
1

2.7.2024

Center for AI and Data Science (CAIDAS)
Fakultät für Mathematik und Informatik

Universität Würzburg

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

9. Classification, Clustering,
and Learning to Rank

Prof. Dr. Goran Glavaš

2

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

After this lecture, you’ll...

▪ Know the basics of machine learning

▪ Understand supervised text classification

▪ Know some methods for (unsupervised) text clustering

▪ Understand how to combine different ranking functions (and other features) in a
supervised IR setting – learning to rank

▪ Have an idea of what neural (re-)rankers (neural L2R) look like

3

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Outline

▪ Recap of Lecture #8

▪ Primer on Machine Learning

▪ Text Classification

▪ Text Clustering

▪ Learning to Rank

▪ Neural (Re-)Ranking

4

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Recap of the previous lecture

▪ Latent and Semantic Retrieval
▪ Q: Why is term matching sometimes not good enough for retrieval?
▪ Q: When should you use term-based IR models and when semantic/latent ones?

▪ Latent Semantic Indexing
▪ Q: What Latent Semantic Indexing (LSI)?
▪ Q: What is Singular Value Decomposition and how are latent topics represented?
▪ Q: How do we obtain latent representations of documents and terms? How to transform the

query into latent space?

▪ Latent Dirichlet Allocation
▪ Q: What is LDA and how are latent topics represented in this probabilistic setting?
▪ Q: What is the generative story that LDA assumes?

▪ Word embeddings for IR
▪ Q: How are word embedding models different from latent topic models?
▪ Q: How does CBOW model learn word embeddings?
▪ Q: How to exploit word embeddings for an IR model?

5

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

LSI – Singular Value Decomposition

▪ Given a matrix A (with non-negative elements), the Singular Value Decomposition
finds orthogonal matrices U and V and a rectangular diagonal matrix Σ such that:

▪ Matrix U is of dimensions M x M

▪ Matrix V is of dimensions N x N

▪ Matrix Σ is of dimensions M x N

▪ U and V are orthogonal: UTU = I, VTV = I

▪ Values of the diagonal matrix Σ are singular values of the original matrix A

▪ Let r be the rank of matrix A

6

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

LSI reduction – example

▪ This leaves us with the best possible approximation of rank AK (K = 2 in our
example) of the original term-document occurrence matrix A

▪ AK has the same dimensions as original A (M x N)

▪ UK is of size M x K, and ΣKVT
K of size K x N

UK

ΣKVT
K

d1 d2 d3 d4 d5 d6

D
e

n
se

 v
ec

to
rs

o

f
te

rm
s

Dense vectors of documents

7

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

LDA – Generative View

1. For each topic k (k = 1, ..., K):
▪ Draw parameters of a multinomial distribution φk (over terms) for topic k

from a Dirichlet distribution DirN(β)

2. For each document d in the collection:
▪ Draw parameters of a multinomial distribution of topics for the document d,

θd , from a Dirichlet distribution DirK(α)

▪ For each term position wdn in the document d:
a) Draw a topic assignment (i.e., a concrete multinomial distribution over terms)

zdn from MultK(θd)

b) Draw a concrete term wdn from the multinomial distribution over terms of the
topic zdn (drawn in a)), MultN(φzdn)

8

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

LDA – Generative View

9

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Continuous Bag-of-Words (CBOW)

▪ Context consists of C words, with
corresponding one-hot vectors
▪ x1k, x2k, ..., xCk

▪ One-hot vectors transformed to dense
vectors using input matrix W (V x N)

▪ Dense context vector h is obtained as:

ℎ =
1

𝐶
𝑾(෍

𝑖=1

𝐶

𝑥𝑖𝑘)

▪ Dense context vector h is then multiplied
with the output matrix W’ (N x V)

yk = softmax(hTW’)

10

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Continuous Bag-of-Words (CBOW)

▪ Output vector y needs to be as similar as
possible to one-hot vector of center word

▪ Parameters of the model are elements of
W and W’
▪ Each row of W is the dense context

vector of one vocabulary word

▪ Each column of W’ is the dense center
vector of one vocabulary word

▪ Dense representation (embedding) of the
i-th vocabulary term is concatenation of

1. i-th row of W and

2. i-th column of W’

11

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Outline

▪ Recap of Lecture #8

▪ Primer on Machine Learning

▪ Text Classification

▪ Text Clustering

▪ Learning to Rank

▪ Neural (Re-)Ranking

12

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Why machine learning?

