

6. Language Modeling for Retrieval

Prof. Dr. Goran Glavaš

Center for AI and Data Science (CAIDAS)
Fakultät für Mathematik und Informatik
Universität Würzburg

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

After this lecture, you'll...

2

- Know what a language model is
- Understand differences between different language models (unigram, bigram)
- Understand how to use language modeling for information retrieval
- Learn about different smoothing schemes for LM for IR
- Be able to compare LM for IR with vector space model and classic probabilistic models

Outline

3

- Recap of Lecture #5
- Language Models
 - Unigram LM
 - Bigram LM
- Query likelihood model for ranking
- Smoothing schemes
- Projects
 - Topics explained
 - Organization

Recap of the previous lecture

4

- Probabilistic retrieval
 - **Q:** Why probability theory in IR, and why probabilistic ranking?
 - **Q:** What are the uncertainties of the IR process that we model probabilistically?
- Probability ranking principle
 - **Q:** What does Robertson's probabilistic ranking principle say?
 - **Q:** How do we formalize the probability ranking principle?
- Probabilistic ranking
 - **Q:** What is the ranking task formulation in the probabilistic setting?
 - **Q:** Starting from (log-)odds of relevance, how do we derive the general probabilistic ranking score?
- Binary independence model and extensions
 - **Q:** What assumptions does binary independence model introduce?
 - **Q:** What does the ranking function look like under these assumptions?
 - **Q:** Derive the BIM ranking function with and without relevance judgements
 - **Q:** How do Two Poisson, BM11, and BM25 extend BIM? What assumptions do they introduce?

Recap of the previous lecture

5

- The ranking score at the core of all probabilistic models:

$$\log \left(\frac{P(D|Q, r)}{P(D|Q, \bar{r})} \right)$$

- Ranking function of Binary Independence Model
 - Without (left) and with (right) relevance judgements

$$\begin{aligned} \text{rel}(D, Q) &= \sum_{t \in Q} \log \left(\frac{P(D_t|Q, r)}{P(D_t|Q, \bar{r})} \right) & \text{rel}(D, Q) &= \sum_{t \in Q} \log \left(\frac{P(D_t|Q, r)}{P(D_t|Q, \bar{r})} \right) \\ &= \sum_{t \in Q} \log \left(\frac{0.5}{\frac{N_t}{N}} \right) & &= \sum_{t \in Q} \log \left(\frac{\frac{r_t+0.5}{R+1}}{\frac{N_t-r_t+0.5}{N-R+1}} \right) \\ &= \sum_{t \in Q} \log \left(0.5 \cdot \frac{N}{N_t} \right) & &= \sum_{t \in Q} \log \left(\frac{(r_t + 0.5) \cdot (N - R + 1)}{(R + 1) \cdot (N_t - r_t + 0.5)} \right) \end{aligned}$$

Binary independence model – example #1

6

- Example for BIM (without relevance judgements)
- Document collection consists of the following documents:
 - d_1 : „Frodo and Sam stabbed orcs”
 - d_2 : „Sam chased the orc with the sword”
 - d_3 : „Sam took the sword”
- The query is: „Sam stabbed orc”

t	d_1			d_2		d_3
$P(D_t q, r)$	Sam	stabbed	orcs	Sam	orc	Sam
$P(D_t q, \bar{r})$	0.5	0.5	0.5	0.5	0.5	0.5
w_t	3/3	1/3	2/3	3/3	2/3	3/3
$\sum w_t$	0.5	1.5	0.75	0.5	0.75	0.5

- Note: computations in this example are done without taking the logarithm

Binary independence model – example #2

7

- Example for BIM (with available relevance judgements)
- Document collection contains $N = 30$ documents, including:
 - d_1 : „Frodo and Sam stabbed orcs”
 - d_2 : „Sam chased the orc with the sword”
 - d_3 : „Sam took the sword”
- The query is: „Sam stabbed orc”
- User has indicated $R = 6$ relevant documents for this query
- Query terms: $t_1 = \text{„Sam”}$, $t_2 = \text{„stab”}$, $t_3 = \text{„orc”}$
- Document frequencies of query terms in relevant documents and overall collection are given as follows:
 - $r_{t1} = 3$, $N_{t1} = 15$
 - $r_{t2} = 4$, $N_{t2} = 16$
 - $r_{t3} = 2$, $N_{t3} = 14$

