Information Retrieval SS 2024

Exercise 2: VSM, Efficient VSR, Probabilistic IR

Benedikt Ebing & Fabian David Schmidt
partially based on “An Introduction to Information Retrieval” by Manning, Raghavan and Schutze

Vector Space Model — TF-IDF

Consider the following tables of term frequencies and document frequencies (df), and document collection
sizes (N). Calculate for each term-document-pair the tf-idf weight with idf = In(N/df), use raw term
frequencies.

term doc 1 doc 2 doc 3 df N
car 27 4 24 18,136 94,584
auto 3 33 0 6,723 53,814
insurance 33 29 19,241 97,226
best 14 0 17 25,235 113,095
Answer:
TF-IDF

term IDF doc 1 doc 2 doc 3

car

auto

insurance

best

Consider the following tables of term frequencies and document frequencies (df), and document collection
sizes (N). Calculate for each term-document-pair the tf-idf weight with idf = In(N/df), use raw term
frequencies.

term doc 1 doc 2 doc 3 df N
car 27 4 24 18,136 94,584
auto 33 0 6,723 53,814
insurance 33 29 19,241 97,226
best 14 0 17 25,235 113,095
Answer:
TF-IDF
term IDF doc 1 doc 2 doc 3
car 1.65 44,55 6.6 39.6
auto 2.08 6.24 68.64 0
insurance 1.62 0 53.46 46.98
best 1.5 21 0 25.5

In the previous subtask we used the natural logarithm. How does the base of the logarithm affect the tf-idf
scores? How does the base of the logarithm affect the relative scores of two documents on a given
query?

In the previous subtask we used the natural logarithm. How does the base of the logarithm affect the tf-idf
scores? How does the base of the logarithm affect the relative scores of two documents on a given
query?

Rewrite the logarithm:

logy, (dift) = logy(10) - log1p (d_]}Z)
N
= ¢ - logig (d_ft)

In the previous subtask we used the natural logarithm. How does the base of the logarithm affect the tf-idf
scores? How does the base of the logarithm affect the relative scores of two documents on a given
query?

Rewrite the logarithm: Factor out base into constant:
tf-idft,d,b — tf t,d . ldf t,b

N N

[— | =1 10) - 1 —_—
s (dft) 0] o (dft) _ N
_— tft,d °C°10g10 E
t

— OO gy = c-tfidf, g

In the previous subtask we used the natural logarithm. How does the base of the logarithm affect the tf-idf
scores? How does the base of the logarithm affect the relative scores of two documents on a given
query?

Rewrite the logarithm: Factor out base into constant:
tf-idft,d,b — tf t,d . ldf t,b

N N
logy (df) l0gs (10) - logag (df) N
- tft,d °C°10g10 (d_.ft)

— OO gy = c-tf-idf,

Pull out constant from the sum:

Score(q, d, b) th—ldftdq =c- th -idf, 4

teq teq

Recall the tf-idf weights computed in the first task. Compute the Euclidean normalized document vectors
for each of the documents, where each vector has four components, one for each of the four terms.

Using the document vectors you just constructed, rank the documents for the query “car insurance”
according to their cosine distances to the query. Represent the query as a binary vector.

Recall the tf-idf weights computed in the first task. Compute the Euclidean normalized document vectors
for each of the documents, where each vector has four components, one for each of the four terms.

0.897 0.076 0.595
0.126 0.787 .
?(docl) = ; ?(docz) = ,?(docB) = vocabulary: [car, auto, insurance, best]
0.613 0.706
0.423 0 0.389

Task 4

Using the document vectors you just constructed, rank the documents for the query “car insurance”
according to their cosine distances to the query. Represent the query as a binary vector.

Recall the tf-idf weights computed in the first task. Compute the Euclidean normalized document vectors
for each of the documents, where each vector has four components, one for each of the four terms.

0.897 0.076 0.595

?(docl) _ | 0126 ; ?(docz) _ | o787 ,?(docB) = v vocabulary: [car, auto, insurance, best]
0.613 0.706
0.423 0 0.389

Task 4

Using the document vectors you just constructed, rank the documents for the query “car insurance”
according to their cosine distances to the query. Represent the query as a binary vector.

