Information Retrieval SS 2024

Ex3: Revelance Feedback, Semantic Retrieval

Benedikt Ebing & Fabian David Schmidt
partially based on “An Introduction to Information Retrieval” by Manning, Raghavan and Schutze

Revelance Feedback

Suppose that a user’s initial query is cheap CDs cheap DVDs extremely cheap CDs. The user examines two
documents, d1 and d2. She judges d1, with the content CDs cheap software cheap CDs relevant and d2 with
the content cheap thrills DVDs nonrelevant. Assume that we are using direct term frequency (with no scaling
and no document frequency). There is no need to length-normalize vectors. Using Rocchio relevance
feedback what would the revised query vector be after relevance feedback? Assume a =1, 3 =0.75, y = 0.25.

CDs 2 2 0
cheap 3 2 1 1
DVDs 1 0 1 1
= (Y - . d — Z d
extremely 1 0 0 qm Qo+ (8 1D, | J Y D] j
software 0 1 0 d; €Dy d;j€Dnr
thrills 0 0 1

In Rocchio’s algorithm, what weight setting for a/p/y does a “Find pages like this one” search correspond to?

Suppose that a user’s initial query is cheap CDs cheap DVDs extremely cheap CDs. The user examines two
documents, d1 and d2. She judges d1, with the content CDs cheap software cheap CDs relevant and d2 with
the content cheap thrills DVDs nonrelevant. Assume that we are using direct term frequency (with no scaling
and no document frequency). There is no need to length-normalize vectors. Using Rocchio relevance
feedback what would the revised query vector be after relevance feedback? Assume a =1, 3 =0.75, y = 0.25.

o - 2 . 3.5 3.5
cheap 3 2 1 332 3:?
DVDs 1 0 1] g=1-g+075:d-025-dy=| "~ | =|"

extremely 1 0 0 0.75 0.75
soﬁware 0 1 0 | —025] | o
thrills 0 0 1)

In Rocchio’s algorithm, what weight setting for a/p/y does a “Find pages like this one” search correspond to?

Suppose that a user’s initial query is cheap CDs cheap DVDs extremely cheap CDs. The user examines two
documents, d1 and d2. She judges d1, with the content CDs cheap software cheap CDs relevant and d2 with
the content cheap thrills DVDs nonrelevant. Assume that we are using direct term frequency (with no scaling
and no document frequency). There is no need to length-normalize vectors. Using Rocchio relevance
feedback what would the revised query vector be after relevance feedback? Assume a =1, 3 =0.75, y = 0.25.

. wod | queyq | dl | d2] a5 1 357

CDs 2 2 0

cheap 3 2 1 332 332

DVDs 1 0 1] §=1-g+0.75:d1 ~025-dy=| " " | = |7
extremely 1 0 0 0.75 0.75
software 0 1 0 | —025] | o |

thrills 0 0 1

In Rocchio’s algorithm, what weight setting for a/pB/y does a “Find pages like this one” search correspond to?

“Find pages like this one” ignores the query, also no negative judgements are used here. Hence the values are
a =y =0, which implies g = 1.

Omar has implemented a relevance feedback web search system, where he is going to do relevance feedback
based only on words in the title text returned for a page (for efficiency). The user is going to rank 3 results. The
first user, Jinxing, queries for:

banana slug
and the top three titles returned are:

banana slug Ariolimax columbianus
Santa Cruz mountains banana slug
Santa Cruz Campus Mascot

Jinxing judes the first two documents Relevant, and the third Not Relevant. Assume that Omar’s search engine
uses term frequency but no length normalization nor IDF. Assume that he is using the Rocchio relevance
feedback mechanism, with a = =y = 1. Show the final revised query that would be run. (Please list the vector
elements in alphabetical order.)

 wod g dl d2 d3
Ariolimax 0 1 0 0
banana 1 1 1 0
Campus 0 0 0 1
columbianus 0 1 0 0
Cruz 0 0 1 1
Mascot 0 0 0 1
mountains 0 0 1 0
Santa 0 0 1 1
slug 1 1 1 0

Omar has implemented a relevance feedback web search system, where he is going to do relevance feedback
based only on words in the title text returned for a page (for efficiency). The user is going to rank 3 results. The
first user, Jinxing, queries for:

banana slug
and the top three titles returned are:

banana slug Ariolimax columbianus
Santa Cruz mountains banana slug
Santa Cruz Campus Mascot