Binary independence model – example #2

8

- Example for BIM (with available relevance judgements)

	d_1			d_2		d_3
t	Sam	stabbed	orcs	Sam	orc	Sam
$P(D Q, r) = \frac{r_t+0.5}{R+1}$	0.5	0.64	0.36	0.5	0.36	0.5
$P(D Q, \bar{r}) = \frac{N_t-r_t+0.5}{N-R+1}$	0.5	0.5	0.5	0.5	0.5	0.5
w_t	1	1.28	0.72	1	0.72	1
$\sum_t w_t$		3		1.72		1

- Note: computations in this example are done without taking the logarithm

Outline

9

- Recap of Lecture #5
- **Language Models**
 - Unigram LM
 - Bigram LM
- Query likelihood model for ranking
- Smoothing schemes

Language Modeling (for Information Retrieval)

10

- **Language models** are probabilistic models that capture the probabilities of sequences of words in a language
 - **Unigram model**: how likely is the word „frodo” to appear (in a language)?
 - $P(\text{,}\text{,}frodo\text{)} = ?$
 - **Bigram model**: given that current word is „frodo”, what is the probability of next word being „baggins”?
 - $P(\text{,}baggins\text{)} \mid (\text{,}frodo\text{)} = ?$
 - **Trigram model**: given the current sequence „frodo baggins”, what is the probability of next word being „shire”?
 - $P(\text{,}shire\text{)} \mid (\text{,}frodo\text{,}baggins\text{)} = ?$
- **Q:** How do we estimate probabilities of words and sequences in a language?
 - I.e., What do we use as a **representation of the language**?

Language Modeling (for Information Retrieval)

11

- We use the **instantiations** of the language to estimate the probabilities of words and sequences
 - I.e., **large corpora** – the larger the corpora, it is the better approximation of the true word distributions in language
- In other applications we build language models largest corpora we can compile
- In information retrieval, we build language models
 1. From **individual documents**
 2. From the whole document **collections**

Language Modeling (for Information Retrieval)

12

- Language models for IR are also **probabilistic models**
- Language models for IR model the **query generation process**
- Given a document d and a query q , what is the probability of query being sampled from the language model of the document
- In other words, we want to estimate $P(Q = q | D = d)$
 - **Q:** Compare this with the probability we estimated in classic probabilistic retrieval
 - $P(R = 1 | Q = q, D = d)$
- The probability of a document generating a query is directly the function according to which we rank the documents
 - I.e., We rank the documents in decreasing order of $P(Q = q | D = d)$
- **Key question:** how do we estimate $P(Q = q | D = d)$?

Language Bowl Metaphor

13

- Assume we have a document in with following occurrences of terms:
 - „frodo” (5x), „baggins” (3x), „sam” (3x), „shire” (2x), „gandalf” (2x), „orc” (1x)
- Let’s represent each term with balls of one color:
 - „frodo” -> 5 blue balls, „baggins” -> 3 red balls, „sam” -> 3 yellow balls
 - „shire” -> 2 green balls, „gandalf” -> 2 orange balls, „orc” -> 1 purple ball
- We put all balls into one bowl and randomly take them out one by one
- **Q:** What is the probability of drawing a yellow ball?
 - $P(\text{yellow ball}) = P(\text{sam}) = 3 / (5 + 3 + 3 + 2 + 2 + 1) = 3 / 16$
- **Q:** What is the probability of drawing first orange then blue ball?
 - **Replacement:** $P(\text{orange}, \text{blue}) = P(\text{gandalf}, \text{frodo}) = P(\text{gandalf}) * P(\text{frodo}) = 2/16 * 5/16$
 - **No replacement:** $P(\text{orange}, \text{blue}) = P(\text{gandalf}, \text{frodo}) = P(\text{gandalf}) * P(\text{frodo} \mid \text{gandalf})$
 - $= 2/16 * 5/15$