Query representation: Document ranking:

q = "car insurance" = (1 0 1 0)T doc 3 = cos(q, doc 3) = 0.920
doc 1 = cos(g,doc 1) = 0.634

doc 2 = cos(g,doc2) = 0.483 1

Compute the vector space similarity between the query “digital cameras” and the document “digital
cameras and video cameras” by filing out the empty columns in the table below. Assume
N=10,000,000, apply the term frequency scaling, as shown in the lecture, for query and document (wf
columns). Do not account for query- or document-length. Apply idf weighting for the query and cosine
normalization for the document. Treat and as a stop word. Enter term counts in the tf columns. What is the

final similarity score?

query Document
word tf Df idf g_i=wi-idf Tf i d_i q_i*d_i
digital 1 10,000 3 0.52
video 100,000 0 0.52
cameras | 1 50,000 | 2.3 2.3 1.3 0.67

wf =1 + log10(tf)

12

Compute the vector space similarity between the query “digital cameras” and the document “digital
cameras and video cameras” by filing out the empty columns in the table below. Assume
N=10,000,000, apply the term frequency scaling, as shown in the lecture, for query and document (wf
columns). Do not account for query- or document-length. Apply idf weighting for the query and cosine
normalization for the document. Treat and as a stop word. Enter term counts in the tf columns. What is the
final similarity score?

query document
word tf wif df idf | g_i=wf-idf tf wf d_i q_i*d_
digital 1 1 10,000 3 3 1 1 0.52 1.56
video 0 | 100,000 2 0 1 1 0.52 0
cameras 1 1 50,000 2.3 2.3 2 1.3 0.68 1.56

Final similarity score:

dot(query, document) = 3.12
cos(query, document) = 0.826

14

What is the idf of a term that occurs in every document? Compare this with the use of stop word lists.

Why is the idf of a term always finite?

What is the minimum and maximum value of the idf that a term can have (assuming a document
frequency larger than zero)? In which cases does this happen?

What is the idf of a term that occurs in every document? Compare this with the use of stop word lists.

It's zero. If a word occurs in every documentthen N = df; and dift =1 and idf, = log (1) = 0.
Adding the word to the stop word list has the same effect as idf weighting: the word is ignored.

Why is the idf of a term always finite?

What is the minimum and maximum value of the idf that a term can have (assuming a document
frequency larger than zero)? In which cases does this happen?

What is the idf of a term that occurs in every document? Compare this with the use of stop word lists.

N —1 idf, =ahg(1) = 0.

It's zero. If a word occurs in every documentthen IN = d f; and hence T
t
Adding the word to the stop word list has the same effect as idf weighting: the word is ignored.

Why is the idf of a term always finite?

dfi > 1 —idf; > N — idf always finite

What is the minimum and maximum value of the idf that a term can have (assuming a document
frequency larger than zero)? In which cases does this happen?

What is the idf of a term that occurs in every document? Compare this with the use of stop word lists.

N -1 idf, —ahmg (1) = 0.

It's zero. If a word occurs in every documentthen IN = d f; and hence T
t
Adding the word to the stop word list has the same effect as idf weighting: the word is ignored.

Why is the idf of a term always finite?

dfi > 1 —idf; > N — idf always finite

What is the minimum and maximum value of the idf that a term can have (assuming a document
frequency larger than zero)? In which cases does this happen?

Maximum value of idf; for atermtis log(IV) (term occurs in single document).
Minimum value of ¢df; for atermtis O (term occurs in every document).

Optimizing Vector Space Retrieval

Imagine your are running a rudimentary retrieval engine on a small embedded chip which can barely
perform addition and multiplication. To that end, you want to minimize the number of cosine similarity
computations but also the number of multiplications and additions in each individual cosine computation.
You are given the following toy collection consisting of N=9 documents, with the following TF-IDF vectors
(of length k=10):

dy =[0.17 0.21
dy = [0.49 0.48
dz = [0.41 0.36

[0.31 0.41

0.35
0.44
0.27
0.21

0.44
0.09
0.19
0.19

0.49
0.24
0.15
0.47

0.39
0.20
0.42
0.28

0.09
0.41
0.23
0.21

0.07
0.16
0.42
0.39

0.37
0.10
0.02
0.16

0.24]
0.15]
0.42]
0.38]

In order to reduce the cost of computation of individual documents, we need to cut the length of
document vectors in half. To achieve this, we perform random projections using the following five
random vectors (from the same vector space as the original documents):

. =[0.33 0.33
ry = [0.29 0.16
r3 =[0.01 0.17
ry = [0.09 0.05
rs = [0.13 0.17

0.42
0.38
0.11
0.39
0.40

0.12
0.48
0.27
0.25
0.40

0.20
0.43
0.23
0.45
0.07

0.34
0.11
0.37
0.48
0.40

0.58
0.12
0.35
0.04
0.35

0.19
0.33
0.48
0.45
0.39

0.07
0.03
0.54
0.35
0.44

1, ifd;-r; >0.75
0, otherwise

h(di,r;) = {

20

Task 1 (a)

Compute the hashed (i.e., projected, shortened) document vectors.

