Theory of Machine Learning

Prof. Damien Garreau

Julius-Maximilians-Universität Würzburg

Winter term 2024-2025

1. Course organization

Organization of the course

- ► Wuestudy Course ID: 08134700
- ▶ Name on Wuecampus: Theory of Machine Learning
- ► Who?
 - Lectures: myself
 - Exercises: M. Taimeskhanov
- ► Format = slides (available on Moodle after each lecture)
- Exercises = mostly pen and paper, regular coding (in Python)
- Schedule:
 - 1. lectures on Fridays, 4-5:30pm
 - 2. exercise sessions on Fridays, 2-3:30pm (starting next week)
- Room: SE 2, CAIDAS building

Evaluation

- do not forget to register to the exam
- Evaluation:
 - written exam at the end of the semester
 - ▶ content = definitions, similar derivations to the exercises, more ambitious problem
 - ► exercises sessions → bonus points
- ► How does the bonus work?
 - attend the sessions
 - send your work to Magamed at the end of the session
 - ightharpoonup global grade ightarrow up to 10% bonus
- **Examples:** (based on 10 sessions)
 - ightharpoonup exam = 76%, I attended all exercise sessions and made a good effort for each: I get full bonus and my final grade is 76+10=86%
 - ightharpoonup exam = 96%, I attended all exercise sessions and made a good effort for each: I get full bonus and my final grade is 96 + 10 = 100%
 - exam = 76%, I skipped two sessions and during one session I was not paying attention and handed out something subpar: bonus = 7.5%, final grade = 83.5%

4

Goals and pre-requisites

▶ Pre-requisites:

- linear algebra (matrix, eigenvectors, diagonalization)
- analysis (derivative, gradient, global maximum)
- probability theory (random variable, density, expectation)
- ▶ I am glad to interrupt the lecture if some maths notion is not clear

Goals of the lecture:

- know about the basic vocabulary
- look into the details of the fundamental machine learning algorithms (linear regression, gradient descent, etc.)
- prove **key easy theoretical results** (*e.d.*, convergence rate for least squares)
- check experimentally that these results hold

Outline I

- 1. Course organization
- 2. Introduction

First concepts
Empirical risk minimization

3. Linear least-square regression

Framework Ordinary least-squares Fixed design analysis Ridge regression Random design analysis

4. Generalization bounds
Uniform bounds via concentration

Rademacher complexity
Approximation error

5. Kernel methods

Positive semi-definite kernels

Outline II

Reproducing kernel Hilbert spaces More examples The kernel trick and applications The representer theorem Kernel ridge regression Kernel logistic regression Generalization guarantees

7

Useful resources

Main references:

- for general learning theory: Francis Bach, Learning Theory from First Principles, 2023
- for methodology: Hastie, Tibshirani, Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, 2001 (second edition: 2009)
- for kernel methods specifically: Bernhard Schölkopf, Alexander Smola, Learning with kernels, MIT Press, 2002
- Wikipedia: as good as ever.
- ► Wolfram alpha: if you have computations to make and you do not know want to use a proper language: https://www.wolframalpha.com/
- Remedials:
 - ▶ linear algebra: Gilbert Strang, Introduction to Linear Algebra, Cambridge Press, 2009
 - probability theory: William Feller, An introduction to probability theory and its applications, Wiley, 1950

2. Introduction

9

2.1. First concepts

Fundamental example

- Fundamental example: image classification
- ightharpoonup input = image x
- ▶ Goal: given any input, we want to predict which object / animal is in the image
- ightharpoonup output = label y

 \longmapsto "lion"

► Successful philosophy: instead of defining the function *f* ourselves, we are going to *learn* it from data

Supervised learning

Definition: we call *predictor* (or *model*) any mapping between inputs and outputs.

- ightharpoonup supervised learning ightharpoonup we will find a good predictor using annotated examples
- Remark (i): why is it difficult?
 - output may not be a deterministic function of input
 - link between the two may be incredibly complex
 - only a few observations available, potentially not where we want them
 - high dimensionality
 - **...**
- ▶ Remark (ii): large part of machine learning: unsupervised learning (no annotations)
- **Examples:** clustering, dimension reduction, etc.
- out of the scope of this lecture

Input space

Definition: we call *input space* (or *domain*, or *domain set*) the set of all possible inputs of our machine learning model. We will denote it by \mathcal{X} .