Jinxing judes the first two documents Relevant, and the third Not Relevant. Assume that Omar’s search engine
uses term frequency but no length normalization nor IDF. Assume that he is using the Rocchio relevance
feedback mechanism, with a = =y = 1. Show the final revised query that would be run. (Please list the vector
elements in alphabetical order.)

 wod g a1 4@ @ 1/2]
Ariolimax 2
banana
Campus
columbianus
Cruz
Mascot
mountains
Santa
slug

1/2
0
0

1/2

ar

r ololoololor|o
Rololoolkokrk
Rk Rkokrloor|lo
orlorlklorloo

2

Semantic Retrieval

Latent Semantic Analysis

Consider the following collection of documents:

e Document 1. Frodo and Sam were trembling in the darkness, surrounded in darkness by hundreds of
blood-thirsty orcs. Sam was certain these beasts were about to taste the scent of their flesh.

e Document 2: The faceless black beast then stabbed Frodo. He felt like every nerve in his body was
hurting. Suddenly, he thought of Sam and his calming smile. Frodo had betrayed him.

e Document 3: Frodo’s sword was radiating blue, stronger and stronger every second. Orcs were getting
closer. And these weren’t just regular orcs either, Uruk-Hai were among them. Frodo had killed regular
orcs before, but he had never stabbed an Uruk-Hai, not with the blue stick.

e Document 4: Sam was carrying a small lamp, shedding some blue light. He was afraid that orcs might
spot him, but it was the only way to avoid deadly pitfalls of Mordor.

Your vocabulary consists of the following terms: Frodo, Sam, beast, orc, and blue. Compute the TF-IDF
document-term occurrence matrix for given document collection and vocabulary terms.

Frodo Sam beast orc blue

01249 02499 0 0 0 doc 1
document-by-term-matrix: = 0.2499 - 0.1249 0.6021 0 0 doc 2 raw tf, idf=log10(N/df_t)
0.2499 0 0 0 0.6021 doc 3

0 0.1249 0 0 0.3010 doc 4

Perform the singular value decomposition of the above matrix and write down the obtained factor matrices U, Z,
and V. You can use some existing programming library to perform the SVD (e.g., numpy.linalg.svd in Python).

0.1422 0.0875 0.9288 0.3309 \ doc 1 0.7450 0 0 0 concept 1
_ 0.538 0.829 —0.1349 —0.0717 |doc 2 5 0 0.6366 0 0 concept 2
0.7601 —0.4941 —0.2019 0.3707 |doc 3 0 0 0.2676 0 concept 3
0.3356 —0.2471 0.28 —0.8648) Coc4 0 0 0 0.1338 / concept 4

Frodo Sam beast orc blue
0.4592 0.1942 0.4348 0 0.7499

VT — 0.1486 0.1485 0.7840 0 —0.5841
0.1192 0.9351 —-0.3035 0 —0.1392
0.8676 —0.2567 —0.3228 0 -—0.2777

Reduce the rank of the factor matrices to K = 2, i.e., compute the 2-dimensional vectors for vocabulary terms and
documents. Show terms and documents as points in a 2-dimensional graph.

11

Reduce the rank of the factor matrices to K = 2, i.e., compute the 2-dimensional vectors for vocabulary terms and

documents. Show terms and documents as points in a 2-dimensional graph.

0.1059 0.0557
0.4008 0.5277

projected documents = = U[:,:2]12[:2,:2] 0.4 1

0.5662 —0.3145
0.2500 —0.1573

0.3421 0.1447 0.3239 0.0000 0.5586

projected terms =
0.0946 0.0946 0.4991 0.0000 —-0.3718

0.2

) = ¥[:2,:2]VT[:2,;] 004

—0.2 A

-0.4 1

docl

(beast goc2

drodo

oc4

docp
Dblue

0.0

0.1

0.2 0.3 0.4 0.5

12

You are given the query “Sam blue orc’. Compute the latent vector for the query and rank the documents
according to similarity of their latent vectors with the obtained latent vector of the query.

13

You are given the query “Sam blue orc’. Compute the latent vector for the query and rank the documents
according to similarity of their latent vectors with the obtained latent vector of the query.

