

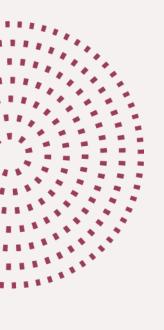
After this lecture, you'll...

- Understand the concept of attention in NNs
- Know the exact building blocks of the Transformer architecture
- Understand the pre-training-fine-tuning paradigm

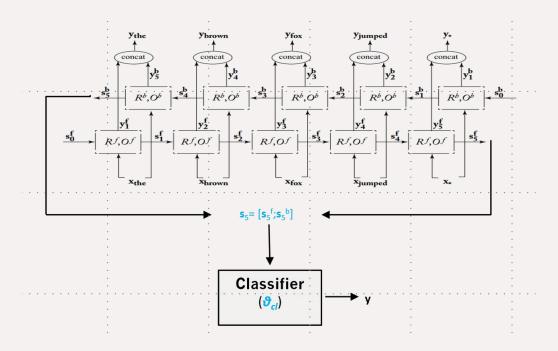
Content

Attention mechanism

- Transformer dissected
 - Positional Embeddings
 - Multi-Head Self-Attention
- Pretraining + fine-tuning



- Before the Transformer was introduced (in 2017/2018), recurrent nets were SotA for language understanding and generation
 - E.g., a bidirectional LSTM for sequence classification tasks



- Before the Transformer was introduced (in 2017, 2018), recurrent nets were SotA for language understanding and generation
 - E.g., RNN-based sequence-to-sequence models

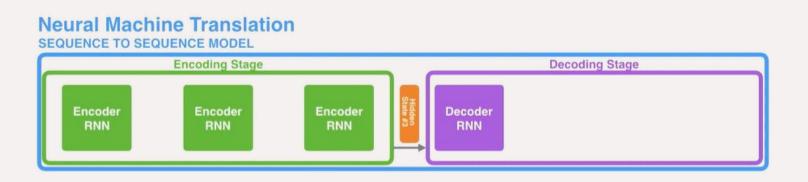
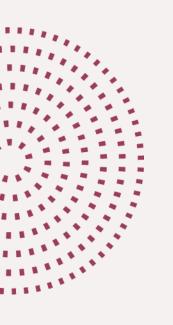
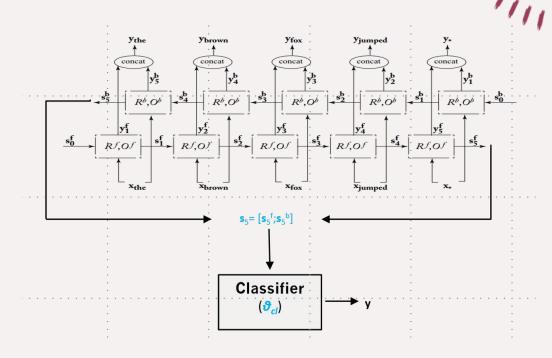


Image from: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/



Origins of Attention

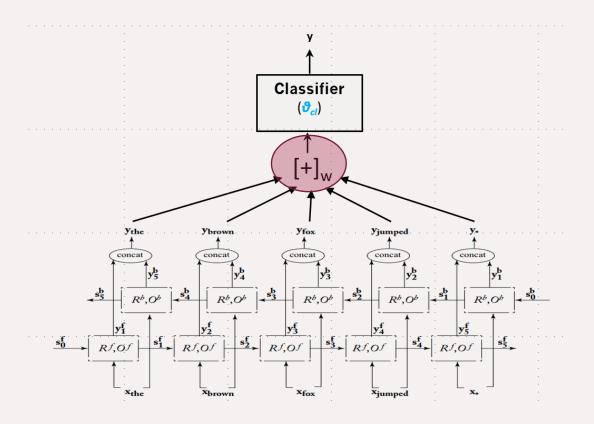
- Problems with RNNs stem from their sequential nature
- Tokens last processed contribute more to the final representation
- Difficult to combine representations of mutually distant tokens (aka <u>long dependencies</u>)
- Tokens not given <u>equal chance</u> to contribute to the sequence representation



Neural Machine Translation SEQUENCE TO SEQUENCE MODEL

Image from: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

- Enter attention: representation of the sequence as a weighted average of token representations
 - With RNNs, token representations are the hidden state of the RNN after processing of the token
 - Weights are produced by a parametrized (i.e., trainable) attention function



- Enter attention: representation of the sequence as a weighted average of token representations
- In sequence-to-sequence (encoder-decoder) for generative tasks
 - At each decoding step, we re-compute the average of the encoded tokens
 - The hidden representation of the decoder is the "query" for the attention mechanism over encoded tokens

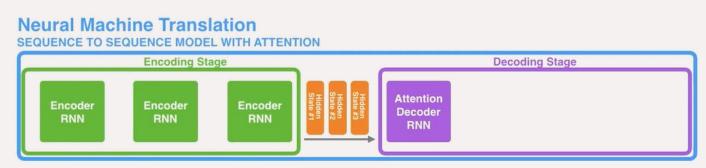
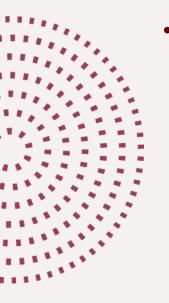


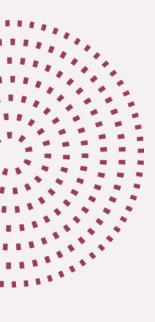
Image from: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/



- Given a set of objects (e.g., tokens in text), the attention mechanism computes a weighted average of value vectors
- The weights are based on the similarity between the respective key vectors of those same objects with the query
- Query vector represent the context with respect to which we want to aggregate object representations

Let t₁, t₂, ..., t_N be a set of tokens over which we're "attending"

- k is the length of key vectors
- v is the length of value vectors
- Let $\mathbf{q} \in \mathbb{R}^q$ be the query vector
 - In most cases, the query vector must be of same length as key vectors of tokens, q = k



- The **attention mechanism** is then defined with by:
 - The scoring function $s(\mathbf{q}, \mathbf{k})$, which produces a (single scalar) score that indicates the compatibility of a key \mathbf{k} with the query \mathbf{q}
 - The output of the attention mechanism is the weighted sum of value vectors, with corresponding scores as weights:

$$\sum_{i=1}^{N} s(\mathbf{q}, \mathbf{k}_i) * \mathbf{v}_i$$

$$\sum_{i=1}^{N} S(\mathbf{q}, \mathbf{k}_i) * \mathbf{v}_i$$

$$s(\mathbf{q}, \mathbf{k}) = \mathbf{v_a} \tanh(\mathbf{W_a}(\mathbf{k} \oplus \mathbf{q}))$$

