o

= e /
@@@@ L J_.;, ommons Attri ' ommercial-Sh 0 International
EV MC ZRA A "'.‘&)
» \' |

&l / 1
=T e .';"

-

=S
‘i

3. Trai

iq
r
“
3 ‘!

Prof. Dr. Gor i 2
ra A. e.\\ > !

Al o
> 'ﬁ‘ 5 7 N v,
ag%}‘ex’aq;de?‘h/ﬁkhalcﬁlk ‘

i,

After this lecture, you'll...

Understand how neural LMs unify tackling of various NLP tasks
Know the common building blocks of neural LMs
Understand how we train deep NNs (i.e., optimize their parameters)

Know what ,dropout” is

Content

Uniformity of NLP with Neural LMs

e Training Neural LMs
» Gradient Descent & Backpropagation

-+ Adaptive Optimization
 Momentum, AdaGrad, RMSProp, Adam

* Dropout

TR

Recap: (Supervised) Machine Learning 7,/

(Supervised) machine learning always has three components:

e, 1. Amodel h(x|8): defines how the output is computed from input x

In deep learning models are highly parametrized compositions of
wele) non-linear functions (each individual function is a ,layer”)
* 0-model's parameters

TR

“
—_—
‘Q ’g ~Q x
*

. 1
Xy >

h(x18) F——

xﬁ'

Neural Language Modeling

— Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

—| Language Model. Journal of Machine Learning Research, 3, 1137-1155.

ith output = P{w; = i| context)

s ¢ softmax
* Ceee X aee)
,

A
s @ ’ ! most | computation here A

I i
I 1
1 tanh I
1 1
\ i

- * Input: concatenation of embeddings '
I of contextwords

S ’s:’: X = vm_n+1 &P ...Vm_2 &P Vm_1
ot « xisof length (n-1)d

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

f - «: \'/
-ZZ7\
AL
I
Neural Language Modeling 1011
M
— Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic
—| Language Model. Journal of Machine Learning Research, 3, 1137-1155.
. i-th output = F{wy = i| context)
e, y =W, tanh(W,x + b,) + W3x + b,
Yo, . softmax

Ny L4 ., Ceee e eee)

l::.',:*:'. -+ lLayer #3: parallel linear up-projection of x into '

e, %% %= avector of length |V| (vocabulary size)

Io-‘:::::: ° x(3)=w3x

e srr: o Thiswe will call residual connection”

ll“g~ s*: :

ll““"~ o ° W3E R|V|X(ﬂ-7)d

st ;"0~

. * Finally, ¥ = x(M + x(2) + x@3) Vet k. Vm2 K Vma1 A, lookupinto the

' embedding matrix
« Vector of |V| scores, one for each vocab. word W
* These unnormalized scores are called logits W W, W

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

f - \l,
— A — ’] .y
<27 N
> 7, 1IN
Neural Language Modeling an
Hi
— Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic
—| Language Model. Journal of Machine Learning Research, 3, 1137-1155.
90, y =W, tanh(W,x + b,) + Wyx + b,
1%+ §€RMis avector of logits
"; 2I=-: « ButweneedP(w|w,w, ,)foreach
PR R word w from the vocabulary V
'_',"":s"."j * Need to convert y into a probability
S distribution
e - Softmax function: Vior] . lookup into the
eyi embedding matrix
yi 2 vl V W
Zj=1e) Win-1

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LMs

All neural LMs have the same three main

components
1. Embedding layer (of the model)
Embedding matrix contains

embeddings for all terms from vocabulary V

A S S
Embedding layer (W,,,,;,)

Input text is tokenized into tokens 7, ...,

Embedding layer is simply a lookup into
, fetches embeddings t,, t,, ..., T T T T

talk on mod ##els

Neural LMs

All neural LMs have the same three main
components

2. Encoder (of the model)

Conceptually: just a

Reality: very and
parametrized function

of smaller (typically non-
linear) parametrized functions, called

Layer N (By)
A

A
Layer 2 (0,)
A

Layer 1 (0,)

Embedding layer (W,,,,;,)

