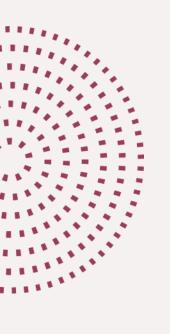


After this lecture, you'll...

- Know what cross-lingual transfer for NLP tasks is
- Learn about Massively Multilingual LMs and CL transfer with them
- Distinguish between zero-shot and few-shot CL transfer
- Know of prominent multilingual evaluation benchmarks

- Cross-Lingual Transfer
- CL Transfer with Massively Multilingual Transformers (MMTs)
- Zero- and Few-Shot Transfer with MMTs
- Multilingual Evaluation



- Cross-Lingual transfer: transfer supervised models for concrete NLP tasks
 - Models trained on labeled data in high-resource source language...
 - ...make predictions on texts in low-resource target languages with little or no labeled data

- Only a <u>handful</u> of NLP tasks have annotated data in many languages
 - Part-of-speech tagging (<u>Universal Dependencies</u>, UD)
 - Syntactic parsing (UD)
 - Named Entity Recognition (e.g., <u>WikiANN</u>)
- Higher-level semantic tasks often have only English training data
 - Generally more difficult tasks, e.g.:
 - Natural Language Inference (NLI)
 - Semantic Text Similarity (STS)
 - Question Answering (QA)
 - Causal Commonsense Reasoning
 - •

- Natural Language Inference
 - Given a premise and hypothesis, predict whether hypothesis <u>is entailed</u> by the premise, <u>contradicts</u> it, or neither

Premise: "A man reads the paper in a bar with green lighting."

Hypothesis: "The man is inside"

Label: entailment

- Causal Commonense Reasoning
 - Given a premise find its most plausible <u>cause</u> among several choices

Premise: "The politician won the election"

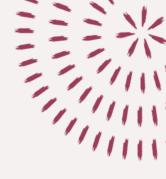
Choice 1: "No one voted for him"

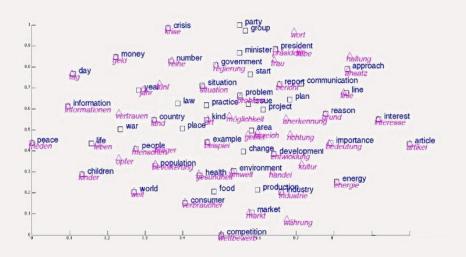
Choice 2: "He ran negative campaign ads against the opponent"

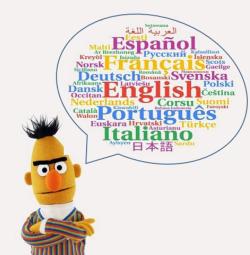
Label: Choice 2

- Such language understanding datasets are very expensive to build
 - Thus most often exist only in English
 - Q: Can't we automatically translate them with MT?

- Multilingual representation spaces necessary for cross-lingual transfer
 - Words/sentences/texts that have the same/similar meaning, get same/similar representations...
 - ...whether from the same language or different languages
- Cross-lingual word embeddings
- Multilingual LMs







- Multilingual representation spaces necessary for cross-lingual transfer
- Embeddings of words from source and target language semantically "aligned"

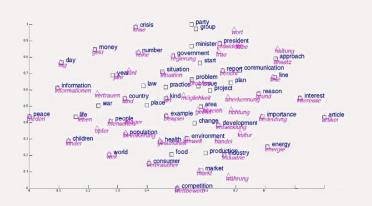
Training

- Texts in source language L_s
- Input vectors from shared bilingual space

Inference

- Texts in target language L_T
- Input vectors **also** from shared bilingual space, which the trained model "understands"



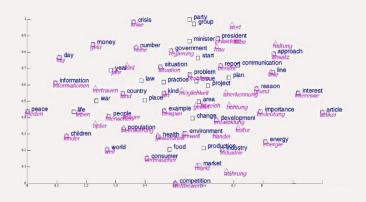


Task-specific model (e.g., a CNN + classifier)

- CL transfer with CLWEs has some clear limitations
- CLWEs: out-of-context representations of words
 - I.e., static word embeddings
 - Static word embeddings conflate senses for words with multiple meanings