- k and q may be of different length, ⊕ denotes concatenation
- $\mathbf{W_a} \in \mathbb{R}^{h \times (k+q)}$ and $\mathbf{v_a} \in \mathbb{R}^h$: trainable params of the "attention layer"

$$\sum_{i=1}^{N} s(\mathbf{q}, \mathbf{k}_i) * \mathbf{v}_i$$

- Commonly used attention types used (before Transformer):
- 2. Dot-product attention (non-parametrized scoring function)

$$s(\mathbf{q}, \mathbf{k}) = \mathbf{k}^{\mathsf{T}} \mathbf{q}$$

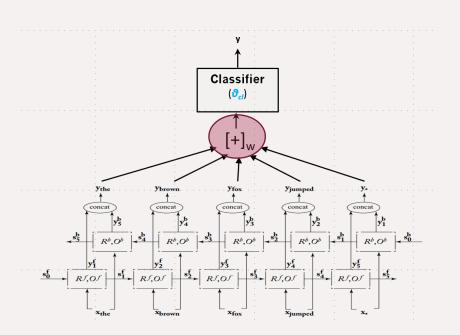
- Raw (unnormalized) score for a key is a simple dot-product with the query
- Raw scores across keys are normalized with softmax:

$$s(\mathbf{q}, \mathbf{k}) \rightarrow \frac{e^{S(\mathbf{q}, \mathbf{k}_{i})}}{\sum_{j=1}^{N} e^{S(\mathbf{q}, \mathbf{k}_{j})}}$$

- Q: But where are keys, values, and queries coming from?
 - For each token we typically have only one vector
 - Token's embedding or RNN's state after processing that token
- Attention is a general mechanism, can be applied in various settings
 - We decide how to obtain keys, values, and queries in concrete use cases
- Use case #1: <u>sequence classification</u> with RNNs
 - Keys and values same vectors, one for hidden state of the RNN at each time step

$$\mathbf{k}_{i} = \mathbf{v}_{i} = \mathbf{s}_{i}^{\text{RNN}}$$

No context: q can be any fixed vector
 (e.g., a vector of 1s), or a trainable vector;



• Attention is a general mechanism, can be applied in various settings

• We decide how to obtain keys, values, and queries in concrete use

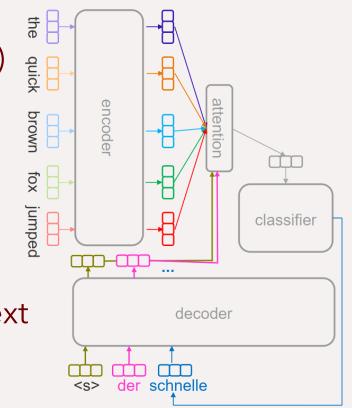
cases and scenarios

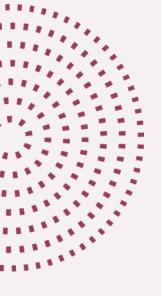
Use case #2: seq-to-seq generation (with RNNs)

 Keys and values the same vectors, one for <u>hidden state of encoder RNN</u> at each time step

$$\mathbf{k}_{i} = \mathbf{v}_{i} = \mathbf{s}_{i}^{\text{Encoder}}$$

- Query q: hidden state of the decoder
 - I.e., context is the representation of the text generated so far





Content

- Attention mechanism
- Transformer dissected
 - Positional Embeddings
 - Multi-Head Self-Attention
- Pretraining + fine-tuning

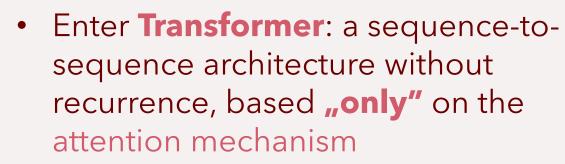
Is Attention All We Need?

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). <u>Attention is all you need</u>. Advances in neural information processing systems (NeurIPS).

- So far, we applied attention over keys/values that come from a recurrent encoder
- RNNs are slow to train
 - "Backpropagation through time"
 - Computation over tokens sequential
- Research question that changed NLP and enabled LLMs:
 - Is recurrence actually necessary?
 - What happens if we just apply attention on top of token embeddings?

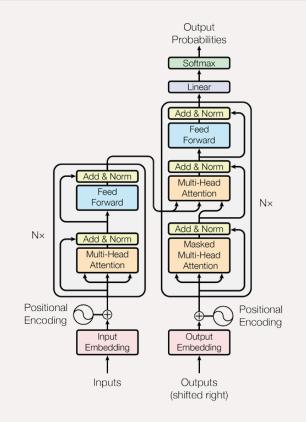
Transformer (Encoder-Decoder)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). <u>Attention is all you need</u>. Advances in neural information processing systems (NeurIPS).



Is attention is <u>all</u> we need?

Attention is all you need, except residual connections, layer norm, position embeddings, extra feedforward layers, multiple heads, and masking future words

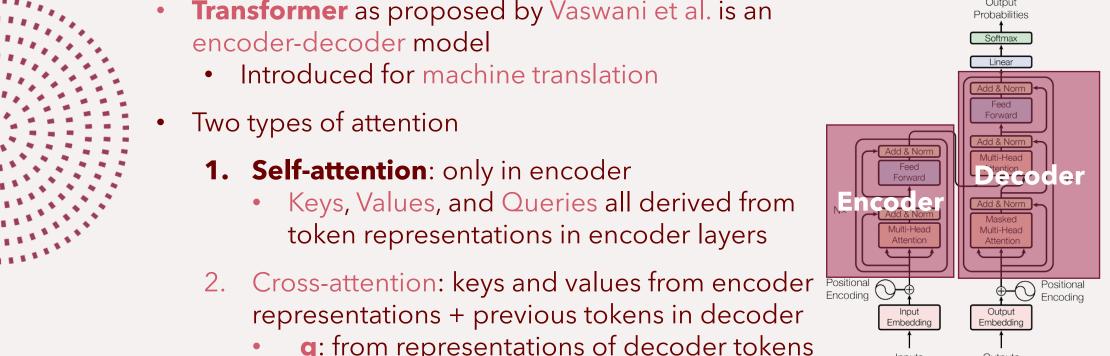


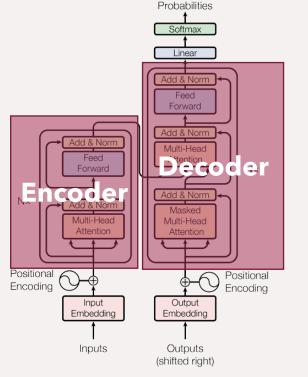
Transformer (Encoder-Decoder)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems (NeurIPS).