▪ For many IR and NLP tasks, it is difficult to come up with an explicit (i.e., rule-
based) algorithm that solves the task efficiently

▪ For example
▪ POS tagging – difficult to devise the closed set of rules that infer the POS tag of the

words from the word’s context

▪ Sentiment analysis – complete set of rules that determine the sentiment of a
reivew?

▪ Named entity recognition – a manually defined finite state automaton that
recognizes the sequences of words that form named entities?

▪ Semantic textual similarity – measure the word overlap and manually determine the
treshold according to which two texts are considered similar?

13

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Why machine learning?

▪ The problems with devising rule-based systems for complex tasks are numerous:
1. We simply need to many rules to cover all the cases

2. There are many exceptions (including exceptions to exceptions!) to be handled

3. We need expert knowledge (i.e., an expert to handcraft the rules)

4. Rules can be difficult to
▪ Design – rules interact in unpredictable ways

▪ Maintain – adding new rules can easily break everything

▪ Adopt to new domains – we need to significantly modify/add rules

▪ IR and NLP tasks are often inherently subjective (e.g., relevance of a document
for the query)
▪ It is difficult to model subjectivity with rules

14

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Why machine learning?

▪ It is often easier to manually label some concept than to design an explicit
algorithm that captures the concept automatically

▪ Labeling typically does not require too much expert knowledge

▪ We don’t care how complex or subjective the task is
▪ We let the data „speak for itself” and machine learning algorithm to do the work

▪ If we’re lucky, the labeled data might be already readily available (e.g., reviews
with assigned ratings)

15

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Machine learning basics

▪ Supervised machine learning
▪ We have labeled data as input

▪ Supervised ML algorithms learn the mapping between input representations and
output labels

▪ Classification: output is a discrete label (no ordering between the labels)

▪ Regression: output is a an integer or real value (obviously, there is ordering)

▪ Unsupervised machine learning
▪ We have no labels (i.e., we have unlabeled data) at input

▪ Clustering: grouping instances by the similarity of their representations

▪ Outlier detection: recognizing instances that are very dissimilar from all other
instances in the dataset

16

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Supervised machine learning

▪ Supervised machine learning models „learn” the mapping between input values
and output values

▪ A single input to the classifier is called an instance or example (denoted „x”)
▪ An instance is represented as an n-dimensional feature vector

x = (x1, x2, ..., xn)

▪ The desired output is called the target label (or just label, denoted y)

▪ A classifier h maps an instance x to a label y – h : x → y

▪ „Learning” – model has parameters θ (denoted h(x| θ)) whose values are
optimized to maximize the prediction accuracy of the output labels, given instance

17

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Supervised classification

▪ Types of classifiers in IR/NLP:
▪ Binary classification: just two output labels (yes/no, 0/1)

▪ Multi-class classification: each instance has one of K labels

▪ Multi-label classification: an instance can have more than one label at once

▪ Sequence labeling: input is a sequence of instances and the output is the sequence
of labels

18

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Supervised classification

▪ Training (or learning) – adjustment of model parameters θ so that the classification
error is minimized
▪ The error is computed on a labeled training set – this is the training error

▪ The training error is minimized with an optimization method
▪ ML algorithms differ in optimization criteria and optimization method they use

▪ We want to know how classifier works on new, unseen instances
▪ This property is called generalization – the classifier must generalize well