[.

talk on mod ##els

Neural LMs

All neural LMs have the same three main
components

2. Encoder (of the model)
tN N, .. tN=enc(t t, ... t |0
Encoder: a composition of layer functions

enc)

enc(t, t, .. t[0,.)
= Ia_yN(; g ooop | GN)
= lay(lay .4 ’ Ry | Oy.1) | Oy)
= layy(layp.,(...(lay, (T, t, ..., T 07)...] Oy.1) | OF)

Encoder :0,..=10,0,,...,0,_,,0,}

[

Layer N ()
A

A
Layer 2 (0,)
A

Layer 1(0,)

Embedding layer (W,,,,;,)

[.

talk on mod ##els

Neural LMs

All neural LMs have the same three main
components

2. Encoder (of the model)

t N, N, L N = laylayy (L (ay, (), 6, oo £ 05).. B.) | B))

In most modern neural LMs, layers are identical
Same parametrized function, = lay
But each layer has its own set of parameters!

Parameters, in principle, across layers
Encoder :0,,.=1{0,0,,...,0,_,,0,}

Each layer itself is again a composition of parametrized
functions, which we'd commonly call

Layer N ()
A

A
Layer 2 (0,)
A

Layer 1(0,)

s s

R S S
Embedding layer (W,,,,;,)

[.

talk on mod ##els

Neural LMs

All neural LMs have the same three main
components

of the model)

Its architecture depends on the for
which we're training the neural LM model

3. Classifier (or regressor;

Typically has two sub-components
Pooling layer (or pooler) produces an aggregate
representation of the input
Commonly a (e.g., average)
x = agg(t,N, N, ..., tN)

In token-level tasks, there's typically

y-T-

Classifier/regressor
A

Pooler

I

[

Layer N ()
A

A
Layer 2 (0,)
A

Layer 1(0,)

Embedding layer (W,,,,;,)

[.

talk on mod ##els

Neural LMs

All neural LMs have the same three main components

of the model)

Its architecture depends on the for
which we're training the neural LM model

3. Classifier (or regressor;

Typically has two sub-components

Classification/regression model
We usually don't need many parameters in the classifier.
: Why?
A single-hidden-layer feed-forward neural network
y = classifier(x | 0) = W, tanh(W,x + b,)

Classifier’s :0,={W,, b;, W,}

= number of classes (in regression tasks,), W, € Rhx

y-T-

Classifier/regressor (0)
A

Pooler

T

Layer N (By)
A

A
Layer 2 (0,)
A

Layer 1(0,)

Embedding layer (W,,,,;,)

[.

talk on mod ##els

f : :‘ \'/
-2 /v
= 7 1
Y ® ® ,/ /,I
Recap: (Supervised) Machine Learning 7,,/!"!
(Supervised) machine learning always has three components:
1. (Neural LM) Model
« Embedding layer (feet) + Encoder (body) + Classifier (head)
* All model's parameters:
'.::.":‘:"-“:‘E 0= {Wemb ! Oenc ! Gcl }
2. An objective function
* Depends on the nature of the classification/regression task

3. Optimization algorithm

* End-to-end training/optimization: we optimize all parameters 0
during one (the same) training/optimization procedure

Uniforming NLP with Neural LMs s

* (One of the) problem(s) of traditional NLP
* Different model for each task
* Task-specific features precomputed from the symbolic text input

.+ Neural LMs make NLP much more uniform
« Every NLP task benefits from semantic representations of input
(embedding layer)

TR

e « Every NLP task benefits from contextualization of token

embeddings against each other (encoder)

* Embedding layer & encoder: the same, regardless what the task is
« Classifier: depends on the task-type (but not concrete task itself)

Uniform NLP with Neural LMs

* The vast majority of NLP tasks fall into one of three categories
e Sequence classification
« Token classsification
* Text generation

* Notable exceptions (need task-specific heads)
* Syntactic parsing

o o~ e Coreference resolution

Sequence classification g

TR

Sequence classification (or regression) denotes tasks in which a label (class or
score) is to be assigned to the whole input text