Transformer as proposed by Vaswani et al. is an encoder-decoder model

q: from representations of decoder tokens





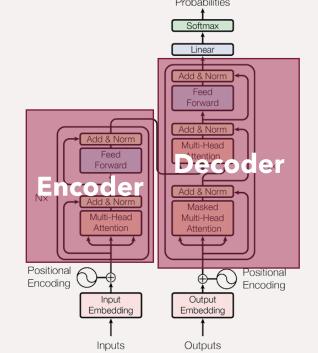
Transformer (Encoder-Decoder)

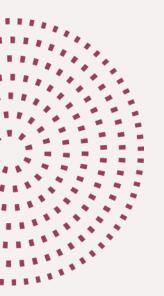
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). <u>Attention is all you need</u>. Advances in neural information processing systems (NeurIPS).

Todav

L9: NMT

- Transformer as proposed by Vaswani et al. is an encoder-decoder model
 - Introduced for machine translation
- Two types of attention
 - **1. Self-attention**: only in encoder
 - Keys, Values, and Queries all derived from token representations in encoder layers
 - 2. Cross-attention: keys & values from enc. representations + previous tokens in decoder
 - **q**: from representations of decoder tokens





Transformer

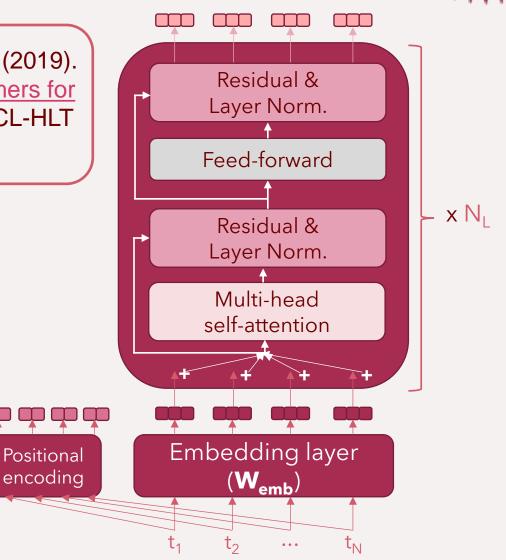
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). <u>BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding</u>. In Proceedings of NAACL-HLT (pp. 4171-4186).

- Transformer as proposed by Vaswani et al. is an encoder-decoder model
- Most NLP tasks are not generation tasks*
 - * Most recently, with LLMs, many non-generation tasks have been successfully recast as generation tasks (**L11**: Prompting & LLMs)
- Most models used today are single-stack transformers
 - Encoder models (trained with masked LM-ing)
 - Decoder models (trained with autoregressive LM-ing)
- Devlin et al.'s **BERT** uses the encoder-only Transformer
 - This is the Transformer that we'll primarily dissect in this lecture

Transformer

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-HLT (pp. 4171-4186).

- Embedding layer
 - (sub)word embeddings
 - Positional embeddings
- N_L identical Transformer layers
 - Multi-head self-attention sublayer
 - Residual connection
 - Layer normalization
 - Feed-forward sublayer

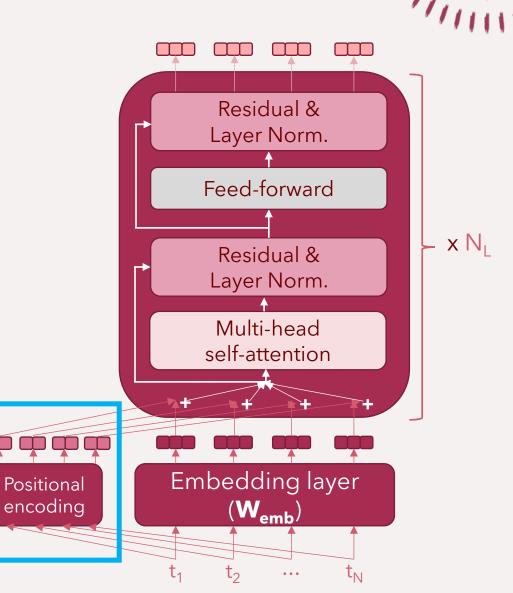


Content

- Attention mechanism
- Transformer dissected
 - Positional Embeddings
 - Multi-Head Self-Attention
- Pretraining + fine-tuning

Positional Embeddings

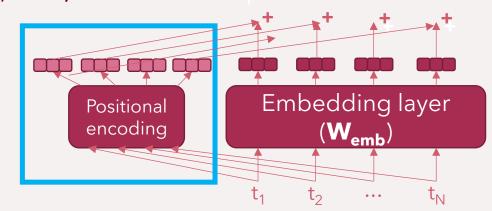
- Recurrent networks implicitly retain the information about the word order
- At the core of the Transformer encoder is the so-called multi-head self-attention
 - But attention is just an aggregation over a set of vectors
 - Retains no order information
- <u>Fix</u>: **positional embeddings** that explicitly encode token positions in the sequence

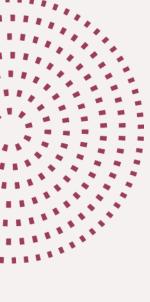


Positional Embeddings

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). <u>Attention is all you need</u>. Advances in neural information processing systems (NeurIPS).

- Positional embeddings added to (sub)word embeddings \rightarrow same dim. d
- Maximal sequence length: N
- Position in the sequence: pos, in {0, 1, 2, ..., N-1}
- For each position/index in the pos. embedding, a different function generating the score
 - Indices: 2i (or 2i+1)
 for 0 ≤ i < d/2



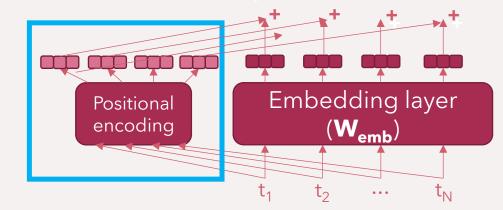


Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). <u>Attention is all you need</u>. Advances in neural information processing systems (NeurIPS).