Language Model – Generative Story

14

- Language model can be observed as a **statistical model** for generating data
- Example (toy language, consisting of four words):
 - $P(\text{„frodo"}) = 0.3, P(\text{„sam"}) = 0.25, P(\text{„gandalf"}) = 0.35, P(\text{„shire"}) = 0.1$
 - $P(\text{„sam"} | \text{„frodo"}) = 0.4, P(\text{„gandalf"} | \text{„frodo"}) = 0.4, P(\text{„shire"} | \text{„frodo"}) = 0.2$
- Generative process:
 1. Randomly draw the first word (e.g., from a uniform distribution)

2. Draw the second word from conditional distribution of the first word (e.g., „frodo”)

- **Q:** What is the probability of the sequence „frodo shire”?

Types of Language Models

15

- We want to estimate the probability of the sequence:

$$P(\text{Yellow} \text{ Orange} \text{ Blue} \text{ Green}) = P(\text{Yellow}) * P(\text{Orange} | \text{Yellow}) * P(\text{Blue} | \text{Yellow Orange}) * P(\text{Green} | \text{Yellow Orange Blue})$$

- **Unigram language model**

- Word independence = probability of the word does not depend on previous words
- We **ignore conditioning**

$$P(\text{Yellow} \text{ Orange} \text{ Blue} \text{ Green}) = P(\text{Yellow}) * P(\text{Orange}) * P(\text{Blue}) * P(\text{Green})$$

- **Bigram language model**

- The probability of word appearing depends only on the immediately preceding word
- Conditioning only one word before

$$P(\text{Yellow} \text{ Orange} \text{ Blue} \text{ Green}) = P(\text{Yellow}) * P(\text{Orange} | \text{Yellow}) * P(\text{Blue} | \text{Orange}) * P(\text{Green} | \text{Blue})$$

- **Q:** N-gram models for $N \geq 3$ are rarely used in practice. Why?

Sparseness issue of language models

16

- Language models have a **major issue**
 - The longer the phrase, the harder it is to estimate its true probability in language
 - E.g., $P(\text{„bilbo“} \mid \text{„frodo ran around house found ring“}) = ?$
- Long phrases have **very few appearances** even in very large corpora
 - Impossible to compute reliable estimates of their conditional probabilities
 - This is why language models for $N \geq 3$ are almost never used
- In practice, we use unigram and bigram language models
 - In IR setting, we build language models from individual documents
 - **Even bigram probability hard to estimate**
 - In IR, we most often employ the unigram language model

Estimating probabilities

17

- For the unigram language model we need to estimate
 - $P(\text{term})$ for **every term** in the text
- For the bigram language model we additionally need to estimate
 - $P(\text{term} \mid \text{previous term})$ for **every pair of terms** that appear one after another
- **Q:** How do we estimate these?
 - Unigram language model
 - $P(t_i) = n_i / n_T$
 - n_i is the number of occurrences of term t_i in the collection
 - n_T is the total number of word occurrences (i.e., tokens) in the collection
 - Bigram language model
 - $P(t_i \mid t_{i-1}) = n(t_{i-1}, t_i) / n(t_{i-1})$
 - $n(t_{i-1}, t_i)$ is the number of occurrences of bigram $t_{i-1}t_i$ in the collection
 - $n(t_{i-1})$ is the number of occurrences of term t_{i-1} in the collection

Estimating probabilities – example

18

- We are given a toy collection consisting of three documents
 - d_1 : „Frodo and Sam stabbed orcs”
 - d_2 : „Sam chased the orc with the sword”
 - d_3 : „Sam took the sword”
- Estimating word probabilities for the **unigram model**:

t_i	Frodo	Sam	orc	chased	sword	...
$P(t_i)$	1/16	3/16	2/16	1/16	2/16	...

- Estimating the conditional probabilities for the **bigram model**:

t_{i-1}, t_i	Frodo, chased	the, sword	the, orc	...
$P(t_i t_{i-1})$	0	2/3	1/3	...