▪ Testing error – the error computed on instances not used for training

▪ ML models can be of different complexity
▪ The more parameters the model has, the more complex it is

▪ The model may be too simple of too complex for the task at hand

▪ Underfitting (model too simple for the task): both training and test errors are big

▪ Overfitting (model too complex for the task): training error small, test error big

19

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Outline

▪ Recap of Lecture #8

▪ Primer on Machine Learning

▪ Text Classification

▪ Text Clustering

▪ Learning to Rank

▪ Neural (Re-)Ranking

20

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Text Classification

▪ Text Classification is the automated categorization of some unit text (sentence,
paragraph, document) into one (or more) of predetermined labels
▪ E.g., classify news stories into high-level topics: politics, sport, culture, entertainment

▪ Why text classification in IR?
▪ Automatically assigned classes/labels provide an additional semantic layer

▪ These additional semantic annotations can be exploited to rerank/filter results

▪ E.g., Query: „lionel messi” (but retrieve only documents categorized as sport)

▪ Some popular ML algorithms for text classification:
▪ Traditional: Naive Bayes classifier, Logistic regression, (linear) SVM

▪ Recent: Convolutional neural networks (CNN)

21

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Text representations

▪ For the majority of text classification algorithms, instances of text need to be
transformed to numeric vector representations
▪ Exceptions: Naive Bayes classifier and Decision Trees/Random Forests which can

directly use word-based representations of text

▪ Numeric vector representations may be:
1. Sparse – each text is represented as (potentially weighted) vectors of word

occurrences, the size of the vector is the size of vocabulary

2. Dense – each text is represented by a semantic dense vector (or by a
concatenation of dense vectors of its consituent words)

▪ Traditional text classification models like logistic regression or SVM ignore the
order of words in the text
▪ I.e., they use bag-of-words representation of text

▪ Convolutional neural networks do take into account the order of words in the text
▪ They compute abstract representations of subsequences of text

22

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Logistic regression

▪ Despite its name, logistic regression is a classification algorithm
▪ We will focus on binary classification – logistic regression computes the probability

that some instance x belongs to some class (y = 1)

h(x| θ) = P(y = 1 | x) =
1

1+exp(−𝜽T𝐱)
= σ(𝜽T𝐱)

▪ Logistic regression is based on a logistic function: σ(a) = 1 / (1 + e-a)

▪ The logistic function maps the input value to the output interval [0, 1]

23

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Logistic regression

▪ Looking at the logistic regression formula (and the properties of log. function):
▪ h(x|θ) > 0.5 (i.e., instance belongs to the class) if and only if 𝜽T𝐱 > 0

▪ h(x|θ) < 0.5 (i.e., instance doesn’t belong to the class) if and only if 𝜽T𝐱 < 0

▪ In order to make predictions, we need to know the parameter vector θ
▪ We learn the values of parameters by minimizing some error function for the set of

training instances

▪ Logistic regression minimizes the so-called cross-entropy error

J(θ) = −σ𝑖 𝑦
𝑖 ∗ log h(xi|θ) + 1 − 𝑦𝑖 ∗ log(1 - h(xi|θ))

▪ J(θ) is minimized (i.e., parameters θ are optimized) via numeric optimization
▪ Most commonly using stochastic gradient descent (SGD)

24

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Convolutional neural network

▪ Convolutional neural network is a neural machine learning model that has been
successfully used for text and image classification tasks
▪ Unlike bag-of-words classifiers, treats text as an ordered sequence of words

▪ Requires a dense representation of text as input – we typically represent text as (2D)
concatenation of word embeddings

▪ CNNs parameters are convolution filters – real-valued matrices that are being
used to compute the convolution with the partso of the input sequence

▪ The convolutional layer is followed by the max-pooling layer – where only the top
K largest convolution scores are taken

▪ The final prediction is made by the softmax regression (generalization of the
logistic regression for more than two labels)