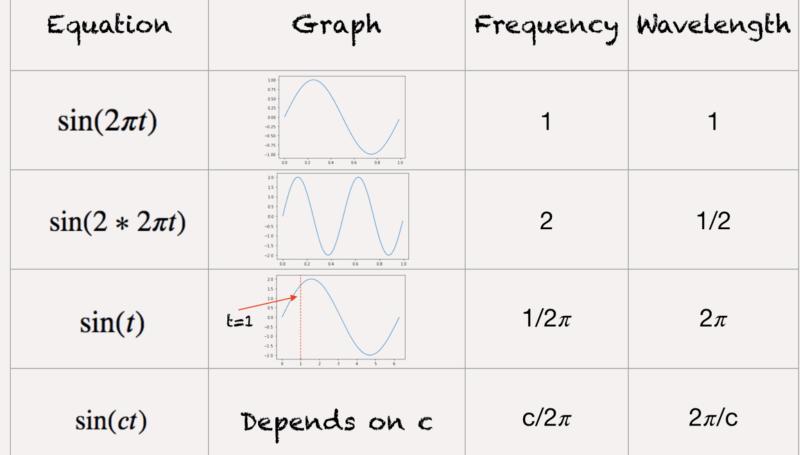
- Vaswani et al. set n = 10000
- The value of the positional embedding for token position pos and embedding index 2i (or 2i+1) is given as follows:

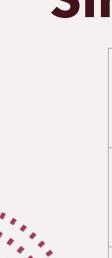
$$PE(pos, 2i) = sin(\frac{pos}{n^{2i/d}})$$

$$PE(pos, 2i+1) = cos(\frac{pos}{n^{2i/d}})$$









Sines and Cosines?!

- Q: Why sines and cosines?!
 - Cyclical, encode well relative values in the argument range $[0, 2\pi]$
 - · We can make the range of the repetition (wavelength) arbitrarily long
 - Values always in the [-1, 1] range

PE(pos, 2i) =
$$\sin(\frac{pos}{n^{2i/d}})$$
; PE(pos, 2i+1) = $\cos(\frac{pos}{n^{2i/d}})$

- $c = 1/n^{2i/d}$; wavelength $\rightarrow 2\pi/c = 2\pi * n^{2i/d}$
 - The bigger the index i, the bigger the wavelength (wider cycle)
- For i = 0 (ind. 0 and 1) \rightarrow PE(pos, 0) = $\sin(pos)$; PE(pos, 1) = $\cos(pos)$
- For i = 1 (ind. 2 and 3) \rightarrow PE(pos, 2) = $\sin(\frac{pos}{n^{2/d}})$; PE(pos, 3) = $\cos(\frac{pos}{n^{2/d}})$

• • •

• For i = d/2 (index d, assume d even) \rightarrow PE(pos, d) = $\sin(\frac{pos}{n})$

Sines and Cosines?!

- For different indices of the positional embedding vectors, position-dependent values are computed with sin/cos of different wavelengths
 - From wavelength of 2π (for i = 0) to wavelength of n * 2π (for i = d/2)
 - Store pos. embeddings in a matrix $\mathbf{W}_{PF} \in \mathbb{R}^{N \times d}$
 - Each row corresponds to one position (from 1 to N)
 - We can visualize \mathbf{W}_{PE} example with d = 128, N = 50, and n = 10000

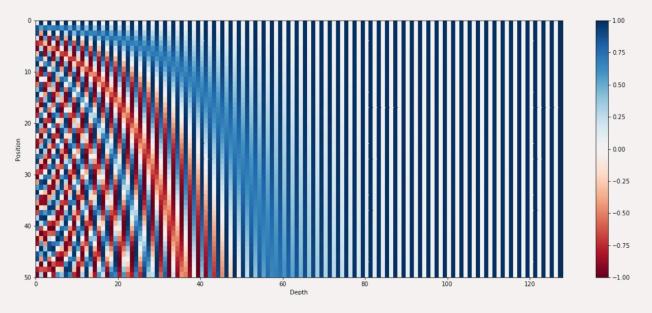
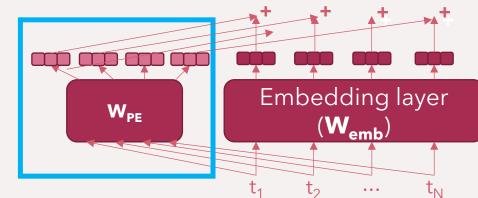


Image from: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

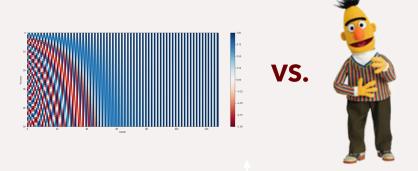
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). <u>BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding</u>. In Proceedings of NAACL-HLT (pp. 4171-4186).

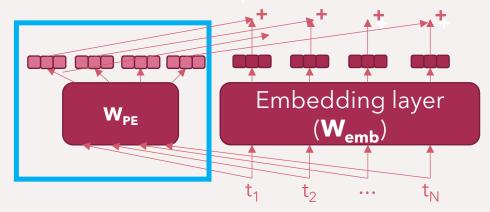
- In BERT, Devlin et al. resort to fully trainable positional embeddings
- I.e., $\mathbf{W}_{PE} \in \mathbb{R}^{N \times d}$ another parameter matrix, along with $\mathbf{W}_{emb} \in \mathbb{R}^{|V| \times d}$
- W_{PE} optimized with all other parameters of the whole neural LM



Wang, B., Shang, L., Lioma, C., Jiang, X., Yang, H., Liu, Q., & Simonsen, J. G. (2021). On Position Embeddings in BERT. In International Conference on Learning Representations (ICLR).