21

Task 1 (a)

Compute the hashed (i.e., projected, shortened) document vectors.

Distance matrix (#docs x #randVecs): Hashed document vectors:

0.7048 0.8313 0.7742 0.8734 0.8001
0.9429 0.7255 0.5987 0.6076 0.7130
0.8785 0.8326 0.7299 0.7324 0.7553
0.8361 0.8853 0.7972 0.8092 0.7337
D= |0.8806 0.7596 0.816 0.7924 0.8383 H=
0.8605 0.7776 0.6584 0.4858 0.7008
0.6898 0.6119 0.9344 0.8742 0.8323
0.9119 0.7589 0.6655 0.6139 0.6596
0.7513 0.6484 0.8000 0.6060 0.7103)

—
o
—

—

R = [ri;7ro;rs;1m4) € R5710

d; = hash(d,RT) = H,. =

[i e o e

= O = e e e
O O O -
- - -
C O R O KR~ OO K
OO R O H O O

e

22

Task 1 (b)

We also need to reduce the total number of cosine comparisons, so we will perform pre-clustering of
documents. In the reduced projected vector space, obtained using the random projections from the
previous task, you are given the following+vN = 3 leader vectors that will determine the document clusters:
L=[0 0 1 1 0]

L=[0 1 1 1 0]

I3=[0 0 0 0 0]

Compute the clusters by assigning each document vector (i.e., it's random projection) to the closest (i.e.
most similar) leader vector.

Clusters: Cluster assignment for document 1:

ly - d7,d9 sitm(d;, ;) = #matching bits

ly : d1,d4, d5 o

ls - d2,d3, d6, ds leader(d) = argmax g, , 1,y = {sim(d1, b} =3,

sim(dy, ly) = 4,
sim(cfl, l3) = 1}

23

You are given the following query vector (in the original vector space):

g=1[0.15 0.39 0.36 0.25 0.36 0.15 0.52 0.37 0.08 0.27]

Retrieve the top M =5 documents using the random projection vectors of documents from 1 (a) and
clusters obtained in 1 (b). What is the total number of cosine similarities you compute and the total number
of element-wise multiplication operations in all dot-products?

Projected query: Ranking (clusters): 1. g3 Ranking (cosine): 1. dg

G=[1 11 0 1] 2.d5 2. dy

3.d1 3. dg

4. d4 4. ds

Leader similarities: 5.d6 5. ds
sim(g,l1) =1
Sim(qA)IQ) =2

sim(g,l3) =1

24

Task 2 (cont.)

Compare that with the numbers you would get if we didn't perform any pre-clustering nor random
projections.

Regular retrieval:
- 9 similarity computations (1 query, 9 docs) and 10*9=90 element-wise operations.

Cluster retrieval (Offline / Indexing):
- Document projections 9*5=45 dot products (45*10 element-wise operations)
- Cluster assignment 9*3=27 similarity computations / “dot-products” (27*5=135)
- Total: 72 dot products (585 element-wise operations)

Cluster retrieval (Online / Querying):
- Query projections — 5 similarity computations / “dot-products” (5*10=50 element-wise operations)
- Comparsion with cluster leader — 3 similarity computations / “dot-products” (3*5=15)
- Querying 7 similarity computations/“dot-products” (5*7=35 element-wise operations)
- Total: 15 dot products (100 element-wise operations)

25

In the previous two tasks we used cluster pruning to avoid computing the distance from the query vector to
every document vector. Sketch down an example so that with two leaders, the answer returned by cluster
pruning is incorrect (it is not the data point closest to the query vector).

26

Task 3

In the previous two tasks we used cluster pruning to avoid computing the distance from the query vector to
every document vector. Sketch down an example so that with two leaders, the answer returned by cluster
pruning is incorrect (it is not the data point closest to the query vector).

® o
o o
o o
query °
® ® o
o () °
® ® Closest e o
® o document °
o
P o o
® Closest @
® leader
® O
® [)

The selected leader returns a ranking in which the closest document is not included.