Transfer with CLWEs would be perfect if:

- CLWE space was perfect (ideal alignment)
- There was a 1-to-1 correspondence between the words of $L_{\!\scriptscriptstyle S}$ and $L_{\!\scriptscriptstyle T}$
- Representations of phrases and sentences aggregated from word embeddings the same way for both languages



Task-specific model (e.g., a CNN + classifier)

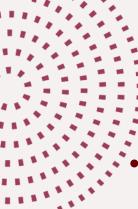
Content

- Cross-Lingual Transfer
- CL Transfer with Massively Multilingual Transformers
- Zero- and Few-Shot Transfer with MMTs
- Multilingual Evaluation

- With pretrained Transformer-based LMs (i.e., BERT & co.)
 - We obtain more than static word embeddings
 - Contextualized representations of tokens meaning in context
- If we could make <u>the same Transformer (same parameters)</u> learn how to contextualize tokens in multiple languages...
 - We could support CL transfer "out of the box"
 - Fixing for limitations of transfer with CLWEs

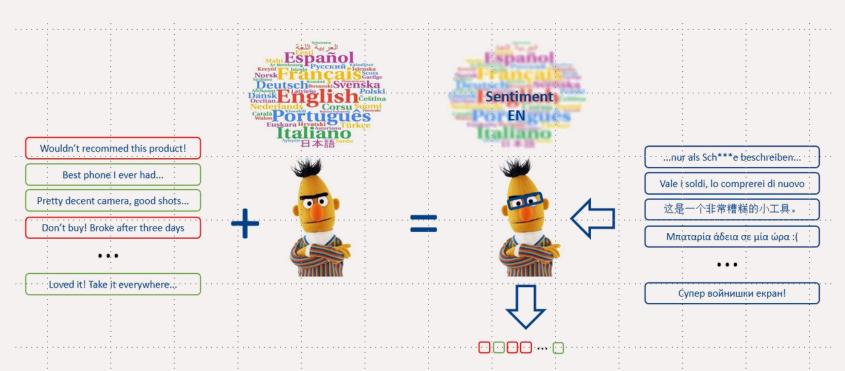
Multilingual BERT

- BERT's Transformer pretrained on multilingual corpora
- Concatenation of monolingual corpora in <u>104 languages</u>
- Without any cross-lingual supervision?!
 - No word alignments, no parallel sentences



Massively Multilingual Transformers

- Cross-lingual transfer with MMTs is conceptually simple
 - 1. Place a task-specific head on top of the Transformer body
 - 2. Perform standard fine-tuning using task-specific training data in L_S
 - 3. Use the Transformer and classifier to make predictions for data in L_T



- Cross-lingual transfer with MMTs is conceptually trivial
- But a lot of open questions about what's encoded in such an MMT
 - Q: Size of pretraining corpora for each language?
 - Q: How does tokenization work in a massively multilingual setup?
 - Q: How/why are representations of different languages semantically aligned if there is no explicit cross-lingual supervision?
 - Q: Are all pretraining languages "equal" in the representation space of mBERT?
 - Q: Is CL transfer equally good for any L_S and L_T from pretraining languages?
 - Q: What about languages not seen in pretraining?

- mBERT trained on 104 largest Wikipedias
 - Obviously, the corpus of each language is not of the same size
 - English Wikipedia: 6.6M articles; Chuvash Wikipedia: 50K articles
 - Articles also <u>much longer</u> for English and other major languages
- Multilingual tokenization
 - mBERT (like monolingual BERT) uses WordPiece tokenization
 - Vocabulary size: 110K tokens
 - Languages without whitespaces:
 - Characters separated with a special character (CJK Unicode block)
 - Problem: WordPiece merges dominated by large languages
 - Large languagess have many more whole-word tokens than small languages

MMTs: Corpora and Tokenization

- Problem: WordPiece merges dominated by large languages
 - Large languages have <u>many more whole-word tokens</u> than small languages

```
from transformers import BertTokenizer, BertModel
  tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
  encoded_input = tokenizer("wonderful", return_tensors='pt')
  tokenizer.convert_ids_to_tokens(encoded_input["input_ids"][0])

. "wonderful"(EN) → ['[CLS]', 'wonderful', '[SEP]']

. "prekrasno"(HR) → ['[CLS]', 'pre', '##kra', '##sno', '[SEP]']
```