25

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Convolutional neural network

▪ CNNs parameters (real-values of all convolution filter matrices) are learned by
propagating the classification error via backpropagation algorithm

Image taken from: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

26

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Outline

▪ Recap of Lecture #8

▪ Primer on Machine Learning

▪ Text Classification

▪ Text Clustering

▪ Learning to Rank

▪ Neural (Re-)Ranking

27

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Cluster Analysis

▪ Cluster analysis (or, colloquially, clustering) is a multivariate statistical technique
that allows automated generation of groupings in data

▪ Components of clustering:
1. An abstract representation of an object using which the object is compared to

other objects

2. A function that measures the distance or similarity between the objects based on
their abstract representations

3. A clustering algorithm that groups the objects based on the similarities / distances
computed from their representations

4. (optional) Constraints with respect to cluster membership, cluster proximity, shape
of the clusters, etc.

28

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Text clustering

▪ Representations of text for clustering are typically similar as for text classification
(only we lack the labels)
▪ Sparse vectors (binary or weighted, e.g., using TF-IDF)

▪ Dense vectors (latent or semantic representations)

▪ Sometimes also more structured representations like trees or graphs

▪ Common distance/similarity functions
▪ Euclidean distance, cosine similarity/distance, Jaccard coefficient, Kullback-Leibler

divergence, tree/graph kernels for structured representations (trees/graphs)

▪ Clustering algorithms:
1. Sequential – e.g., single pass clustering

2. Hierarchical – e.g., agglomerative clustering, divisive clustering

3. Cost-function optimization clustering – e.g., K-means, mixture of Gaussians

29

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Cluster information retrieval

▪ Why clustering in information retrieval?
▪ We have already seen clustering at work in speeding up VSM retrieval (leaders)

▪ Cluster information retrieval model
▪ Cluster hypothesis (van Rijsbergen, 1979): Documents similar in content tend to be

relevant for the same queries

▪ Steps:
1. Collection documents are pre-clustered

2. The query is matched against cluster centroids

3. All documents from clusters represented by top-ranked centroids are returned
(ranked)

▪ Improves efficiency as the query needs not be compared with all documents
▪ No comparison with documents from clusters with low-ranked centroids

30

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Single pass clustering

▪ Simplest clustering algorithm
▪ The number of clusters does not need to be predefined

▪ Algorithm:
1. Start by putting the first text t1 into the first cluster c1 = {t1}

2. For all other texts, t2, ..., tn, one by one
I. Measure the distance/similarity with all existing clusters c1, ..., ck

▪ The similarity with the cluster is avg/max of similarities with instances in cluster

II. Identify the cluster ci with which the current text tj has the largest similarity (or
smallest distance)

III. If the similarity between tj and ci is above some predefined threshold λ, add the text tj

to cluster ci

▪ Although single-pass clustering doesn’t explicitly require it, the number of
clusters is indirectly determined by the value of the threshold λ

31

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

K-means

▪ Arguably the most famous and widely used clustering algorithm

▪ Requires the number of clusters k to be predefined – K clusters, S = {S1, S2, ..., Sk},
represented by mean vectors μ1, μ2, ..., μk

▪ K-means clusters instances (x1, x2, ..., xn) by finding the partition S that minimizes
the within-cluster distances (maximizing the within-cluster similarities):

▪ Q: How to find the optimal clusters (i.e., minimize the above sum of within-
cluster distances)?