Query- and document-projections:

0.1059 0.0557 0.2485 0.0443
. 0.4008 0.5277 —0.0361 —0.0096
documents in latent space (rows) = =

0.5662 —0.3145 —0.054 0.0496
0.2500 —0.1573 0.0749 —0.1157

0.9441 \ "
_ —0.4355 T
latent = = V=V
query in latent space ¢ 0.7959 [01 0 1 1] [001 0 1 1]

—0.5344

14

You are given the query “Sam blue orc’. Compute the latent vector for the query and rank the documents
according to similarity of their latent vectors with the obtained latent vector of the query.

Query- and document-projections:

0.1059 0.0557 0.2485
0.4008 0.5277 —0.0361
0.5662 —0.3145 —0.054
0.2500 —0.1573 0.0749

documents in latent space (rows) =

0.9441 \ ©
uery in latent space | —0.4355
o P =1 o.7059
—0.5344
Similarities and Ranking: cos(g,d) = 0.6325

cos(gq,dsz) = 0.1331
cos(g,ds) = 0.6531
cos(q,dy) = 0.9241

0.0443
—0.0096
0.0496
—0.1157

HwnNeE

=010 1 1]v=vTjo 1 0 1 1]

doc 4
doc 3
doc 1
doc 2

15

Semantic Retrieval

Representation Learning

For your semantic retrieval system you are training a CBOW model (windows size=2). Your vocabulary consists
of the following terms:

[“Frodo”, “followed”, “Sam”, “into”, “the”, “dark”, “Mordor”, “Ring”]

You are currently processing the sentence “Frodo followed Sam into the dark”. Which (positive) training examples
are derived from the sentence?

17

For your semantic retrieval system you are training a CBOW model (windows size=2). Your vocabulary consists
of the following terms:

[“Frodo”, “followed”, “Sam”, “into”, “the”, “dark”, “Mordor”, “Ring”]

You are currently processing the sentence “Frodo followed Sam into the dark”. Which (positive) training examples
are derived from the sentence?

Input X Outputy
Frodo followed Sam into the dark followed, Sam Frodo
Frodo followed Sam into the dark Frodo, Sam, into followed
Frodo followed Sam into the dark Frodo, followed, into, the Sam
Frodo followed Sam int@ the dark followed, Sam, the, dark into
Frodo followed Sam into thé dark Sam, into, dark the

Frodo followed Sam into the dark into, the dark

18

Which (positive) training examples are derived if we would consider the Skip-gram model?

Frodo followed Sam into the dark

Frodo followed Sam into the dark

Frodo followed Sam into the dark

Frodo followed Sam [nt@ the dark

Frodo followed Sam into the dark

Input X

Frodo
Frodo
followed
followed
followed
Sam
Sam
Sam
Sam
into

into

into

into

the

the

Qutput y

followed
Sam
Frodo
Sam
into
Frodo
followed
into

the
followed
Sam
the

dark
Sam
into

19

Task 3

Your word vectors, i.e. CBOW model, is parameterized as follows:

IS

o

S

N)
S
F &
011 —0.04 —0.64 -—1.49 —0.68
—0.39 011 —-14F7 -—-1.7&8 —0.55
—0.71 0.22 045 —-0.52 —-091
—0.49 002 096 -—-27 0.59

{001 —088 -174 —04)] Frodo
0.60 046 0.23 -1.34)| followed
—1.34 —054 020 001 | Sam
0.17 —0.36 —0.06 093 | into
—06 —065 —052 17 |’the
0.17 -061 —-0.54 —1.35| dark
-1.32 -0.89 -24 0.09 | Mordor
|-219 11 058 063) Ring

o N
& Q
£ s F

Calculate the output of the last layer (softmax layer) for the current sentence in which Sam is the center word.

INFUT FROJECTION QUTPUT

wit-2)
wit-1)
wit)
wit1) h
w(t+2)

CBOW 20
*Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).

Task 3

Your word vectors, i.e. CBOW model, is parameterized as follows:

{001 —088 -174 —04)] Frodo N §

0.60 046 0.23 -1.34)| followed

~-1.34 —0.54 029 001 | Sam 0.11 —0.04 —0.64
wo | 017 —0.36 —0.06 093 | into o —0.39 011 —147

—06 -0.65 —052 17 |’the —0.71 022 0.45

0.17 -061 -054 -1.35| dark —0.49 0.02 —0.96

-1.32 0.8 -24 0.09 | Mordor

|-219 11 058 063) Ring

IS
o
S
N)
o £
SRS
—1.49 —0.68
—1.78 —0.55
—0.52 —0.91
27 059

Calculate the output of the last layer (softmax layer) for the current sentence in which Sam is the center word.