- Example (i): tabular data = spreadsheet data; x has well-defined features such as age, income, has_a_car
- **Example (ii):** text data = ordered sequence of tokens; generally have to be pre-processed to be understood by our computer
- **Example (iii):** images $= H \times W \times C$ arrays of numbers

$$\in [0, 255]^{299 \times 299 \times 3}$$

Input space as vector space

- **Remark:** elements $x \in \mathcal{X}$ are usually described as *vectors*
- ▶ **Reminder:** vectors are 1D arrays of number, here are two vectors with three *coordinates*:

$$u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
, $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$.

- ▶ they can be
 - ightharpoonup added: $(u+v)_i=u_i+v_i$
 - ightharpoonup multiplied by a number: $(\lambda u)_i = \lambda u_i$
- vectors belong to a vector space, its dimension is the number of coordinates
- ightharpoonup dim = $d \Rightarrow$ canonical identification with \mathbb{R}^d
- ▶ **Intuition:** d copies of \mathbb{R} with a special structure
- ▶ Remark: d typically high in modern machine learning
- **Example:** ImageNet images \rightarrow 299 \times 299 \times 3 = 268, 203

Classification and regression

- we will consider two fundamental tasks: classification and regression
 - ▶ in classification, we want to associate to each $x \in \mathcal{X}$ a given class
 - ▶ in regression, we want to associate to each $x \in \mathcal{X}$ a given value
- Example (i): for each image on my hard drive, I want to predict what appears in it

Example (ii): for each customer in my database, I want to predict how many euros he will spend next year

Labels / responses

Definition: we call *target space* (or *output space*) the set of all possible outputs of our machine learning model. We will denote it by \mathcal{Y} .

- **Example (i):** in image classification, \mathcal{Y} is the set of all names of object and animals of the dataset
- we identify it with $\{1, 2, ..., 1000\} = [1000]$
- Remark (i): no notion of order (3 is not better than 2)
- **Remark (ii):** we will often restrict ourselves to $\mathcal{Y} = \{0,1\}$ or $\{-1,+1\}$ for simplicity
- **Example (ii):** in regression, $\mathcal{Y} = \mathbb{R}$ (or \mathbb{R}^k if we want to predict several targets simultaneously)

Training data

Definition: we call *training data* (or *training set*) a *finite* sequence of elements of $\mathcal{X} \times \mathcal{Y}$, denoted as

$$S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}.$$

Here, n is the size of the training set.

- **Example** (i): S is a collection of 10^6 images, each associated to the correct label
- **Example** (ii): S is a spreadsheet with the customer data from the last 25 years
- ▶ **Remark:** in real-life, there are many complications:
 - labels may be corrupt
 - some data (= feature value for some observations) may be missing
- we do not consider these complications in this lecture

Machine learning algorithm

we can now be a bit more precise:

Definition: we call *machine learning algorithm* a mapping A transforming a training set $S \in (\mathcal{X} \times \mathcal{Y})^n$ into a predictor $f : \mathcal{X} \to \mathcal{Y}$. Thus f = A(S).

- ▶ of course, we want to devise a "good" algorithm
- Question: what does good even mean?
- Definition that machine learning uses: performance on new, unseen data
- there are two difficulties here: we need to define
 - 1. performance
 - 2. new, unseen data

Loss functions

Definition: we call loss function any mapping $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.

- ▶ **Intuitively:** $\ell(y, y')$ measures the cost of predicting y' whereas the true target is y
- generally, we require that:
 - \triangleright ℓ is symmetric;
 - $ightharpoonup \ell$ has non-negative (≥ 0) values
 - $\ell(y,y) = 0.$
- **Example (i):** classification $\rightarrow 0-1$ loss

$$\ell(y,y')=\mathbb{1}_{y\neq y'}.$$

- ▶ here, $1_E = 1$ if E is true, 0 otherwise
- ▶ Remark: does not matter how many classes