- Problem: WordPiece merges dominated by large languages
 - Large languagess have many more whole-word tokens than small languages
 - "wonderful" (EN) → ['[CLS]', 'wonderful', '[SEP]']
 - "prekrasno" (HR) → ['[CLS]', 'pre', '##kra', '##sno', '[SEP]']
- Several shortcomings:
 - 1. Token sequences longer for smaller languages and Transformer has fixed input size \rightarrow we can effectively encode <u>shorter texts</u> in smaller languages
 - 2. We need Transformer's body parameters to correctly contextualize subword tokens that belong to the same word-level token
 - Learn that 'pre', '##kra', and '##sno' should attend over one another
 - But <u>smaller</u> languages have less data to learn from!
 - 3. Shorter tokens more likely to appear across multiple languages
 - wonderful will appear predominantly in English text, what about ##kra?
 - Shared tokens will commonly have different "meaning" in different langs

Pires, T., Schlinger, E., & Garrette, D. (2019, July). <u>How Multilingual is Multilingual BERT?</u> In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 4996-5001).

→ "mBERT surprisingly good at zero-shot CL model transfer"

Wu, S., & Dredze, M. (2019, November). <u>Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT</u>. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 833-844).

→ "Surprising cross-lingual effectiveness of BERT"

- Q: But where does the cross-lingual transfer ability of mBERT come from?
 - No explicit alignment across languages of any type in pretraining

Dufter, P., & Schütze, H. (2020). <u>Identifying Necessary Elements for BERT's Multilinguality</u>. In Proceedings of EMNLP 2021.

- The capacity of the model (12-layer Transformer; 110M parameters) is too small to precisely and accurately "learn" every of 104 languages
- MLM training on massively multilingual corpora <u>forces</u> the Transformer to use its parameters efficiently -- i.e., share them across languages
 - This exploits commonalities between languages and results in (some) alignment
- Shared embeddings also help
 - Positional embeddings*: Q: when could shared PEs <u>hurt</u>?
 - Token embeddings, for tokens with <u>same meaning</u> across languages
 - E.g., digits or names ("1", "Joe", ...)

XLM: Cross-Lingual Language Modeling

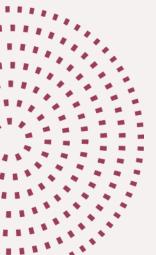
Conneau, A., & Lample, G. (2019). Cross-lingual language model pretraining. Advances in neural information processing systems, 32.

- Oversampling sentences from small languages
- Undersampling sentences from large languages

$$q_i = \frac{p_i^{\alpha}}{\sum_{j=1}^{N} p_j^{\alpha}} \qquad p_i = \frac{n_i}{\sum_{k=1}^{N} n_k}$$

modified distribution original distribution

- Smoothing factor α set to 0.5
- More whole-word tokens for small languages, 95K tokens in total



XLM: Cross-Lingual Language Modeling

Conneau, A., & Lample, G. (2019). <u>Cross-lingual language model pretraining</u>. Advances in neural information processing systems, 32.

- Self-supervised objective
- Additionally leverages parallel data with the new objective named translation language modeling (TLM)
 - Just MLM, but on pairs of parallel sentences
 - TLM is a supervised objective: requires parallel data
 - Also introduces trainable language embeddings

Conneau, A., & Lample, G. (2019). <u>Cross-lingual language model pretraining</u>. Advances in neural information processing systems, 32.

