  f(v7)=(0,0,9)



Schnyder Drawing — Example

avl bvz
n=7, 2n—-5=9 f(vys) = (5,2,2)

f(vl) — (97070) f(1}5) — (17276)
f(UZ) — (Oa 9, O) f(v6) — (47 174)
f(v3) — (27 0, 1) f(v7) — (07079)

O R, N W A~ 1 OO N 00O O
@ ()
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Weak Barycentric Representation

A weak barycentric representation of a graph G is an interior
assignment of barycentric coordinates to V(G): C;f tgfzggle
orpi en
f:V(G) — R>O, v — (v1,v2,v3) Y
with the following properties: x
(W1) vi +vo +wv3 =1 forall v e V(G), g
(W2) for each {x,y} € E(G) and each z € V(G) \ {x,y}, A VARERN B

there exists a k € {1,2,3} with

(Tk, Tht1) <tex (25 2k+1) and (Yry Yrt1) <iex (Zhs Zht1)- i.e., either yr < z or

L a (yk = zr and ygy1 < Zk:+1

emm

For a weak barycentric representation f: v — (v1, v2,v3) and ‘\ /‘

a triangle AABC', the mapping ¢: V(G) — R3 with indices modulo 3
vi—= v A+ vB+ v3C

; . . Proof. — Exercise!
yields a planar drawing of GG inside AABC'.



14 -

Counting Vertices

P;(v): unique path from v to root of T;

Ri(v): subgraph bounded by (F»(v), be, P5(v))
. R>(v): subgraph bounded by (Ps(v), ca, P1(v))
3(V) R3(v): subgraph bounded by (P;(v),ab, P>(v))
) vi = [V(Ri(v))] = [V(Pia(v))]
R(v) r )
Pi(v) A5 R (v)
P2 U
Ra(o) (v)




Counting Vertices

14 - 10

P;(v): unique path from v to root of T;

R1(v): subgraph bounded by (P> (v), be, P3(v))
R>(v): subgraph bounded by (Ps(v), ca, P1(v))
Ps(0)_ R3(v): subgraph bounded by (P (v), ab, P>(v))
) vi = [V(Ri(v))| = [V (Pie1(v))]
2 )\, U1 — 10-3=7
Pi(v) va v, = 6—3=23
. o ° v3= 8—3=5
PQ(U)
R3(v)




Counting Vertices

14 - 14

P;(v): unique path from v to root of T;

Ri(v): subgrap
Rz( ): subgrap
( ): subgrap

N bounc
N bound

N bounc

ed
ed
ed

by (P2(v), be, P3(v))
by (P3(v), ca, P (v))

by (P (v), ab, P>(v))

V(Ri(v))] = [V(Pi1(v))]
U1 — 10—-3=7

Rl (U) vy = 6
U3 — 3
Lemma.

—3=3
—3=5

m For inner vertices u # v, it holds that
u € Ri(v) = (ui; uit1) <iex (vi,vit1).




14 - 20

Counting Vertices

P;(v): unique path from v to root of T;

R1(v): subgraph bounded by (P> (v), be, P3(v))

Rz( ): subgraph bounded by (/5(v), ca, Pi(v))
( ): subgraph bounded by (P;(v), ab, P>(v))

= [V(Ri(v))]| = [V(Pi-1(v))]

U1 — 10—-3=7

Uy = b—3=3
U3 — 8—3=05
Lemma.

m For inner vertices u # v, it holds that
u € Ri(v) = (ui; uit1) <iex (vi,vit1).

az3 =0 b B v, +tuvwt+uvyz=n-—1




Schnyder Drawing*

Set A=(0,0), B=(n—1,0),and C = (0,n —1).

15



Schnyder Drawing* — Example

a = vy b = vo
n =16, n—1=15, nff3)=1&,7,1)
fla) = (14,1,0) f(va) =(6,7,2)
f(b) = (0,14,1) f(vs) = (2,10, 3)
f(c) =(1,0,14) ;




Results & Variations

Theorem. [De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size
(2n — 4) x (n — 2). Such a drawing can be computed in O(n) time.

Theorem. [Schnyder "90]

Every n-vertex planar graph has a planar straight-line drawing of size

(n — 2) x (n — 2). Such a drawing can be computed in O(n) time.+—

C C

- — Exercisel

17 -



Results & Variations

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n — 4) x (n — 2). Such a drawing can be computed in O(n) time.

Theorem. [Schnyder "90]
Every n-vertex planar graph has a planar straight-line drawing of size
(n —2) x (n — 2). Such a drawing can be computed in O(n) time.«———— £, orcisel

Theorem. [Brandenburg '08]
Every n-vertex planar graph has a planar straight-line drawing of size
4n /3 x 2n/3. Such a drawing can be computed in O(n) time.

Theorem. [Dolev, Leighton, Trickey '84]
There exist n-vertex plane graphs such that any planar straight-line
drawing of them has an area of at least (2n/3 — 1) x (2n/3 — 1).

[Frati, Patrignani '07]  Area at least n?/9 + Q(n) in the variable-embedding setting.

17 -



Results & Variations

NN\




Results & Variations

Theorem. [Kant '96]
Every n-vertex 3-connected planar graph has a planar straight-line drawing
of size (2n — 4) x (n — 2) where all faces are drawn convex.

Such a drawing can be computed in O(n) time.

Theorem. [Chrobak & Kant '97]
Every n-vertex 3-connected planar graph has a planar straight-line drawing
of size (n — 2) x (n — 2) where all faces are drawn convex.

Such a drawing can be computed in O(n) time.

Theorem. [Felsner '01]
Every 3-connected planar graph with f faces has a planar straight-line
drawing of size (f — 1) x (f — 1) where all faces are drawn convex.

Such a drawing can be computed in O(n) time.

17 - 13



| iterature

B [PGD Ch. 4.3] for detailed explanation of Schnyder woods etc.

B [Sch90] “Embedding planar graphs on the grid”, Walter Schnyder, SoCG 1990 —
original paper on Schnyder realizer method.

18
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