(h = avg of context embeddings of Frodo, followed, into, the)
h=10.0625 —0.5875 —0.5225 0.2225]

logits = [—0.4 1.6070 0.6086 0.4980 —0.1776 0.3749 0.6236 0.8874]
7=1[0.04 0.32 0.12 0.1 0.05 0.09 0.12 0.15] (softmax(logits))

*Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).

INFUT FROJECTION QUTPUT

wit-1)
wit)
wit+1)

wit+2)

L JL
=

CBOW 21

What is the final document embedding if we represent it as the average of its constituent word embeddings?

[

Sentence word embeddings (rows) =

Sentence embedding

s=1[-0.15,

[-
[
[-
[
[-
[

0.01, -0
0.69, -0
1.34, -0
0.17, -0
0.6 , -0
0.17, -0
-0.58,

.88, -1.
.46, 0.
.54, 0.
.36, -0
.65, -0.
.61, -0
-0.39,

74, -0.
23, -1.
29, 0.
.06, O.
52, 1.
.54, -1.
-0.08,

34,
01,
93,

35,

-0.

12,

.64, 1.4 , -0.83,
.01, -1.75, -0.6 ,
.83, -1.58, 0.67,
.11, -0.39, -0.71,
.04, 0.11, 0.22,
.64, -1.47, 0.45,
-0.61, -0.13,

-0.23],
1.19],
0.371,

-0.49],
0.021,

-0.96]]

-0.02]

Task 5

Name one shortcoming of representing documents and queries as average word embeddings and how to

overcome it?

22

What is the final document embedding if we represent it as the average of its constituent word embeddings?

[[-0.01, -0.88, -1.74, -0.4 , 0.64, 1.4 , -0.83, -0.23]
.69, -0.46, 0.23, -1.34, 0.01, -1.75, -0.6 , 1.19]
_ .34, -0.54, 0.29, 0.01, -0.83, -1.58, 0.67, 0.37]
Sentence word embeddings (rows) = .17, -0.36, -0.06, 0.93, 0.11, -0.39, -0.71, -0.49]
.6, -0.65, -0.52, 1.7 , -0.04, 0.11, 0.22, 0.02]

]

[-
[
[-
[
[-
[0.17, -0.61, -0.54, -1.35, -0.e64, -1.47, 0.45, -0.9¢6

OOO)—‘OO

Sentence embedding s =[-0.15, -0.58, -0.39, -0.08, -0.12, -0.61, -0.13, -0.02]

Task 5

Name one shortcoming of representing documents and queries as average word embeddings and how to
overcome it?

Every word embedding contributes an equal share to the sentence embedding, this can lead to noisy input
due to stop words. If we use a parameterized aggregation function (e.g. Deep Learning Model) it can learn
to focus on important features (cf. Learning to Rank).

23

Use your computed document embedding as a query vector and rank the four document documents from the
previous task by their cosine similarities, use the following document embeddings:

Document 1: [1.17 0.05 -1.69 0.15 1.87 -0.25 -0.92 0.84]
Document 2: [-0.88 -0.65 -0.51 -1.08 -0.25 1.01 0.54 -0.7]

Document 3: [2.93 -2.28 0.01 1.65 1.15 1.24 0.26 0.52]
Document 4:[1.22 -1.04 0.11 0.97 0.74 0.08 -1.18 -0.11]

Normalized sentenceemb = § = [-0.16, -0.6, -0.41, -0.08, -0.13, -0.64, -0.14, -0.02]
Nonna]izedembeddingfurdlztflz[0.38, 0.02, —0.55, 0.05, 0.61, —0.08, -0.3 ’ 0.27]

cos(dy,q) = dot(d1,4) =0.16 Ranking: d1, d4, d2, d3
Task 7

After training your embedding model you obtain word representations for every word you observed (assuming you
derived your vocabulary form the corpus). Why shouldn’t we use every available word embedding after training?

When training word embeddings we start with random vectors. Typically word frequencies follow Zipf's Law,
hence many words occur only very few times (long tail). For those words we don‘t have reliable word vectors
(infrequent updates during training). Including them would introduce noise. Because of this we limit the vocabulary
to the top k most frequently seen words.

	Slide 1: Information Retrieval SS 2024 Ex3: Revelance Feedback, Semantic Retrieval
	Slide 2: Revelance Feedback
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Semantic Retrieval - Latent Semantic Analysis
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Semantic Retrieval - Representation Learning
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