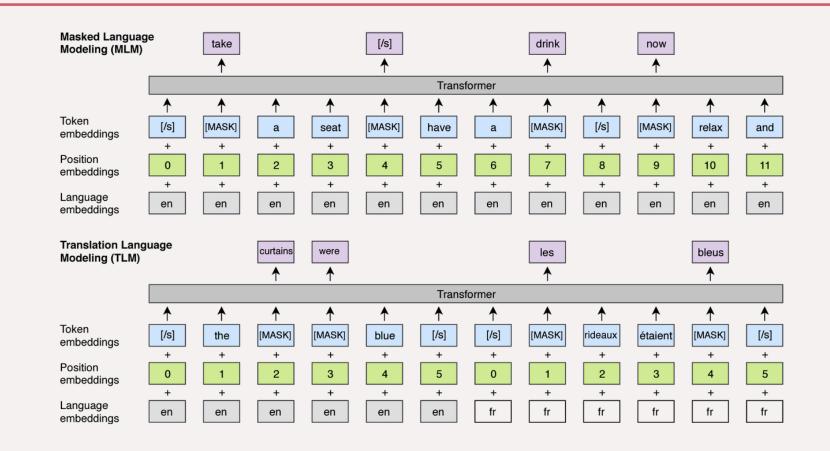
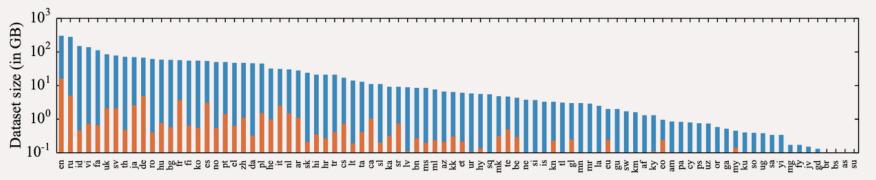


Image from the original paper

XLM-R: XLM-on-RoBERTa

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2020, July). <u>Unsupervised Cross-lingual Representation Learning at Scale</u>. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 8440-8451).

- Just MLM-ing, but...
- On much <u>much larger corpora</u>:
 - <u>CC100</u> filtered CommonCrawl for 100 languages: 2TB of text!
- Larger vocabulary: 250K tokens

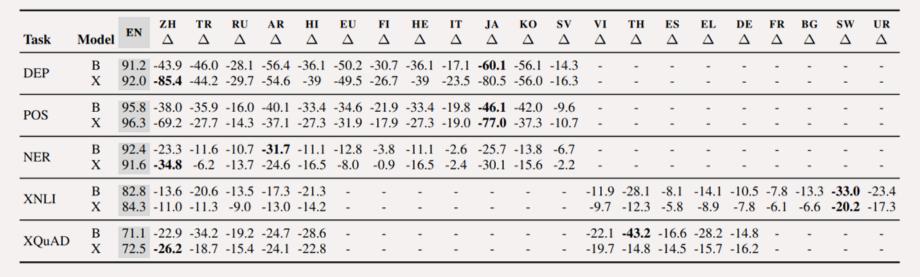


■ CommonCrawl ■ Wikipedia

Image from the original paper

- Initial evaluations
 - Source language: EN
 - Target languages: high-resource, closely related to EN
 - E.g., NL, DE, IT, FR, ES
- What about small target languages distant from English?
 - small: small corpus in pretraining
 - distant from English:
 - genealogically, etymologically, typologically (recall Lecture 1 :))
 - Basically, what about the vast majority of world languages?

Lauscher, A., Ravishankar, V., Vulić, I., & Glavaš, G. (2020, November). <u>From Zero to Hero: On the Limitations of Zero-Shot Language Transfer with Multilingual Transformers</u>. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 4483-4499).



- Huge performance drops (both with mBERT and XLM-R) from transfer to
 - (1) small languages
 - (2) languages distant from English

Poor CL Transfer with MMTs

- MMTs (mBERT, XLM-R) exhibit huge performance drops in CL transfer to low-resource languages, especially if they are distant from English
- Even for large and closely-related languages (e.g., DE, ES, IT) we see drop in performance compared to English.
 - Q: Why?
- For English, we get better results by fine-tuning monolingual English BERT/RoBERTa than by fine-tuning mBERT or XLM-R.
 - Q: Why?