Examples:

Classifying product reviews for sentiment
Topical classification of news stories
Predicting semantic similarity for a pair of sentences/texts

Natural language inference: predict if one sentence is logically entailed by the
other sentence

We pool the encoded token representations and feed the aggregation into the
classifier/regressor

Averaging is the most commonly used pooling function

x =agg(t;N, t.N, ... tN) y = classifier(x|0)

1T
T Yi=1t"

Token classification 7, 1A

« Token-level classification (or regression), also known as sequence labeling,
denotes tasks in which a label (class or score) is to be assigned to each input token

« Examples:

e, » Part-of-speech tagging

LI « Named entity recognition VT1 yT2 3;3 Vs YTS
PR * Any of the other IE tasks where we need to extract !
.'-i":':“_"- o the span of tokens that represent a concept instance [classifier / regressor]
::‘:c',{.:.:; « No pooling, the encoded representation of each token D%D N N N EI%D
EAIANON is directly fed to the classifier ! ! 1

|t “.“" ~ s : encoder

R y; = classifier(tN|0,), i € {1, ..., T} [1

the quick brown fox jumped

Generation tasks

- Text generation denotes tasks in which the model (neural LM)
is to generate text starting from some given/preceding context

* Example tasks:

NG, Text summarization

TENENS Machine translation

el e - Data-to-text generation

iyt « Dialogue (,Conversational Al”)

Traditional neural generation:

(N o 0 & o .
. .":.‘ RN * What we called ,encoder” in generic neural LM, now
pan?t ¢ '~ 17}
st becomes a ,decoder
e . .
e « Pooling across the representations of the context and

previously generated tokens

padwnl xo0} umoiq >oinb a8y

ob oo oo

<s> der schrnelle

L4
| B N '] » " .
"1y, ’2,% <+ Modern neural generation:
| B L p
. ::0,'3 *,% + Powerful neural LMs: we don't really ~
*
e, fe e L need a separate encoder of the context -
LSRR I - : classifier
«222==2 ¢ Contextjustfed as preceding tokens
PSS el . D
N T * LLMs can semantically accurately
B . > ~ Q.' ‘. :
RSN * encode long contexts
. v
st « (GPT-40: 128K tokens)
aantt ot encoder / decoder
.

Generation tasks

some given/preceding context

* Example tasks:

* In generation tasks

Text summarization, Machine translation, Data-to-text generation, Dialogue

Text generation denotes tasks in which the model (neural LM) is to generate text starting from

commonly C = |V
o classes” are tokens from
the vocabulary

A A ﬂ‘
CIED 00D 0D 0D
the quick brown fox jumped <s> der schnelle

A

A

Content

e Uniformity of NLP with Neural LMs

* Training Neural LMs
* Gradient Descent & Backpropagation

« Adaptive Optimization
 Momentum, AdaGrad, RMSProp, Adam

* Dropout

Training Objectives

Objective functions with neural LMs
* Loss functions that we're trying to minimize

. e Classification

* Binary cross-entropy (for one-class binary classification)
* Negative log-likelihood (or cross-entropy loss)

TR

*+s * Regression

* Mean Squared Error

Training Objectives 2l

» x denotes the representation being classified
« Seqguence or token encoding, output of the encoder

 Of hidden size dimension h

, * Binary cross-entropy loss (for one-class binary classification)
« An instance being classified either belongs to the class of
e, interest (is ¢) or it doesn’t (not ¢)

* We only care about ¢, ,not ¢” is not a ,real” class

« E.g., spam detection - we care about recognizing spam

TR

« The classifier is essentially logistic regression
« Prediction: § = o(w'™x+b);weR" beR
— 1/(1 + e—(wa+b))

e Loss: Lyc=-yIn9-(1-y)In(1-9)

Training Objectives

» x denotes the representation being classified
« Seqguence or token encoding, output of the encoder

* Negative log-likelihood (for multi-class classification)
e « Aka (regular) cross entropy loss

« The classifier is essentially softmax regression
« Prediction: y = softmax(Wx + b); W € R®", b € R

° ° — < V
R :. N LOSS I_NLL_ “Lui=1 yl /n yl

past % L
.

of the example, all othery. . =0
* So,Lyu=-In§i_.

y._.= 1 only for the index i that corresponds to the actual class ¢

Training Objectives

» x denotes the representation being classified
« Seqguence or token encoding, output of the encoder

* (Mean) Squared error (for regression)

. « The ,regressor” outputs a score

« Prediction: § = g(w™x+b);we R",b € R
* g is the score normalization function, identity function
if no normalization

TR

* Loss: L= (y — 9)?