Loss functions

Example (ii): regression $\to \mathcal{Y} \subseteq \mathbb{R} \to \text{square loss}$

$$\ell(y,y')=(y-y')^2.$$

other possibility: absolute loss

$$\ell(y,y')=|y-y'|.$$

- ▶ Other examples: structured prediction,¹ functional regression, etc.
- **Remark (i):** in addition to the properties already lister, regression loss tend to tend to ∞ when the prediction errs far away from the ground truth
- ▶ Remark (ii): loss function also tend to be convex, but there are exceptions

¹Osokin, Bach, Lacoste-Julien, *On structured prediction theory with calibrated convex surrogate losses*, NeurlPS, 2017

Expected risk: informal definition

- lacktriangle we model new, unseen data by a random variable $(X,Y)\in\mathcal{X}\times\mathcal{Y}$ with distribution p
- Intuition: new annotated data coming from the same distribution as the training data
- ▶ Informal definition: expected risk is the expected loss on new data
- ▶ **Reminder:** expectation = average value of a random variable
- ▶ in the discrete case, $X \in \{x_1, \ldots, x_p\}$,

$$\mathbb{E}[X] = \sum_{i=1}^{p} x_i \cdot \mathbb{P}(X = x_i) .$$

Intuition: sum of outcome values weighted by how often they occur

Expected risk

let us give a formal definition:

Definition: for a given data distribution p and loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$, we define the *expected risk* (or *test error*) of a predictor $f: \mathcal{X} \to \mathcal{Y}$ as

$$\mathcal{R}(f) := \mathbb{E}\left[\ell(Y, f(X))\right].$$

- Remark (i): depends on both the loss function and the data distribution p
- **Remark (ii):** hidden assumption: data distribution is equal to p...
- unfortunately, we do not know the data distribution...
- expected risk is the key quantity: ideally, we want to find f such that it is minimal

Special cases

- general definition, often specified in two key examples:
- **Binary classification:** $\mathcal{Y} = \{0,1\}$ and $\ell(y,y') = \mathbb{1}_{y \neq y'}$, risk can be rewritten as

$$\mathcal{R}(f) = \mathbb{E}\left[\mathbb{1}_{Y \neq f(X)}\right] = 0 \cdot \mathbb{P}\left(Y = f(X)\right) + 1 \cdot \mathbb{P}\left(f(X) \neq Y\right)$$
$$= \mathbb{P}\left(f(X) \neq Y\right).$$

- **Remark:** probability of disagreement = 1 accuracy
- ▶ Regression: $\mathcal{Y} = \mathbb{R}$ and $\ell(y, y') = (y y')^2$

$$\mathcal{R}(f) = \mathbb{E}\left[(Y - f(X))^2 \right]$$

- ► also known as **mean squared error** (= MSE)
- in any case, lower is better

Expected risk

Example (i): in the classification setting, consider the following predictor:

$$\forall x \in \mathcal{X}, \qquad f(x) = 1.$$

- let us assume balanced data, that is, $\mathbb{P}(Y=0) = \mathbb{P}(Y=1) = 1/2$
- ▶ then the expected risk of *f* is

$$\mathcal{R}(f) = \mathbb{P}(f(X) \neq Y) = \mathbb{P}(Y \neq 1) = \mathbb{P}(Y = 0) = 1/2.$$

- **Example (ii):** regression setting, assume that $Y = X + \varepsilon$, with $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- ightharpoonup consider f(x) = x (perfect predictor!)

$$\mathcal{R}(f) = \mathbb{E}\left[(Y - f(X))^2 \right] = \mathbb{E}\left[(X + \varepsilon - X)^2 \right] = \mathbb{E}\left[\varepsilon^2 \right] = \sigma^2 > 0.$$

▶ Reminder: $Var(\varepsilon) = \mathbb{E}[(\varepsilon - \mathbb{E}[\varepsilon])^2]$

Bayes risk

- Question: what is the best prediction function for our criterion (expected risk)?
- Intuitively: we want to find f that minimizes expected risk

Definition: we define the *Bayes risk* as the minimal possible risk over all possible predictors, for a given loss function and data distribution. Formally,

$$\mathcal{R}^{\star} := \inf_{f} \mathcal{R}(f) = \inf_{f} \mathbb{E} \left[\ell(Y, f(X)) \right].$$

- **Reminder:** $\inf_{x \in E} r(x)$ is the minimal value of r(x) on the set E
- ► Remark (i): this is not necessarily = 0
- **Remark (ii):** \mathcal{R}^* is our true yardstick