Poor CL Transfer with MMTs

- Part of the problem is the curse of multilinguality (Lecture 7)
 - Loss of representational accuracy for each individual language due to representing too many languages with the model of fixed capacity
- MLM training doesn't really align the representations across languages very well: clusters of language-specific subspaces visible
 - Better alignment achievable post-hoc with <u>parallel data</u>

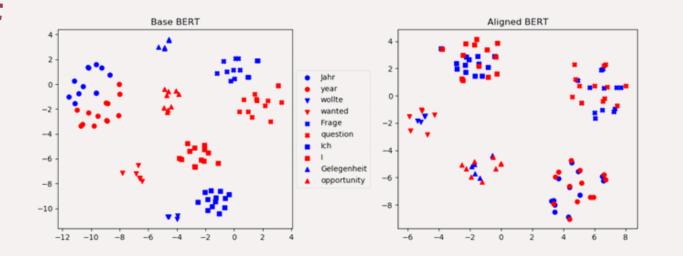


Image from: Cao, S., Kitaev, N., & Klein, D.

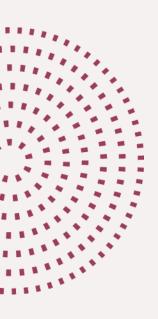
<u>Multilingual Alignment of Contextual Word</u>

<u>Representations.</u> In International Conference on Learning Representations. 2020.

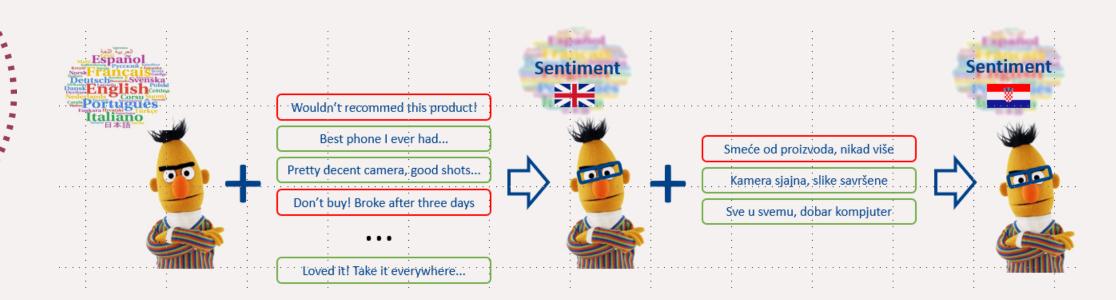
Content

- Cross-Lingual Transfer
- CL Transfer with Massively Multilingual Transformers
- Zero- and Few-Shot Transfer with MMTs
- Multilingual Evaluation

- So far, we have analyzed the so-called zero-shot transfer setup
 - We assume **zero** labeled task instances in the target language
- In practice, it is almost always <u>possible</u> to annotate some small number of instances in the target language
- Few-shot transfer: large task-specific training dataset D_S in L_S , plus a few labeled instances (small dataset D_T) in L_T
 - Q: how many is "few"?
 - Depends on the task, but $|D_T| \ll |D_S|$



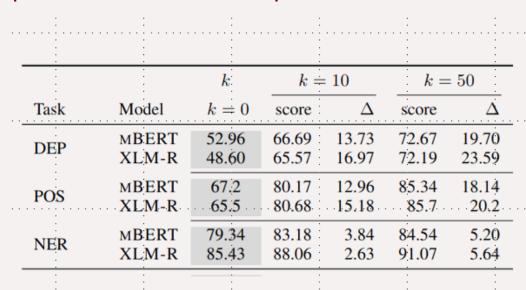
- Sequential few-shot CL transfer
 - First fine-tune an MMT on the large D_S
 - Then fine-tune it on the small D_T

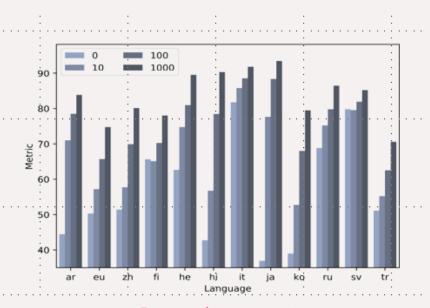


Few-Shot CL Transfer

Lauscher, A., Ravishankar, V., Vulić, I., & Glavaš, G. (2020, November). <u>From Zero to Hero: On the Limitations of Zero-Shot Language Transfer with Multilingual Transformers</u>. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 4483-4499).