Training Objectives @

* Loss functions L defined for a single training example (x, y)
e But we normally do not train our neural LMs with individual examples

Training dataset: D = {(x, yk)}ki’)

. e The actual loss that we minimize is an average over losses of
individual examples:

* Lp=Yk=1 ¥,)
: * Y. =model(x,|0)

TR

* Model training means solving the following
* 0 =argmin, L, which means solving VL, = 0
« With model(x|0) being a complex neural LM and D being a (very) large dataset,
this equation clearly has no closed-form solution

Optimization algorithm 7

« We resort to (typically unconstrainted) numerical optimization

(Numerical Optimization

Numerical optimization refers to optimizing real-valued functions
. f(@8): R" > R,0=0,860,, .. 0, €R.This means finding values 6, 0,, ..., 0,
for which f obtains the minimal or maximal value.

_ J

‘o~ Concretely, optimization of deep NNs relies on gradient-based
optimization, i.e., variants of gradient descent

TR

« Gradient descent - optimization algorithm that uses function
differentiation (w.r.t. parameters) to find the minimum of a function

Optimization algorithm

TR

Our loss function L needs to be differentiable w.r.t. all parameters

-

_

A function of multiple parameters {6 = 6, 6., ..., 0,) is differentiable it

its gradient V,f - a vector of partial derivatives V,f = |

0 =1{0,0,..0)
Gradient of a differentiable function

9F 6F Gy
06,' 96," "' 98,
- exists for every point on the input domain that is € R".

)

If function is differentiable, then it is also continuous. Most continuous

functions used in NNs are differentiable.

Gradient Descent /1

TR

e |Loss functions for tasks solved ok

« Gradient descent is a method that moves the parameter values in
the direction opposite of the function’s gradient in the current point

« This is guaranteed to lead to a minimum only for convex
functions*

with neural LMs are most certainly
not globally convex

()

|
-3 -2 - 0 1 2 3 4 5 6 T &8 9 1M n

Gradient Descent un

~

Gradient descent (sometimes also called steepest descent) is an iterative
algorithm for (continuous) optimization that finds a minimum of a convex

'll.
] \
L4

(single) differentiable function.

J

P

P ygganrt
.

"sagqunt

¢ @
’o
oO‘0
r

e
’,

 In each iteration GD moves the values of parameters 6 ={6, 6, ...,
0, }in the direction opposite to the gradient in the current point

9(k+1 r)v ()

* V,f(8)-value of the gradient (a vector of same dimensionality as 0)

of the function f in the point 6

* 1 -learning rate, defines by how much to move the parameters in

the direction opposite of the gradient

Backpropagation st

%‘T Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
—| back-propagating errors. Nature, 323(6088), 533-536.

« To update some parameter 6, we need to compute in closed-form the
l'l.ll":oo)) . aL
partial derivative of the loss L, w.r.t. 6. : aeD

e Our Lyis a complex composition of non-linear parametrized functions
« Because it's computed on the output of the model

il + Lp=Xr-1 LY y)
= Y¥_, L(model(x,|0), y,))
= ZIIX=1 L(layn(layp.(...(lay (x| 04)...| Oy.1) |), yi))

TR

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation 7,

%‘T Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
—| back-propagating errors. Nature, 323(6088), 533-536.