- Fully trainable PEs or
- Fixed relative PEs?
- The answer is not straightforward, seems to <u>depend on the type of task</u>
- Sequence classification: trainable PEs
- Token classification / span extraction: fixed relative PEs





Content

- Attention mechanism
- Transformer dissected
 - Positional Embeddings
 - Multi-Head Self-Attention
- Pretraining + fine-tuning

Multi-Head Attention

• **Self-attention** in Transformer: each token is "attending" over all tokens (including itself)

Each token t_i (i = 1, ..., N) has an associated

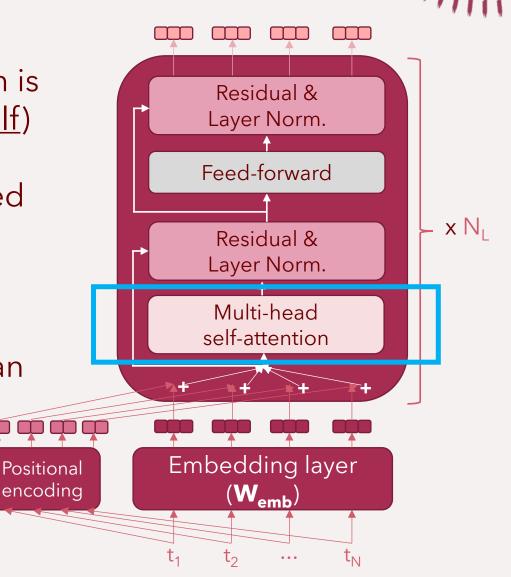
Key vector k_i

Value vector v_i

Query vector q_i

One <u>self-attention mechanism</u> is called an attention head

 Multi-head attention: multiple self-attention mechanisms



- **Self-attention**: each token is "attending" over <u>all</u> tokens
- Each token t_i (i = 1, ..., N) has an associated
 - Key vector \mathbf{k}_i , value vector \mathbf{v}_i , and query vector \mathbf{q}_i
- Let \mathbf{x}_i be the embedding of t_i
 - I.e., sum of subword emb. and PE
 - Q: how do we obtain three different vectors ($\mathbf{k}_i, \mathbf{v}_i$, and \mathbf{q}_i) from \mathbf{x}_i ?
 - Introduce $\underline{\text{trainable parameters}}$ that project \mathbf{x}_i into different vectors
- Stack embeddings of tokens $(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)$ into a matrix $\mathbf{X} \in \mathbb{R}^{N \times d}$
 - ullet In later transformer layers, old X is not the matrix of embeddings from the embedding layer but is the the output of the previous layer

- Self-attention: Introduce <u>trainable</u>
 <u>parameters</u> that project X into matrices
 K, V, and Q
- Query matrix: $\mathbf{Q} = \mathbf{X} \mathbf{W}^{\mathbf{Q}}, \mathbf{W}^{\mathbf{Q}} \in \mathbb{R}^{d \times k}$
- Key matrix: $\mathbf{K} = \mathbf{X} \mathbf{W}^{\mathbf{K}}, \mathbf{W}^{\mathbf{K}} \in \mathbb{R}^{d \times k}$
- Value matrix: $\mathbf{V} = \mathbf{X} \mathbf{W}^{\mathbf{V}}, \mathbf{W}^{\mathbf{V}} \in \mathbb{R}^{d \times \mathbf{V}}$
- $\mathbf{Q} \in \mathbb{R}^{N \times k}$, $\mathbf{K} \in \mathbb{R}^{N \times k}$, and $\mathbf{V} \in \mathbb{R}^{N \times v}$
 - Query, key, and value vectors are not necessarily of same length d as input emb.
 - Q and K are of the same dimensionality

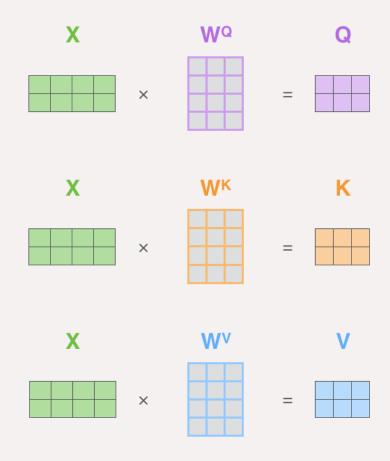


Image from: https://jalammar.github.io/illustrated-transformer/

Self-Attention (Attention Head)

- Query matrix: $\mathbf{Q} = \mathbf{X} \mathbf{W}^{\mathbf{Q}}, \mathbf{W}^{\mathbf{Q}} \in \mathbb{R}^{d \times k}$
- Key matrix: $\mathbf{K} = \mathbf{X} \mathbf{W}^{\mathbf{K}}, \mathbf{W}^{\mathbf{K}} \in \mathbb{R}^{d \times k}$
- Value matrix: $\mathbf{V} = \mathbf{X} \mathbf{W}^{\mathbf{V}}, \mathbf{W}^{\mathbf{V}} \in \mathbb{R}^{d \times \mathbf{V}}$
- Output of the Transformer's self-attention is computed as:

$$\mathbf{Z} = \operatorname{softmax}(\frac{\mathbf{Q}\mathbf{K}^{\mathrm{T}}}{\sqrt{k}})\mathbf{V}; \quad \mathbf{Z} \in \mathbb{R}^{N \times V}$$

- The matrix $\mathbf{Q}\mathbf{K}^T \in \mathbb{R}^{N \times N}$ is called an attention matrix
 - Often used for interpretability, how much each token attends over each other token
- softmax is applied row-wise on $\frac{\mathbf{Q}\mathbf{K}^{\mathrm{T}}}{\sqrt{k}}$
- Q: Why normalization with \sqrt{k} ?

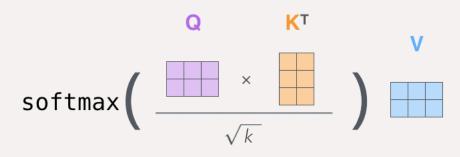


Image from: https://jalammar.github.io/illustrated-transformer/

Multi-Head Attention

- Simply multiple attention heads, independent of each other
 - Just operate on the same input X
 - H attention heads

1st attention head:

•
$$\mathbf{Q}_1 = \mathbf{X} \mathbf{W}_1^{\mathbf{Q}}; \mathbf{K}_1 = \mathbf{X} \mathbf{W}_1^{\mathbf{K}}; \mathbf{V}_1 = \mathbf{X} \mathbf{W}_1^{\mathbf{V}};$$

•
$$\mathbf{Z}_1 = \operatorname{softmax}(\frac{\mathbf{Q}_1 \mathbf{K}_1^T}{\sqrt{k}}) \mathbf{V}_1$$