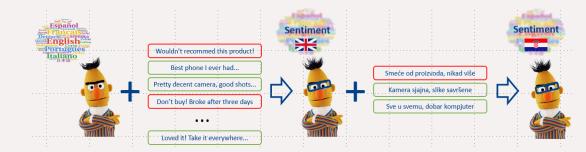
 Sequential few-shot CL transfer can bring massive gains in transfer performance compared to <u>zero-shot CL transfer</u>





Few-Shot Transfer: Generality vs. Performance

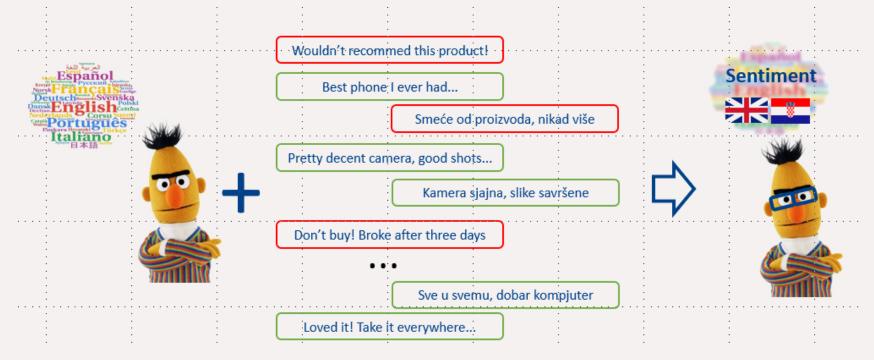
- Sequential few-shot CL transfer
 - (1) First fine-tune an MMT on the <u>large</u> D_S : computationally expensive
 - (2) Then fine-tune it on the small D_T : computationally cheap
- Pro: After (1) we have a general task-specific model, which can be quickly fine-tuned for various target languages with few instances
- Con: The two training steps are executed sequentially, there is no direct task-specific interaction between the languages



Few-Shot Transfer: Generality vs. Performance

Schmidt, F. D., Vulić, I., & Glavaš, G. (2022). <u>Don't stop fine-tuning: On training regimes for few-shot cross-lingual transfer with multilingual language models</u>. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (pp. 10725-10742).

• Simultaneous fine-tuning on (\underline{many}) instances from L_S and (\underline{few}) from L_T



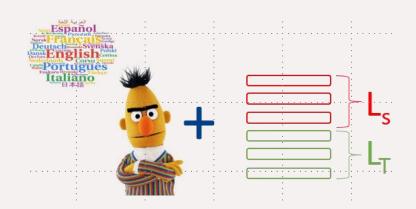
Few-Shot Transfer: Generality vs. Performance

Schmidt, F. D., Vulić, I., & Glavaš, G. (2022). <u>Don't stop fine-tuning: On training regimes for few-shot cross-lingual transfer with multilingual language models</u>. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (pp. 10725-10742).

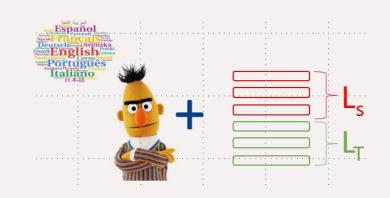
• Simultaneous fine-tuning on (many) instances from L_S and (few) from L_T

Important: **batch balancing** between L_S and L_T

- Few target language instances will repeat much more often
- But will be "regularized" with different source language instances in different bathes
 - ightarrow less overfitting, better generalization in $L_{\!\scriptscriptstyle T}$



- Joint few-shot CL transfer
- Pro: Task-specific interaction between L_S and L_T , leads to **better** performance on L_T
- Con: For each L_T we have to carry out the <u>large</u> fine-tuning on $|D_S| + |D_T|$ instances
 - Effectively $2*|D_S|$ instances in training
 - Because we're repeating D_T instances to balance batches



Content

- Cross-Lingual Transfer
- CL Transfer with Massively Multilingual Transformers
- Zero- and Few-Shot Transfer with MMTs
- Multilingual Evaluation