Lo = Yk=1 LY. ¥))
.'.'.':::::". = Yi=1L(model(x,]6), y,))
TIAOK = Yi=1 Lllayn(lay.1(...(lay1(x| 8,)...| 8.1) | 8y) , yi))

TR

* Let 6, denote the j-th parameter of the i-th layer of the model

;of the last layer is easy

o9 C Compu’ungé9

« Butit gets progresswely more cumbersome and difficult the ,earlier”
(i.e., ,deeper”) the layer of the parameter is

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation et

%‘T Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
—| back-propagating errors. Nature, 323(6088), 533-536.

. 0L, . .
e Computing aLeD in closed form gets progressively more cumbersome

: and difficult the earlier the layer of the parameter is

- Backpropagation leverages the chain rule of differentiation to avoid
computation of closed-form gradients for ,deeper” parameters

. » Gradients of parameters from layer K are estimated from gradients
of parameters from layer K+

TR

aLD _ aLD oL Odmodel alayN alayl.+1 alayi
8Gij JOL Omodel alayN alayN_1 alayi aeij

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation an

;‘T Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
—| back-propagating errors. Nature, 323(6088), 533-536.

L 6 . oL, _ OL, OL Omodel Olay, alayl.+1 Olay,
.'"":':"" aei]. JdL Omodel alayN alayN_1 alayl. aeij

2+ Forthe lastlayer:
" ,:‘,:"; . aLD _ aLD oL dmodel alayN
aeN,j JdL Omodel alayN aﬁi,j

\

yanst®? ’ J

Oy

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation

;‘T Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
—| back-propagating errors. Nature, 323(6088), 533-536.

.':'.-..::,” aLD _ aLD JL OJdmodel alayN alayl.+1 alayi
f::.'::.’:."',‘ aei]. JdL Omodel alayN BlayN_1 Blayl. aeij
WIIIIEE * Forlayer N-1 (and then so on backwards for all layers):
-..‘.:::::,::}: . a LD _ a LD a L amodel alayN_l

l...":“::‘,. aGN_l,j \aL 8modyel alayN | BGN_l,j

Oy

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Backpropagation

%‘T Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
—| back-propagating errors. Nature, 323(6088), 533-536.

alayN
08

N_1j

alayi
08,

tj

alay1
06

1j

» With backprop we avoid having to
explicitly compute gradient functions
for all layers/parameters

« But we have to compute gradients in

the inverse order of layers ©

« Gradient of a subsequent layer

needed for the computation of the
gradient of the preceding layer

https://www.nature.com/articles/323533a0.pdf
https://www.nature.com/articles/323533a0.pdf

Stochastic gradient descent 7, 1A

* We never compute the exact gradient of the loss function on the whole
training set D = {(x, yk)}ki’1
* Q: Why not?
' « Conceptual reason: gradient descent is guaranteed to lead to the
*s%, closest local minimum (if n small enough)

"._ * Practical reason: we cannot fit all training examples into memory
: (GPU VRAM) at once

.~ ¢ Stochastic gradient descent (SGD) - compute the loss, gradients, and
update the parameters based on a single training instance

» Repeat for all training instances

* Order of instances random (hence the name stochastic)

* Many parameter updates - slow training

Mini-Batch Gradient Descent 7, 11

* Mini-batch GD: sweet spot between full GD and SGD
« We train in the so-called (mini-)batches of B examples (e.g., B = 32)
* [teratively (mini-batch after mini-batch):

e, 1. Select B training examples from the training set D
: :.',:.:'.' 2. Compute the loss L; and gradient V,L5(0) based on B (using the
IO backpropagation algorithm)

3. Update the parameters 01 = 00 - 7V | (60)
MBGD - more resilient to local minima than GD and faster than SGD

.
"oaguant
[)

* Training epoch: model updated on all mini-batches B from D,
« Each training example part of exactly one mini-batch
* |tis common to train neural LMs for multiple epochs

Mini-batch gradient descent

* Mini-batch GD: sweet spot between full GD and SGD

« We train in the so-called mini-batches of B examples (e.g., B = 32)
 MBSG - more resilient to local minima than GD and faster than SGD

Il."
[
I'lI.' "'
...'r' .,
¢ ?, .
"';' 0"'0
- .