Outline

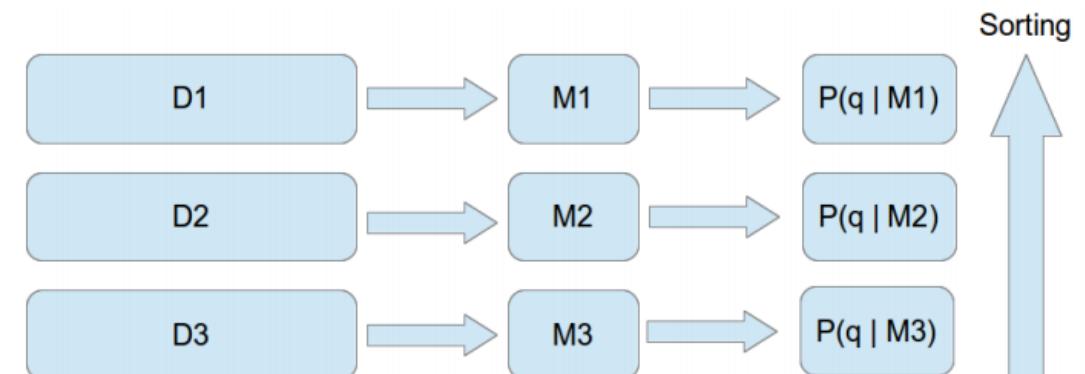
19

- Recap of Lecture #5
- Language Models
 - Unigram LM
 - Bigram LM
- **Query likelihood model for ranking**
- Smoothing schemes

Query likelihood model for ranking

20

- Given a document collection D and a query q we need to estimate the probability $P(q | d)$ for every document d in D
- In the **query likelihood model**, we estimate the probability $P(q | d)$ as the probability that the language model built from d generates the query q
- Algorithm
 - Compute the language model M_i for every document d_i in D
 - Compute the probability $P(q | M_i)$ for every language model M_i



- Intuition:** Language models of relevant documents should assign higher probability for the query

Query likelihood model for ranking – example

21

- We are given a toy collection consisting of three documents
 - d_1 : „Sam chased the orc with the sword”
 - d_2 : „Frodo and Sam stabbed orcs”
 - d_3 : „Sam took the sword”
- We are given the query „Sam and orc and sword”
- Let's rank the documents according to unigram LM for IR (ignore stopwords)
- **Step 1:** Compute language models of individual documents
 - M_1 : $P(\text{``sam''}) = 0.25$, $P(\text{``chase''}) = 0.25$, $P(\text{``orc''}) = 0.25$, $P(\text{``sword''}) = 0.25$
 - M_2 : $P(\text{``frodo''}) = 0.25$, $P(\text{``sam''}) = 0.25$, $P(\text{``stab''}) = 0.25$, $P(\text{``orc''}) = 0.25$
 - M_3 : $P(\text{``sam''}) = 0.33$, $P(\text{``took''}) = 0.33$, $P(\text{``sword''}) = 0.33$

Query likelihood model for ranking – example

22

- We are given a toy collection consisting of three documents
 - d_1 : „Sam chased the orc with the sword”
 - d_2 : „Frodo and Sam stabbed orcs”
 - d_3 : „Sam took the sword”
- We are given the query „Sam and orc and sword”
- Let's rank the documents according to unigram LM for IR (ignore stopwords)
- **Step 2:** Let's compute the probabilities $P(q | M_i)$
 - $P(q | M_1) = P(\text{``sam''} | M_1) * P(\text{``orc''} | M_1) * P(\text{``sword''} | M_1) = 0.25 * 0.25 * 0.25$
 - $P(q | M_2) = P(\text{``sam''} | M_2) * P(\text{``orc''} | M_2) * P(\text{``sword''} | M_2) = 0.25 * 0.25 * 0$
 - $P(q | M_3) = P(\text{``sam''} | M_3) * P(\text{``orc''} | M_3) * P(\text{``sword''} | M_3) = 0.33 * 0 * 0.33$
- **Q:** Is there any problem with query likelihoods given LMs of d_2 and d_3 ?