- In the last few years, a lot of new multilingual evaluation datasets and benchmarks in NLP
- Some multilingual datasets (single task)
 - Americas NLI: evaluation dataset for natural language inference (NLI), covering 10 low-resource indigenous <u>languages of the Americas</u>
 - <u>MasakhaNER</u>: evaluation dataset for named entity recognition (NER) covering 10 low-resource <u>African languages</u>
 - <u>TyDiQA</u>: question answering (QA) dataset covering 11 typologically diverse languages
 - XCOPA: causal commonsense reasoning for 11 genealogically, geographically, and typologically diverse languages



- Q: How to select languages for a multilingual dataset/benchmark?
 - Based on what criteria?
- Historically, multilingual evaluations included predominantly large languages with substantial digital footprint
 - These tend to be predominantly Indo-European (IE)
 - We know that transfer, usually from English (which is IE) works best when transferring to other IE languages
- Datasets/benchmarks that include predominantly IE and/or large langs overestimate the general/global multilingual abilities of models

Multilingual Evaluation

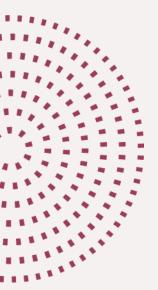
Ponti, E. M., Glavaš, G., Majewska, O., Liu, Q., Vulić, I., & Korhonen, A. (2020). XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 2362-2376).

- Quantifying diversity of language samples in multilingual datasets
- Typological index
 - Based on URIEL typological vectors of languages: 103 binary features
 - Compute entropy for each feature, and then average entropy across features
- Family index
 - Number of distinct language families in the language sample
- Geography index
 - Entropy of the distribution over the 6 global geographic macro-regions

- In the age where NLP tasks has been largely unified, it is common to evaluate models on a <u>collection of tasks</u>
- Multilingual benchmark: a collection of multilingual datasets
 - Not all datasets (need to) cover the same set of languages
- Some multilingual benchmarks (single task)
 - XGLUE: 11 tasks, 19 languages in total
 - XTREME: 9 tasks, 40 languages (from 12 language families)
 - XTREME-R: 10 tasks, 50 languages



- Q: How do we normally create multilingual datasets?
 - Most commonly by translating dev/test portions of English datasets
- 1. Completely manual translation
 - If the original dataset has a lot of culture-specific concepts that don't have a direct translation or don't exist in the target language
 - E.g., in XCOPA: "bowling", "parking meter" ...
- 2. Machine translation + manual post-editing
 - Human annotator fixes the errors of automatic translation
 - Cheaper than manual trans. if the MT model $L_S \rightarrow L_T$ is good enough
- In both cases we need bilingual annotators
 - Difficult to find for low-resource languages



- When we train ML models, we leverage a validation (aka development) dataset D_V for model selection
 - Selecting optimal hyperparameter values, early stopping, etc.
- When we fine-tune neural LMs for CL transfer, the language of the validation dataset plays a huge role
 - Target language performance much better if D_V in L_T
 - If D_V in L_S , we're selecting the model checkpoint that's optimal for the source language (usually EN) performance
- Q: Think of zero-shot CL transfer. What is the problem with having a validation dataset in the target language (i.e., D_V is in L_S)?

- Q: Think of zero-shot CL transfer. What is the problem with having a validation dataset in the target language?
 - Not real zero-shot transfer! Relies on labeled instances in L_T
 - Just not directly for model training, but for model selection
- Most multilingual datasets offer both validation and test (final evaluation) data in $L_{\!\scriptscriptstyle T}$
 - Allows for <u>unfair</u> zero-shot transfer evaluation (labeled data in L_T)
 - Q: What if we did not need D_V in L_T for model selection?
 - We could use those $|D_V|$ in L_T for **training** instead \rightarrow few-shot transfer
 - And few-shot is always better than zero-shot!

Schmidt, F. D., Vulić, I., & Glavaš, G. (2023). <u>Free Lunch: Robust Cross-Lingual Transfer via Model Checkpoint Averaging</u>. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (ACL). *To appear*.

- **Checkpointing**: as we train the model on the training data, we periodically (e.g., every N training steps) store the parameter values
 - This is called a checkpoint (or snapshot) of the model
- **Checkpoint averaging**: the final model is the average of all checkpoints during training (rather than just the last checkpoint)
- Checkpoint averaging in CL transfer (zero-shot and few-shot) leads to more robust training behaviour and removes the need for D_V in L_T