"re,% %% . — Batch gradient descent
LI | - = S .
e e — Mini-batch gradient Descent

- - - - -
Saaanns — Stochastic gradient descent
an

* & =~
.l‘ v & Ny g W

* 4 v -
“‘t’ s‘ ':
" R ‘§ ’~§
st g‘ 0‘
gan?t ‘Q’
raan?®

Image from: https://sweta-nit.medium.com/batch-mini-
batch-and-stochastic-gradient-descent-e9bc4cacd461

https://sweta-nit.medium.com/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461
https://sweta-nit.medium.com/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461

Content

e Uniformity of NLP with Neural LMs

e Training Neural LMs
» Gradient Descent & Backpropagation

Adaptive Optimization
 Momentum, AdaGrad, RMSProp, Adam

* Dropout

Adapted GD Algorithms o

* Lett(time-step) be the counter of the updates to model’s parameters
* t =1 > first update of parameters, based on gradient of first mini-batch

.. * Mini-batch GD: 8t = 8t~ n(t)VyL5(0)
. * Update size determined with learning rate,
n(t), and the gradient V,L,(0W0)

TR

~> * Problem in saddle points
* Gradient is zero or close to zero
 Learning effectively stops

Gradient Descent with Momentum 7, /1

« To avoid this ,stopping”, adaptations of GD keep information about the
momentum, i.e., previous sizes of parameter changes

« GD: change(t) = n(t)V,Lg(0W),
e, 0+ = @ - change(t)

1 te s« GD with Momentum:
’ * change(t) = B * n(t)VyLg(0W) + (1-B) * change(t-1) ¢
* change(t-1) = B * n(t-1)V4Lg(0") + (1-B) * change(t-2) ©

PEMAOR * change(t=1)= n(1)VyLg(0®)

TR

« Exponentially weighted averages of current and past updates
* Bisthe hyperparameter of the momentum algorithm

Adaptive Gradient (AdaGrad) s

« GD makes the step of the same size 1 in all directions (for all parameters)
« Butthe gradient V,L5(09) is not of the same size in all directions
* Optimum is not equally distant from the current point in all dimensions

« Q: A separate learning rate n; for each parameter 6. ?
’, * Not feasible for neural LMs (100M+ to 1T parameters)

TR

« AdaGrad: adaptively scales the learning rate for each parameter - the

- scaling factor is the sum of the sizes of the gradient squares across all
updates V, Le(e®)

:'::1 vzeLB(e(i))

* The size of the update to each parameter depends on the size of the
current gradient with respect to the sum of all gradients up to now

git+1) = @it -

Root Mean Square Propagation (RMSProp) 7,/

The sum of the squares of all previous gradients in AdaGrad quickly
becomes much larger than any current gradient
« Updates become small, and optimization slow

e, le, * RMSProp: introduces a decay on the sum of gradient squares
Gl et o g(t) = Vlg(6W - gradient at time step t
Vet wns ¢ s(t) = sum of gradient squares with decay at time step t

SI5 e () =B *s(t1) +(1- BYgt)

""" w+1) — a@_ 80
0 0 ns(t)

_‘: : :‘ \'/
-2/
. . . - ’/,:’l n
/
Adaptive Moment Estimation (Adam) 17,001\
(AR
% Kingma, D. P, & Ba, J. (2015). Adam: A method for stochastic optimization.
— | International Conference on Learning Representations (ICLR).
* Adam combines momentum and RMSProp (squared momentum)
« Empirically shown to work very well in practice
‘. e The most common choice for optimization of neural LMs (cited over 200K times!)

* g(t) = VyLg(BW) - gradient at time step t
* s5,(t) = sum of past gradients with decay at time step t

TR

T ¢ 51(t) = B, * 51(t‘1) +(1- B1)*9(t)

* s,(t) = sum of past gradient squares with decay at time step t
* sy(t) =B, *s,(t-1) + (1- By)*g?(t)

* s54(1)=9(1)

s, (t
¢ s(1)=gAM) B+ = g0 - p 21D

S, (t)

https://arxiv.org/pdf/1412.6980.pdf

Content

e Uniformity of NLP with Neural LMs

* Training Neural LMs
« Gradient Descent & Backpropagation
« Adaptive Optimization
 Momentum, AdaGrad, RMSProp, Adam

Dropout

Dropout 7,0

— | Dropout: a simple way to prevent neural networks from overfitting. The journal of
Machine Learning Research, 15(1), 1929-1958..

i Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, ., & Salakhutdinov, R. (2014).