▪ A: Using iterative optimization

32

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

K-means

▪ Algorithm for learning the centroids:
1. Randomly pick k mean vectors μ1, μ2, ..., μk in the same space (i.e., of same

dimensionality) as instance vectors
▪ K-means++ is an extension that more intelligently chooses the initial mean vectors

2. Iterate the following two steps until convergence:
I. Assign each instance xj to the cluster with the closest mean vector μi :

II. For each cluster, update the mean vector of a cluster
▪ Set the mean vector to the mean of the instances in the cluster

33

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Outline

▪ Recap of Lecture #8

▪ Primer on Machine Learning

▪ Text Classification

▪ Text Clustering

▪ Learning to Rank

▪ Neural (Re-)Ranking

34

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Learning to Rank

▪ So far, each IR model was ranking the documents according to a single similarity
function between the document and the query
▪ VSM: cosine between the (sparse) TF-IDF vectors of the document and query

▪ Latent/semantic IR: cosine between dense semantic vectors

▪ Probabilistic IR: P(d, q | relevance)

▪ Language modelling for IR: P(q | d)

▪ Idea: Combine different similarity scores as features of a supervised model

35

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Learning to Rank

▪ Learning to rank is a supervised information retrieval paradigm that
▪ Describes instances of document-query pairs (d, q) with a range of features

▪ Learns (with some ML algorithm) the mapping between these features and relevance

▪ Three different learning-to-rank approaches:
1. Point-wise approach

▪ Classify a single document-query (d, q) pair for relevance

2. Pair-wise approach
▪ Classify, for a pair of documents, which one is more relevant for the query, i.e., whether

r(d1, q) > r(d2, q) or r(d1, q) < r(d2, q)

3. List-wise approach
▪ Classify the whole ranking as either correct or wrong

36

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Learning to Rank

▪ Point-wise learning to rank
▪ Train a supervised classifier that for a given query q classifies each document as

relevant or non-relevant

▪ Binary classification task: document is either relevant or non-relevant

▪ Training instances:
▪ Query-document pairs (q, d) with relevance annotations

▪ Issues with point-wise learning to rank
▪ Do not care about absolute relevance, but relative order of documents by relevance

▪ If pairs (q, d1) and (q, d2) are classified as relevant, which document to rank higher?
▪ Supervised classifiers usually have confidence/probability scores assigned to predictions

▪ Rank d1 higher than d2 if the classifier is more confident about relevance of pair (q, d1)

37

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Learning to Rank

▪ Pair-wise learning to rank
▪ Train a supervised classifier that for a given query q and two documents d1 and d2

predicts which document is more relevant for the query

▪ Binary classification task:
▪ Class 1: „d1 more relevant than d2”

▪ Class 2: „d1 less relevant than d2”

▪ Training instances:
▪ Triples (q, d1, d2) consisting of queries and document pairs

▪ We may need comparison features – compare d1 and d2 with respect to q
▪ E.g., binary feature: VSM(q, d1) > VSM(q, d2)

▪ Generating gold labels from relevance annotations:
▪ For query q we have: d1(r), d2(nr), d3(r), d4(nr)

▪ We create the following training instances:

▪ {(q, d1, d2), 1}, {(q, d1, d4), 1}, {(q, d2, d3), 2}, {(q, d3, d4), 1}

38

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Learning to Rank

▪ Issues with pair-wise learning to rank
▪ If we don’t use comparison features (but direct similarities of d1 and d2 with q as

features), the model may not generalize well for new queries!

▪ We only obtain independent pair-wise decisions
▪ Q: What if pair-wise decisions are mutually inconsistent?

▪ E.g., (q, d1, d2) -> 1, (q, d2, d3) -> 1, (q, d1, d3) -> 2

▪ We need an additional postprocessing step
▪ To turn the sorted pairs into a ranking, i.e., partial ordering into global ordering
▪ Inconsistencies need to be resolved

▪ E.g., In a set of conflicting decisions, the one with the lowest classifier confidence is discarded

▪ Another issue: we effectively treat pairs from the bottom of ranking same as those
from the top of the ranking (and eval. metrics don’t treat them equally!)