• • •

H-th attention head

•
$$\mathbf{Q}_{H} = \mathbf{X} \mathbf{W}_{H}^{\mathbf{Q}}; \mathbf{K}_{i} = \mathbf{X} \mathbf{W}_{H}^{\mathbf{K}}; \mathbf{V}_{i} = \mathbf{X} \mathbf{W}_{H}^{\mathbf{V}};$$

•
$$\mathbf{Z}_{H} = \operatorname{softmax}(\frac{\mathbf{Q}_{H}\mathbf{K}_{H}^{\mathrm{T}}}{\sqrt{k}})\mathbf{V}_{H}$$

Multi-Head Attention

- Simply multiple attention heads, independent of each other
 - Just operate on the same input X
 - H attention heads
- Output of the multi-head attention layer is then a downprojection of the concatenation of the outputs of each head (i.e., each self-attention)

$$mh-att(\mathbf{X}\mid\mathbf{\theta}_{MHA})=(\mathbf{Z}_1\oplus\mathbf{Z}_2\oplus\cdots\oplus\mathbf{Z}_{H-1}\oplus\mathbf{Z}_H)\mathbf{W}^{\mathbf{o}}$$

- Concatenation ($\mathbf{Z}_1 \oplus \mathbf{Z}_2 \oplus \cdots \oplus \mathbf{Z}_{H-1} \oplus \mathbf{Z}_H$) has dimensions N x (v·H)
 - Desdiderata (because of multiple identical layers): output of multi-head attention has the <u>same dimensionality as input</u>: mh-att(\mathbf{X}) $\in \mathbb{R}^{N \times d}$
 - This mandates that the parameter matrix W^o has dimensions (v·H) x d
- All parameters of one MHA (sub)layer: $\theta_{MHA} = \{W_1^Q, W_1^K, W_1^V, ..., W_H^Q, W_H^K, W_H^V, W_I^Q\}$

Multi-Head Attention - Visual Summary

• In the example below: 8 attention heads (indexed 0 to 7)

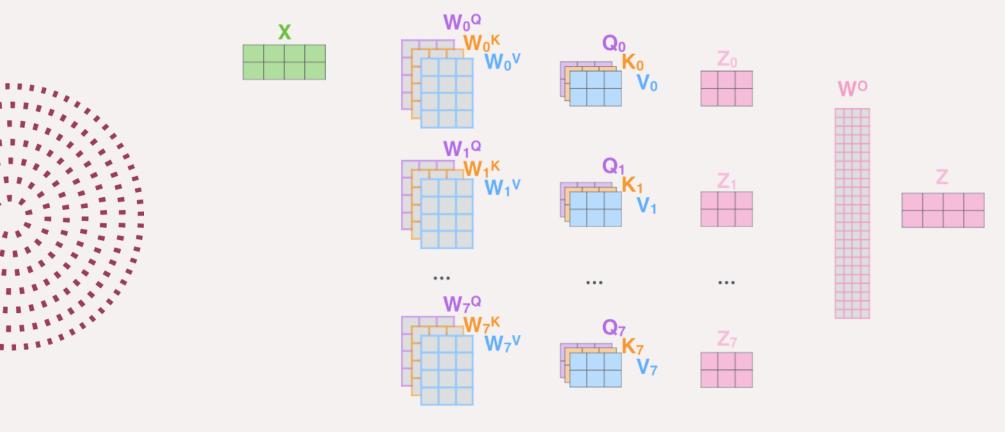


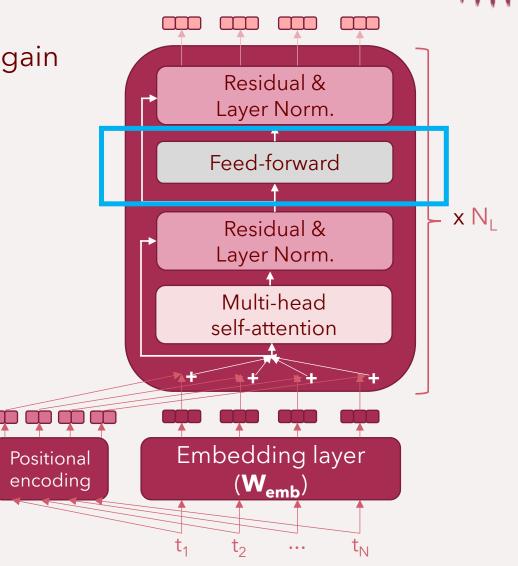
Image from: https://jalammar.github.io/illustrated-transformer/

Feed-Forward Layer

- Output of the multi-head attention layer is again a matrix of dimensions N x d
 - I.e., one d-dim. vector for each token
- Each token vector **x** is then independently transformed through the following FFN:

$$FFN(\mathbf{x} \mid \mathbf{\theta}_{ffn}) = ReLU(\mathbf{x}\mathbf{W}_1 + \mathbf{b}_1)\mathbf{W}_2 + \mathbf{b}_2$$

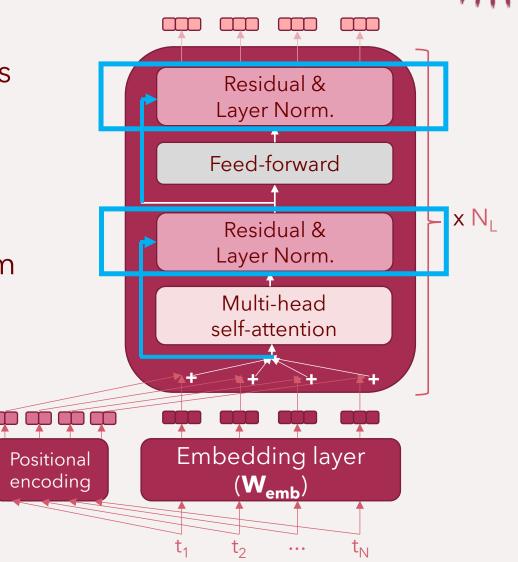
- ReLU(x) = max(0, x)
 - Common activation function
- Trainable parameters: $\theta_{ffn} = \{ \mathbf{W}_1, \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2 \}$
 - $\mathbf{W}_1 \in \mathbb{R}^{d \times f}, \mathbf{b}_1 \in \mathbb{R}^f$
 - $\mathbf{W}_2 \in \mathbb{R}^{f \times d}, \mathbf{b}_1 \in \mathbb{R}^d$
 - Vaswani et al. set f = 4d



Residuals

- Transformer layer has two main sublayers
 - Multi-head attention layer
 - Feed-forward layer
- Both those layers (i.e., param. functions)
 have a residual connection around them
 - Residual (around a layer) layer input added to its output