Jle « Motivation: the risk of model’s overfitting is related to the ratio of:
.o * Number of model’s parameters
« Number of training examples

TR

pest oS o It the number of parameters is much larger than the number of training
R examples, the model will likely overfit to the training data
« Will not generalize well

* Neural LMs have a lot of parameters

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Dropout /1

— Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
E\ Dropout: a simple way to prevent neural networks from overfitting. The journal of

Machine Learning Research, 15(1), 1929-1958..

’ « Regularization by training multiple models (multiple instances of deep
" NNs) and ensembling their predictions is effective

« But this is very computationally prohibitive!

» Especially if models are LLMs with billions of parameters ©

TR

.+~ Dropout: a regularization method that simulates training many (slightly)
different models in a single training procedure

* By means of randomly dropping out "“neurons”

* Applied on per-layer basis, i.e., on the output of a layer

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

OR « To modify its output(s) x so that each

Dropout 7, 1

Dropout: a simple way to prevent neural networks from overfitting. The journal of
Machine Learning Research, 15(1), 1929-1958..

i Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, ., & Salakhutdinov, R. (2014).

* Let x be any hidden representation, output of
" any layer (e.g., in our neural LM) X
. E,g,,outputoflayerK 9 U 0y O14d

Applying dropout on a layer means Layer K (8y)
A

TR

. I 4
element x. becomes replaced with x": Layer 2 (8,)

A

x'. =0 with dropout probability p or Layer 1(8)

X' =x./(1-p)with the probability (1-p)

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

——
ol ——
i

@ B }’-";‘%'y

L 4 . e
’ t_*'_-' e

0
S
age‘ﬁg;ti

	Slide 1: Multilingual NLP
	Slide 2: After this lecture, you’ll...
	Slide 3: Content
	Slide 4: Recap: (Supervised) Machine Learning
	Slide 5: Neural Language Modeling
	Slide 6: Neural Language Modeling
	Slide 7: Neural Language Modeling
	Slide 8: Neural LMs
	Slide 9: Neural LMs
	Slide 10: Neural LMs
	Slide 11: Neural LMs
	Slide 12: Neural LMs
	Slide 13: Neural LMs
	Slide 14: Recap: (Supervised) Machine Learning
	Slide 15: Uniforming NLP with Neural LMs
	Slide 16: Uniform NLP with Neural LMs
	Slide 17: Sequence classification
	Slide 18: Token classification
	Slide 19: Generation tasks
	Slide 20: Generation tasks
	Slide 21: Content
	Slide 22: Training Objectives
	Slide 23: Training Objectives
	Slide 24: Training Objectives
	Slide 25: Training Objectives
	Slide 26: Training Objectives
	Slide 27: Optimization algorithm
	Slide 28: Optimization algorithm
	Slide 29: Gradient Descent
	Slide 30: Gradient Descent
	Slide 31: Backpropagation
	Slide 32: Backpropagation
	Slide 33: Backpropagation
	Slide 34: Backpropagation
	Slide 35: Backpropagation
	Slide 36: Backpropagation
	Slide 37: Stochastic gradient descent
	Slide 38: Mini-Batch Gradient Descent
	Slide 39: Mini-batch gradient descent
	Slide 40: Content
	Slide 41: Adapted GD Algorithms
	Slide 42: Gradient Descent with Momentum
	Slide 43: Adaptive Gradient (AdaGrad)
	Slide 44: Root Mean Square Propagation (RMSProp)
	Slide 45: Adaptive Moment Estimation (Adam)
	Slide 46: Content
	Slide 47: Dropout
	Slide 48: Dropout
	Slide 49: Dropout
	Slide 50: The End