39

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Learning to Rank

▪ List-wise ranking approach
▪ Instead of learning decisions for individual documents or pairs of documents, learn

to classify entire rankings as correct or wrong

▪ Training instances: query and an entire ranking of documents (q, d1, ..., dn)

▪ Binary classification task:
▪ Class 1: the ranking (q, d1, ..., dn) is correct

▪ Class 2: the ranking (q, d1, ..., dn) is incorrect

▪ Advantage: optimization criteria for the machine learning algorithm can be the
concrete IR evaluation metric we’re looking to optimize

▪ Issues with list-wise approach
▪ Entire ranking just one training instance

▪ Difficult to collect many positive training instances

▪ Informative features for the whole ranking are difficult to design

40

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Outline

▪ Recap of Lecture #8

▪ Primer on Machine Learning

▪ Text Classification

▪ Text Clustering

▪ Learning to Rank

▪ Neural (Re-)Ranking

41

2.7.2024

• We have access to enormous amounts of raw unannotated texts (at
least for major languages)

• Can we somehow pre-train the encoder using raw text?
• Yes, via language modeling! Task is to predict the word from the text based on

the encoding of the surrounding context

• LM-pretraining
• Causal (unidirectional) language modeling: GPT (1, 2, 3, 4, ...)

• Masked (bidirectional) language modeling: BERT

• In retrieval
• Use the Neural LM to encode queries and documents

Ranking Based on Neural Language Models

42

2.7.2024

Bidirectional Transformer (BERT)

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, January). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. NAACL 2019.

• Pretraining: Masked language modeling, MLM (and next sentence prediction, NSP)

• Encoder architecture: deep Transformer (attention-based) network

• Encoder’s parameters (learned in pre-training) further updated in task-specific training (aka fine-tuning)

• After task-specific training (aka fine-tuning), we have a task-specific encoder

Image from [Devlin et al., NAACL 19]

43

2.7.2024

Bidirectional Transformer (BERT)

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. NAACL 2019.

• Training instances: sentence pairs, with special tokens inserted
• Ca. 15% of tokens masked out (replaced with [MASK] token)
• Sequence start token [CLS] and sentence separation token [SEP]

• Pretraining: two self-supervised objectives
• Masked language modeling, MLM (predict the masked token from the context)
• Next sentence prediction, NSP (if sentences adjacent or not)

Image from [Devlin et al., NAACL 19]

44

2.7.2024

Bidirectional Transformers for LU (BERT)

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, January). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. NAACL 2019.

• Encoder architecture: deep Transformer (attention-based) network

• Deep architecture consisting of N transformer layers

• Each transformer layer:
• Multi-head attention layer

• Feed-forward layers

• Residual connection (representation before the layer added

to the result of the layer)

• Layer normalization

• All parameters of the Transformer: θTRANS

45

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Multi-stage ranking with BERT (Nogueira et al. 2019)

BERT as a point-wise ranker (monoBERT): binary relevance classifier

Feeds concatenation of query and document to BERT
Truncate query to at most 64 tokens
Concatenate query with document ([SEP]-token)
Truncate whole sequence to 512 tokens (max. seq. length)

Obtain representation representation of [CLS]-token in last layer

Feed [CLS] vector to single layered Feedforward Neural Network (FNN, binary
classification model) to obtain relevance score

Optimize the following loss:

J_pos/neg = set of indexes of relevant/non-relevant documents

Retrieval: Rank documents by their probability of being relevant[CLS] Query [SEP] Document

FNN

softmax

(probability of
document
being
relevant)

(Image based on Devlin et al. 2019)

46

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Multi-stage ranking with BERT (Nogieura et al. 2019)

[CLS] Query [SEP] Document [SEP] Document

FNN

softmax

BERT as a pair-wise ranker (duoBERT):

Truncate the query, candididate document and to 62, 223 and 223
tokens respectively

Concatenate query and document pair into single sequence
For a candidate list of documents, compute probabilities

Optimize the following loss:

Retrieval:
Aggregate pairwise scores into single score
Set of all (other) document indexes in ranking R1:

(Image based on Devlin et al. 2019)

(probability of
document
being more
relevant than
document)