 $res(layer, \mathbf{X}) = \mathbf{X} + layer(\mathbf{X} \mid \mathbf{\theta}_{layer})$

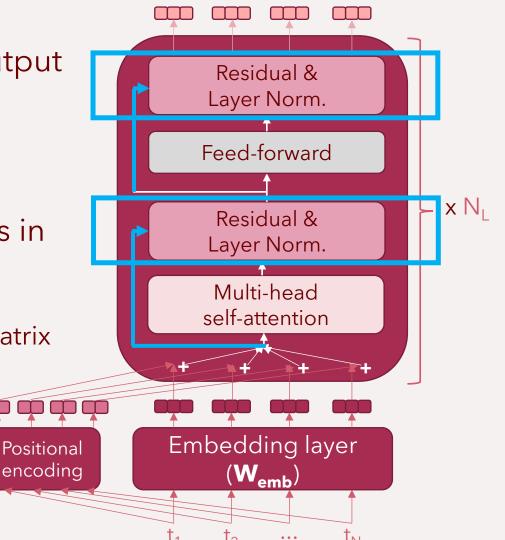


Layer Normalization

 After the residual summation, the final output is subdued to layer normalization

$$layer_norm(\mathbf{X'} = \mathbf{X} + layer(\mathbf{X} \mid \mathbf{\theta}_{layer}))$$

- Layer normalization normalizes the values in each of the row-vectors **x** in the input
 - Input is a matrix of dimensions N x d
 - Let $\mathbf{x} \in \mathbb{R}^d$ be any of the row-vectors of that matrix
- We z-normalize values in $\mathbf{x} = [x_1, x_2, ..., x_d]$
 - $x_i \rightarrow \frac{X_i \mu}{\sigma}$
 - μ as mean and σ as st. deviation on \mathbf{x}

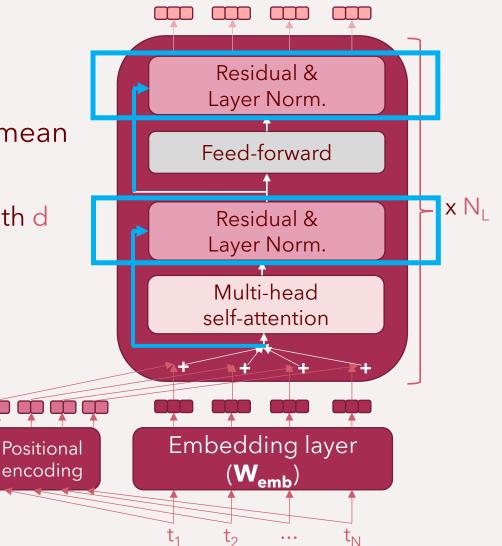


Layer Normalization

- We <u>z-normalize</u> (or <u>standardize</u>) values in x
 - $x_i \rightarrow \frac{x_i \mu}{\sigma}$
 - This centers the values in x around the mean of 0, with the st. deviation of 1
- $\mathbf{X''}$ = matrix with N <u>z-normalized</u> vectors of length d
- The final layer normalized output is given with

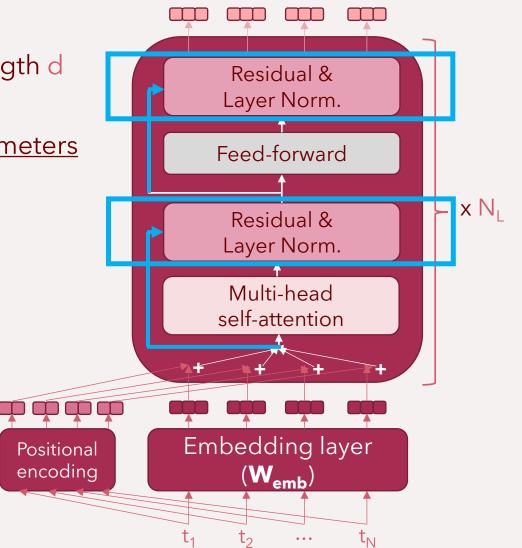
$$\gamma * X'' + \beta$$

- Where γ and $\beta \in \mathbb{R}^d$ are trainable parameters of layer attention
 - γ element-wise multiplies each row of X"
 - β is then added to each of the rows



Layer Normalization

- X" = matrix with N <u>z-normalized</u> vectors of length d
- The final layer normalized output is given with
- $\gamma * X'' + \beta$, with γ and $\beta \in \mathbb{R}^d$ are <u>trainable parameters</u> of the layer normalization "layer"
 - γ element-wise multiplies each row of X"
 - β is then added to each of the rows
- Layer-normalization stabilizes training
 - All instances across all mini-batches normalized the same way
 - Q: But why do we need γ and β ?
 - Normalization to N(0, 1) may be too restrictive, some layers may need "more expressive" distributions

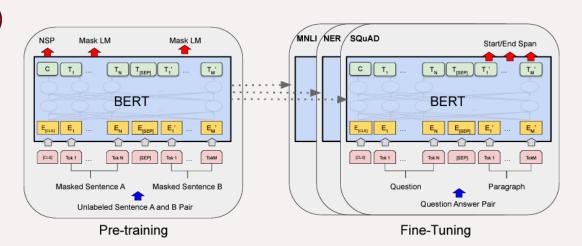


Content

- Attention mechanism
- Transformer dissected
 - Positional Embeddings
 - Multi-Head Self-Attention
- Pretraining + fine-tuning

- Pretrain fine-tune paradigm: the idea that we can
 - (1) pretrain the parameters of the encoder θ_{ENC} via some <u>self-supervised</u> training objective on large corpus and then
 - (2) further update (i.e., fine-tune) encoder's parameters θ_{ENC} while training for a concrete task in this second step, we add task-specific classifier/regressor (head) on top of the encoder (body)
- **BERT**: pretraining—fine-tuning with a Transformer as the encoder
 - BERT <u>not a first attempt</u> at pretraining an encoder
 - But first where the encoder is a Transformer
 - <u>ULMFit</u> (Howard & Ruder, 2018), <u>ELMo</u> (Peters et al., 2018)

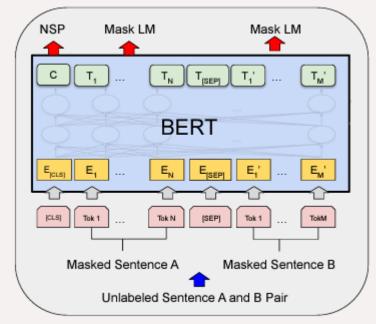
- Pretrain fine-tune paradigm
 - (1) Pretrain (self-supervised objective)
 - (2) Fine-tune (on annotated task data)
- Q: What is a suitable self-supervised objective for pretraining?



Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). <u>BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding</u>. In Proceedings of NAACL-HLT (pp. 4171-4186).

- Q: What is a suitable self-supervised objective for pretraining?
- Devlin et al. use two pretraining objectives
 - Masked LM-ing (MLM)
 - 2. Next Sentence Prediction (NSP)
- Special input: pairs of sentences with special (artificial) tokens

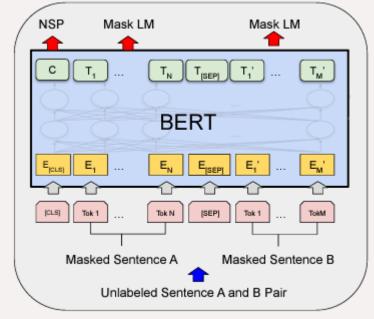
[CLS]
$$t_1^1 t_2^1 \dots t_N^1$$
 [SEP] $t_1^2 t_2^2 \dots t_M^2$ [SEP]



Pre-training

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). <u>BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding</u>. In Proceedings of NAACL-HLT (pp. 4171-4186).

- Input: [CLS] $t_1^1 t_2^1 ... t_N^1 [SEP] t_1^2 t_2^2 ... t_M^2 [SEP]$
 - [CLS] sequence start token
 - [SEP] separator token
- The two sentences may or may not be adjacent in the training corpus
- Some percentage of (real) tokens masked out
 replaced with the [MASK] token



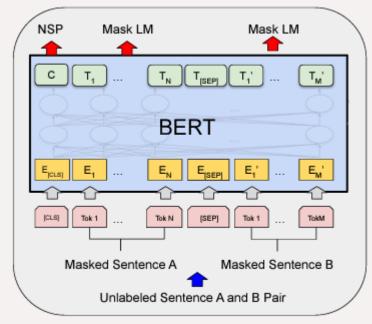
Pre-training

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). <u>BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding</u>. In Proceedings of NAACL-HLT (pp. 4171-4186).

- BERT's pretraining objectives
 - Masked LM-ing (MLM)
 - 2. Next Sentence Prediction (NSP)
- MLM: predict the original token for each masked position (in either sentence)
 - Standard LM-ing classification head + negative log-likelihood loss
- $\mathbf{x} \in \mathbb{R}^d$ = Transformer's output vector for some masked token [MASK]

$$\hat{\mathbf{y}} = \operatorname{softmax}(\mathbf{x} \mathbf{W}_{lm}), \mathbf{W}_{lm} \in \mathbb{R}^{d \times |V|}$$

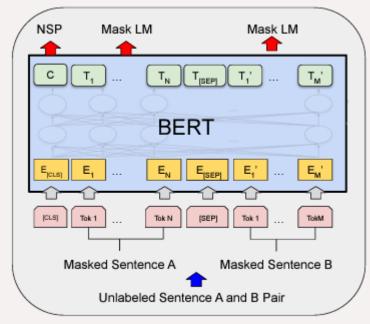
 $L(\mathbf{x}, \mathbf{y} | \mathbf{\theta}_{enc}, \mathbf{W}_{lm}) = -\sum_{i=1}^{|V|} y_i \ln(\hat{y}_i)$



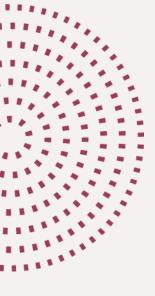
Pre-training

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). <u>BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding</u>. In Proceedings of NAACL-HLT (pp. 4171-4186).

- BERT's pretraining objectives
 - Masked LM-ing (MLM)
 - 2. Next Sentence Prediction (NSP)
- NSP: Predict if the two sentences were adjacent in the corpus or not
 - Standard binary classification head + binary cross-entropy loss
 - Q: why NSP? For text-pair tasks (QA, NLI)
- <u>RoBERTa</u>: same Transformer pretrained on more data and only with MLM - better performance

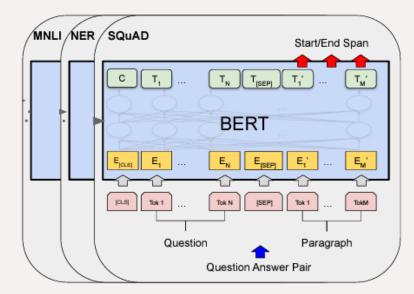


Pre-training



Fine-Tuning Transformers

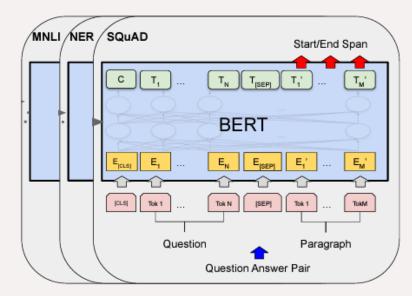
- Pretrain fine-tune paradigm
 - (1) Pretrain (self-supervised objective)
 - (2) Fine-tune (on annotated task data)
- Q: How do we fine-tune BERT's Transformer for a concrete task?



Fine-Tuning

Fine-Tuning Transformers

- **Sequence classification** (or regression) denotes tasks in which a label (class or score) is to be assigned to the whole input
 - $\mathbf{x}_{CLS} \in \mathbb{R}^d$ the representation of the sequence start token [CLS] output of the last Transformer layer
 - x_{CLS} represents the encoding of the whole sequence, and goes into the classifier



Fine-Tuning

Fine-Tuning Transformers

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). <u>BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding</u>. In Proceedings of NAACL-HLT (pp. 4171-4186).

- **Token classification** (or regression) denotes tasks in which a label (class or score) is to be assigned to the whole input
 - $x \in \mathbb{R}^d$ the representation of a token (to be classified), output of the Transformer layer
 - **x** is the contextualized embedding of the token, and goes into the classifier

$$\hat{\mathbf{y}} = classifier(\mathbf{x}|\mathbf{\theta_{cl}})$$

• Q: what if we're classifying word-level tokens (but have a subword tokenizer)?