Outline

23

- Recap of Lecture #5
- Language Models
 - Unigram LM
 - Bigram LM
- Query likelihood model for ranking
- **Smoothing schemes**

Smoothing language models

24

- **Zero frequency problem:** Models we've considered so far give probability of **0** to queries containing any term that does not occur in the document
- We can prevent this by using **smoothing techniques**
- Smoothing techniques
 - **Change the probability distribution** of terms in the language model
 - Assign some small probability to unseen words
- Three prominent smoothing schemes
 - Laplace smoothing
 - Jelinek-Mercer smoothing
 - Dirichlet smoothing

Laplace smoothing

25

- **Laplace smoothing**

1. Adds a fixed small count (often it's 1) to all word counts
2. Renormalizes to get a probability distribution

$$P(t_i|M_d) = \frac{n_{i,d} + \alpha}{n_d + |V| \cdot \alpha}$$

- The probability of any **unseen** word equals

$$P(t_{uns}|M_d) = \frac{\alpha}{n_d + |V| \cdot \alpha}$$

- **Q:** What might be a potential shortcoming of the Laplace smoothing?

Jelinek-Mercer smoothing

26

- Laplace smoothing assumes that **all unseen words are equally likely**
- **Jelinek-Mercer smoothing** (also known as **interpolated smoothing**)
 1. Additionally builds a language model M_D from the whole document collection D
 2. Interpolates between probabilities of the query according to the
 - **Local LM** – language model M_d built from the particular document d
 - **Global LM** – language model M_D built from the whole collection

$$P(t_i|M_d) = \lambda \cdot P(t_i|M_d) + (1 - \lambda) \cdot P(t_i|M_D)$$

- The probability of a word unseen in the document d still gets **some probability** from the global language model
 - Probability of an unseen word depends on its frequency in whole collection
- **Q:** What if $P(t_i|M_D) = 0$?

Dirichlet smoothing

27

- **Dirichlet smoothing** can be seen as a generalization of the Laplace smoothing
 - Each word unseen in the document gets an artificial extra count
 - But the extra count is **not fixed**, depends on the **global probability of the term**
 - In this respect, **Dirichlet smoothing** is **similar** to **Jelinek-Mercer smoothing**

$$P(t_i|M_d) = \frac{n_{i,d} + \mu \cdot P(t_i|M_D)}{n_d + \mu}$$

- Less frequent words in the document get **more probability** from the global component
 - The value of the constant μ determines the scale of the global probability's contribution

Language models for IR vs. VSM

28

- Let's compare the **query likelihood model** with the **VSM model**
 1. Do we have a **term frequency component** in LM?
 - **Q:** do query terms that are more frequent in the document contribute more to the relevance score?
 - **A:** Yes! $P(t_i) = n_i / n_T$
 2. Do we have a document frequency component in LM?
 - **Q:** does the global document frequency of the query term affect the relevance scores?
 - **A:** No! If we use **Jelinek-Mercer** or **Dirichlet smoothing**, we take into consideration **collection frequency**, but not document frequency
 - However, mixing term frequency (within document) and collection frequency has an effect similar to using IDF

Language models for IR vs. VSM

29

- Let's compare the **query likelihood model** with the **VSM model**
- 3. Does LM for IR account for different lengths of documents?
 - **Q:** Does it somehow normalize the frequencies of query terms in documents with the document length?
 - **A:** Yes! $P(t_i) = n_i / n_T$
- LM for IR vs. VSM: **commonalities**
 1. Term frequency directly in the model
 2. Contributions of terms are normalized to account for document length
- LM for IR vs. VSM: **differences**
 1. LM for IR is based in probability theory, VSM in vector algebra
 2. Collection frequency (LM) vs. Document frequency (VSM)

Now you...

30

- Know what a language model is
- Understand differences between different language models (unigram, bigram)
- Understand how to use language modeling for information retrieval
- Are familiar with different smoothing schemes for LM for IR
- Are able to compare LM for IR with vector space model and classic probabilistic models