Relevance score as pair-wise agreement that is
more relevant than the rest of the candidates
(other aggregation methods possible too, cf. paper):

47

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Multi-stage ranking with BERT (Nogueira et al. 2019)

Combining monoBERT and duoBERT into a multi-stage ranking architecture

Stage 1: Retrieve top- documents using BM25 (in example above) → input to monoBERT

Stage 2: Re-rank top- documents with monoBERT (in example above) → input to duoBERT

Stage 3: Re-rank subset with duoBERT

Image source: Nogueira et al. 2019

48

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Multi-stage ranking with BERT (Nogueira et al. 2019)

Summary

It’s common practice to use neural rankers for re-ranking, ranking the full collection would be too slow for practical purpose

Arranging retrieval in a multi-stage pipeline allows for trading off quality against latency by controlling admission of candidates at each stage

Target Corpus Pre-training (Masked Language Modelling on document collection) before training monoBERT/duoBERT improves results

Challenges for pair-wise ranking revisited:

1. We only obtain independent pair-wise decisions (inconsistent ranking): Aggregate (all) possible pair-wise agreements into relevance
scores

2. We effectively treat pairs from the bottom of ranking same as those from the top of the ranking (and eval. metrics don’t treat them
equally!): Neural model only re-ranks top k documents (ignore bottom of ranking)

49

2.7.2024Information Retrieval, Lecture 9: Classification, Clustering, and Learning to Rank

Now you...

▪ Know the basics of machine learning

▪ Understand supervised text classification

▪ Know some methods for (unsupervised) text clustering

▪ Understand how to combine different ranking functions (and other features) in a
supervised IR setting – learning to rank

▪ Have an idea of what neural (re-)rankers (neural L2R) look like

	Default Section
	Slide 1: 9. Classification, Clustering, and Learning to Rank
	Slide 2: After this lecture, you’ll...
	Slide 3: Outline
	Slide 4: Recap of the previous lecture
	Slide 5: LSI – Singular Value Decomposition
	Slide 6: LSI reduction – example
	Slide 7: LDA – Generative View
	Slide 8: LDA – Generative View
	Slide 9: Continuous Bag-of-Words (CBOW)
	Slide 10: Continuous Bag-of-Words (CBOW)
	Slide 11: Outline
	Slide 12: Why machine learning?
	Slide 13: Why machine learning?
	Slide 14: Why machine learning?
	Slide 15: Machine learning basics
	Slide 16: Supervised machine learning
	Slide 17: Supervised classification
	Slide 18: Supervised classification
	Slide 19: Outline
	Slide 20: Text Classification
	Slide 21: Text representations
	Slide 22: Logistic regression
	Slide 23: Logistic regression
	Slide 24: Convolutional neural network
	Slide 25: Convolutional neural network
	Slide 26: Outline
	Slide 27: Cluster Analysis
	Slide 28: Text clustering
	Slide 29: Cluster information retrieval
	Slide 30: Single pass clustering
	Slide 31: K-means
	Slide 32: K-means
	Slide 33: Outline
	Slide 34: Learning to Rank
	Slide 35: Learning to Rank
	Slide 36: Learning to Rank
	Slide 37: Learning to Rank
	Slide 38: Learning to Rank
	Slide 39: Learning to Rank
	Slide 40: Outline
	Slide 41: Ranking Based on Neural Language Models
	Slide 42: Bidirectional Transformer (BERT)
	Slide 43: Bidirectional Transformer (BERT)
	Slide 44: Bidirectional Transformers for LU (BERT)
	Slide 45: Multi-stage ranking with BERT (Nogueira et al. 2019)
	Slide 46: Multi-stage ranking with BERT (Nogieura et al. 2019)
	Slide 47: Multi-stage ranking with BERT (Nogueira et al. 2019)
	Slide 48: Multi-stage ranking with BERT (Nogueira et al. 2019)
	Slide 49: Now you...