27

Probabillistic Information Retrieval

Task 1 (a)

Consider deriving a language model from the following piece of text:
the martian has landed on the latin pop sensation ricky martin

Compute the probabilities P (the) and P (martian) in the an MLE-estimated unigram probability model.

Task 1 (b)

Compute the probabilities P (pop|the) and P (sensation|pop) under an MLE-estimated bigram probability
model.

Task 1 (a)

Consider deriving a language model from the following piece of text:
the martian has landed on the latin pop sensation ricky martin

Compute the probabilities P (the) and P (martian) in the an MLE-eistmated unigram probability model.
P (the) = % = 18.18% P (martian) = % = 9.09%

Task 1 (b)

Compute the probabilities P (pop|the) and P (sensation|pop) under an MLE-estimated bigram probability
model.

Task 1 (a)

Consider deriving a language model from the following piece of text:
the martian has landed on the latin pop sensation ricky martin

Compute the probabilities P (the) and P (martian) in the an MLE-eistmated unigram probability model.
P (the) = 12—1 = 18.18% P (martian) = % = 9.09%

Task 1 (b)

Compute the probabilities P (pop|the) and P (sensation|pop) under an MLE-estimated bigram probability
model.

count(the,pop)
count(the)

count(pop,sensation)

=1

P (pop|the) = =0

P (sensati0n| POP) - count(pop)

Suppose we have a collection D that consists of the four documents given in the following table.

click go the shears boys click click click

click click

metal here

AITWIN|PF

metal shears click here

Build a query likelihood language model for this document collection. Use the Jelinek-Mercer smoothing
model with the interpolation of A = 0.5 and apply maximum likelihood estimation (MLE) to estimate
unigram probabilities. Work out the model probabilities of the queries gl=click, g2=shears, and
g3=click shears for each document, and use those probabilities to rank the documents returned by

each of the queries.

P(ti|Ma) = X~ P(t;|Mg) + (1 — A) - P(t;|Mp)

click

shears

click shears

32

Suppose we have a collection D that consists of the four documents given in the following table.

click go the shears boys click click click

click click

metal here

AITWIN|PF

metal shears click here

Build a query likelihood language model for this document collection. Use the Jelinek-Mercer smoothing
model with the interpolation of A = 0.5 and apply maximum likelihood estimation (MLE) to estimate
unigram probabilities. Work out the model probabilities of the queries gl=click, g2=shears, and
g3=click shears for each document, and use those probabilities to rank the documents returned by

each of the queries.

click 0.47 0.72 0.22 0.34 2,1,4,3
shears 0.13 0.06 0.06 0.19 4,1,2,3
click shears | 0.06 0.04 0.01 0.06 {1,4},2,3

Re-compute the rankings while using the (i) Binary Independence Model, (ii) the TwoPoisson model with
k =1 and (iif) the BM25 model with b = 0.75.

(i) Binary Independence Model: P(D,Q,7) =3 ;0 log(ﬁggfl'g’g) =D teq log (0'5' %)

P(Dylg,r) 0.5 0.5 - 0.5
P(Dt ‘qa _'r)

Do wy

P(Dt|Q)T) 05 = = 05
P(Dt ‘Qa _'T)

Do w

34

Re-compute the rankings while using the (i) Binary Independence Model, (ii) the TwoPoisson model with
k =1 and (iif) the BM25 model with b = 0.75.

(i) Binary Independence Model: P(D,Q,7) =3 ;0 log(ﬁgﬁfl'g’g) =D teq log (0'5' %)

tsclick | doc1 | doc2 | doc3 docd | Ranking: click

P(Dyq,7) 0.5 0.5 - 0.5 1. doc1/doc 2/doc 4
P(Dilg,) 4/3 413 - 413 2. doc3
3wy -0.405 -0.405 - -0.405
[tshears docd doc2 doc3 | doc4 | Ranking: shears
P(Dilq,) 0.5 - - 0.5 1. doc1/doc4
P(Dy|q,—r) 4/2 - - 4/2 2. doc2/doc3

35

> Same as for click

T click | shears | click - click | shears

P(Dy|g,r) 0.5 0.5 0.5 - 0.5 0.5
(Dtlg, —r) 4/3 4/2 4/3 - 4/3 4/2

Wy -0.405 0 -0.405 - -0.405 0

> wy -0.405 -0.405 - -0.405

(i) Two-Poisson model: rel(D,Q) =} ;0 ft;:ik:kl) Wy

fip(k+1)
fiptk

Wy

rel(D, q)

36

| dosi | doc2 doc3 | docd | Ranking: click shears

1. doc1l/doc?2/doc4

T click | shears | click - click | shears
P(Dy|g,r) 0.5 0.5 0.5 - 0.5 0.5
P(D;|q,) 4/3 4/2 4/3 - 4/3 4/2
Wy -0.405 0 -0.405 - -0.405 0
> wy -0.405 -0.405 - -0.405

(i) Two-Poisson model: rel(D,Q) =} ;0 ft;:ik:kl) Wy

fip(k+1)
fiptk

Wy

rel(D, q)

2. doc 3

37

| dosi | doc2 doc3 | docd | Ranking: click shears

T click | shears | click - click | shears
P(Dy|g,r) 0.5 0.5 0.5 - 0.5 0.5
P(Dy|q,) 4/3 4/2 4/3 - 4/3 4/2
Wy -0.405 0 -0.405 - -0.405 0
> wy -0.405 -0.405 - -0.405

(i) Two-Poisson model: rel(D,Q) =3 ;0 ftgik:kl) Wy

1. doc1l/doc?2/doc4
2. doc 3

fep(k+1)

— 1.600 1.330 - 1.000
w; -0.405 -0.405 - -0.405
rel(D, q) -0.648 -0.539 - -0.405

Ranking for shears remains unchanged because of zero weights.
Ranking for click shears the same like for click.

1. doc4
2. doc?2
3. docl
4. doc 3

38

.wt

fep(k+1)
~ rel(D,Q) = :
(i) Bm-25: Tel(D, Q) teZQ fop + klijgb+k(1 —b)

o 1391
w; -0.405
rel(D, q) -0.563

Does the Binary Independence Model make the document independence assumption? Does it make the
term independence assumption? Explain your answer.

39

ft D(k‘ + 1)
o0 rel(D,Q) = : - Wy
(iii) BM-25: ; fi.p + kb + k(1 = b)

. 1.391 1.523 - 1.000 1. doc4
wo 2. doc1l
Wy -0.405 -0.405 - -0.405 3. doc?2
4, doc 3

rel(D, q) -0.563 -0.617 - -0.405

Ranking for shears remains unchanged because of zero weights.
Ranking for click shears the same like for click.

Does the Binary Independence Model make the document independence assumption? Does it make the
term independence assumption? Explain your answer.

40

fep(k+1)
 rel(D,Q) = ’
(iiiy BM-25: T€ (D, Q) ; fip + kl%gb—kk(l —b)

.~ docl doc2 doc3 docd Ranking: click [, = 4

.wt

m;+j2w 1.391 1.523 - 1.000 1. doc 4
2. docl
w; -0.405 -0.405 - -0.405 3 doc 2
4. doc3
rel(D, q) -0.563 -0.617 - -0.405

Ranking for shears remains unchanged because of zero weights.
Ranking for click shears the same like for click.

Does the Binary Independence Model make the document independence assumption? Does it make the
term independence assumption? Explain your answer.

Document independence: Yes, each documents similarity score is calculated independently.
: : P(D|Qyr) \ . v BDier)
Term independence: Yes, because it factor 1og P(DlQr)) MO log i=1 P(D;|0r)

41

Why is the (conditional) independence assumption in language models an incorrect assumption that
doesn’t hold when dealing with natural language? Give an example.

What are the differences between standard vector space tf-idf weighting and the BIM probabilistic retrieval
model (in the case where no document relevance information is available)?

Why is the (conditional) independence assumption in language models an incorrect assumption that
doesn’t hold when dealing with natural language? Give an example.

Because natural language follow rules about structure and meaning (Syntax and Semantic). For example,
after an article usually a noun follows.

What are the differences between standard vector space tf-idf weighting and the BIM probabilistic retrieval
model (in the case where no document relevance information is available)?

Why is the (conditional) independence assumption in language models an incorrect assumption that
doesn’t hold when dealing with natural language? Give an example.

Because natural language follow rules about structure and meaning (Syntax and Semantic). For example,
after an article usually a noun follows.

Task 6

What are the differences between standard vector space tf-idf weighting and the BIM probabilistic retrieval
model (in the case where no document relevance information is available)?

TF-IDF weighting is proportional to term frequency of the query term while BIM takes into account only
presence/absence of a term.

	Slide 1: Information Retrieval SS 2024 Exercise 2: VSM, Efficient VSR, Probabilistic IR
	Slide 2: Vector Space Model – TF-IDF
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Optimizing Vector Space Retrieval
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Probabilistic Information Retrieval
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