Bayes predictors

lacktriangle in some cases, one can actually give predictors achieving \mathcal{R}^\star

Definition: we call *Bayes predictor* any predictor with minimal risk and denote it by f^* . Formally,

$$\mathcal{R}(f^\star) = \mathcal{R}^\star \left(= \inf_f \mathcal{R}(f) = \inf_f \mathbb{E}\left[\ell(Y, f(X))\right] \right).$$

- ▶ Question: how do we do that?
- ightharpoonup first step = using the **tower property**: let g be a predictor,

$$\mathcal{R}(g) = \mathbb{E}_{x \sim p}[\mathbb{E}\left[\ell(Y, g(x)) \mid X = x\right]]$$

Reminder: conditional probability

Proposition: given two events A and B such that $\mathbb{P}(B) \neq 0$, we define the *conditional probability* of A "given" B by

$$\mathbb{P}(A \mid B) := \frac{\mathbb{P}(A \text{ and } B)}{\mathbb{P}(B)}.$$

- **Example:** let us consider two Bernoulli with parameter 1/2, A_1 and A_2
- we can compute

$$\begin{split} \mathbb{P}\left(A_1 + A_2 = 1 \,|\, A_1 = 0\right) &= \frac{\mathbb{P}\left(A_1 + A_2 = 1 \text{ and } A_1 = 0\right)}{\mathbb{P}\left(A_1 = 0\right)} = \frac{\mathbb{P}\left(A_1 = 0 \text{ and } A_2 = 1\right)}{\mathbb{P}\left(A_1 = 0\right)} \\ &= \frac{1/4}{1/2} = \frac{1}{2} \,. \end{split}$$

Reminder: conditional expectation

Proposition: let X and Y be discrete rndom variables. The *conditional expectation* of X given Y is given by

$$\mathbb{E}[X \mid Y = y] = \sum_{x} x \cdot \mathbb{P}(X = x \mid Y = y).$$

- **Remark:** undefined if $\mathbb{P}(Y = y) = 0$ (but still possible for continuous random variables)
- **Example:**

$$\mathbb{E}[A_1 + A_2 \mid A_1 = 0] = 0 \cdot \mathbb{P}(A_1 + A_2 = 0 \mid A_1 = 0) + 1 \cdot \mathbb{P}(A_1 + A_2 = 1 \mid A_1 = 0) + 2 \cdot \mathbb{P}(A_1 + A_2 = 2 \mid A_1 = 0) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} + 2 \cdot 0 = \frac{1}{2}.$$

Reminder: tower property

Proposition: Let X and Y be two random variables. Then $\mathbb{E}_Y[\mathbb{E}[X \mid Y]] = \mathbb{E}[X]$.

▶ Proof (in the discrete case): using the previous slide:

$$\mathbb{E}_{Y}[\mathbb{E}[X \mid Y]] = \sum_{y} \left(\sum_{x} x \cdot \mathbb{P}(X = x \mid Y = y) \right) \mathbb{P}(Y = y)$$

$$= \sum_{x} x \cdot \sum_{y} \mathbb{P}(X = x \mid Y = y) \mathbb{P}(Y = y)$$

$$= \sum_{x} x \cdot \sum_{y} \mathbb{P}(X = x, Y = y)$$

$$= \sum_{x} x \cdot \mathbb{P}(X = x)$$

$$\mathbb{E}_{Y}[\mathbb{E}[X \mid Y]] = \mathbb{E}[X] \quad \Box$$

29

Back to Bayes predictors

according to the tower property:

$$\mathcal{R}(g) = \mathbb{E}_{x \sim p}[\mathbb{E}\left[\ell(Y, g(x)) \mid X = x\right]]$$

- **Remark:** $\mathbb{E}[\ell(Y, g(x)) \mid X = x]$ is also sometimes called the *conditional risk*
- we can *define* f^* such that, for all $x \in \mathcal{X}$, it minimizes

$$C(g,x) := \mathbb{E}\left[\ell(Y,g(x)) \mid X = x\right].$$

by positivity of the integral, this gives us the best possible risk

Bayes predictors

summarizing everything:

Proposition: The expected risk is minimized at a *Bayes predictor* $f^*: \mathcal{X} \to \mathcal{Y}$ satisfying for all $x \in \mathcal{X}$

$$f^{\star}(x) \in \operatorname*{arg\;min}_{z \in \mathcal{Y}} \mathbb{E}\left[\ell(Y, z) \mid X = x\right].$$

All Bayes predictor have the same risk, equal to the Bayes risk. It can be computed as

$$\mathcal{R}^{\star} = \mathbb{E}_{x \sim p} \left[\inf_{z \in \mathcal{Y}} \mathbb{E} \left[\ell(Y, z) \mid X = x \right] \right].$$

- **Remark:** f^* seems complicated to compute... and it is
- we can still get some interesting statements

Examples

Binary classification: for the 0-1 loss, Bayes predictor can be written

$$f^{\star}(x) \in \mathop{\arg\min}_{z \in \{0,1\}} \mathbb{P}\left(Y \neq z \,|\, X = x\right) = \mathop{\arg\max}_{z \in \{0,1\}} \mathbb{P}\left(Y = z \,|\, X = x\right).$$

- set $\eta(x) = \mathbb{P}(Y = 1 | X = x)$, then $f^*(x) = \mathbb{1}_{\eta(x) > 1/2}$
- Bayes risk is equal to

$$\mathcal{R}^\star = \mathbb{E}\left[\mathsf{min}(\eta(\mathsf{x}), 1 - \eta(\mathsf{x}))
ight]$$
 .

Regression: for the square loss, Bayes predictor is such that

$$f^*(x) \in \operatorname*{arg\,min}_{z \in \mathbb{R}} \mathbb{E}\left[(Y - z)^2 \mid X = x \right] = \mathbb{E}\left[Y \mid X = x \right]$$

32

2.2. Empirical risk minimization

Empirical risk

Reminder: we do not have access to data distribution

Definition: for fixed training data $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, i = 1, ..., n, we define the *empirical risk* of a predictor $f : \mathcal{X} \to \mathcal{Y}$ as

$$\hat{\mathcal{R}}(f) := \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(x_i)).$$

▶ **Intuition:** good proxy for \mathcal{R} if n is large enough:

$$\hat{\mathcal{R}}(f) \approx \mathcal{R}(f)$$
.

Empirical risk minimization

- ightharpoonup let ${\cal H}$ be a class of models
- ideally, we would like to find

$$f^* \in \arg\min_{h \in \mathcal{H}} \mathcal{R}(h)$$
.

- ▶ **Problem:** we do not know p... and even if we did it would still be a very difficult problem
- **Idea:** replace \mathcal{R} by the empirical risk
- ▶ this leads to empirical risk minimization (ERM):²

$$\hat{f} \in \operatorname*{arg\,min}_{f \in \mathcal{H}} \hat{\mathcal{R}}(f) = \operatorname*{arg\,min}_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)).$$

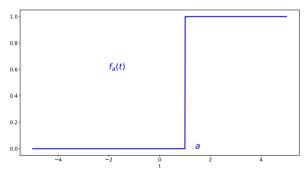
²Vapnik, Principles of risk minimization for learning theory, NIPS, 1991

Empirical risk minimization: example

- let us give a simple example
- ightharpoonup take $\mathcal{X}=\mathbb{R}$, $\mathcal{Y}=\{0,1\}$, 0-1 loss, and "bump functions:"

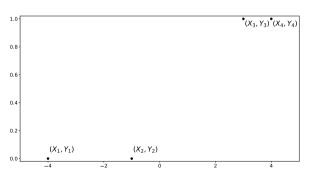
$$\mathcal{H} = \{f_a : \mathbb{R} \to \mathbb{R}, \forall t \in \mathbb{R}, f_a(t) = \mathbb{1}_{t \geq a}\}.$$

Visually, elements of \mathcal{H} look like:

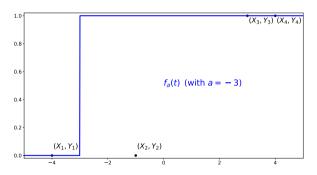


take the following datapoints:

$$(X_1, Y_1) = (-4, 0), (X_2, Y_2) = (-1, 0), (X_3, Y_3) = (3, 1), (X_4, Y_4) = (4, 1).$$

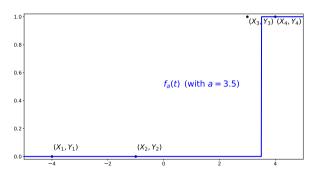


 \triangleright for each candidate f_a , we can compute the associated empirical risk:



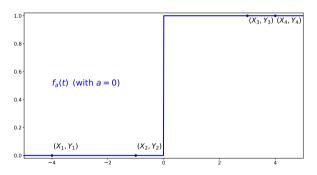
$$\hat{\mathcal{R}}(f_a) = \frac{1}{4}(0+1+0+0) = \frac{1}{4}.$$

 \triangleright for each candidate f_a , we can compute the associated empirical risk:



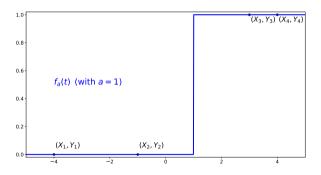
$$\hat{\mathcal{R}}(f_a) = \frac{1}{4}(0+0+1+0) = \frac{1}{4}.$$

ightharpoonup we notice that several candidates achieve empirical risk = 0:



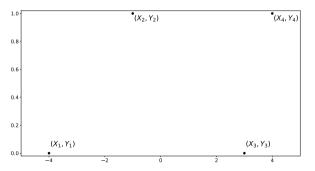
$$\hat{\mathcal{R}}(f_a) = \frac{1}{4}(0+0+0+0) = 0.$$

ightharpoonup we notice that several candidates achieve empirical risk = 0:



$$\hat{\mathcal{R}}(f_a) = \frac{1}{4}(0+0+0+0) = 0.$$

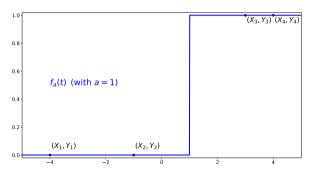
- f_a with $a \in (-1,3)$ are all **empirical risk minimizers**
- we can pick any of them
- not always the case:



Question: can you find a candidate with empirical risk = 0?

Generalization

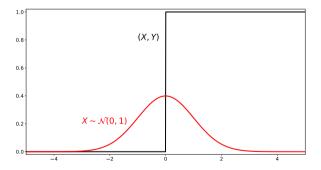
back to the "separable" case:



▶ **Question:** does $\hat{\mathcal{R}}(f) = 0$ say something about $\mathcal{R}(f)$?

Generalization

- ► **Answer:** it depends (on the true data distribution)
- **Example:** assume $X \sim \mathcal{N}(0,1)$, and $Y = \mathbb{1}_{X \geq 0}$



• we can compute the (true) risk for different candidates

Generalization

Example:

$$\begin{split} \mathcal{R}(f_1) &= \mathbb{P}\left(f_1(X) \neq Y\right) & \text{(definition of the risk)} \\ &= \mathbb{P}\left(\mathbb{1}_{X \geq 1} \neq \mathbb{1}_{X \geq 0}\right) & \text{(definition of } f_a \text{ and data distribution)} \\ &= \mathbb{P}\left(X \in [0,1]\right) & \\ &= \frac{1}{\sqrt{2\pi}} \int_0^1 \mathrm{e}^{\frac{-x^2}{2}} \mathrm{d}x & \text{(density of a } \mathcal{N}\left(0,1\right)) \\ \mathcal{R}(f_1) &\approx 0.34 \end{split}$$

- ▶ this is not zero!
- ightharpoonup one predictor, though, has zero risk in that case: f_0
- ▶ it is the Bayes predictor

Overfitting

- ▶ **Problem:** in extreme cases, this can be a severe issue
- ightharpoonup this is in particular true when the hypotheses class ${\cal H}$ is too large
- **Example:** assume \mathcal{H} is the set of all measurable functions
- \triangleright consider a fixed training set (x_i, y_i) and let

$$h(x) = \begin{cases} y_i & \text{if } \exists i \in \{1, \dots, n\} \text{ s.t. } x = x_i \\ 0 & \text{otherwise.} \end{cases}$$

▶ in particular, $h \in \mathcal{H}$ (since \mathcal{H} contains all functions), and

$$\forall i \in [n], \quad h(x_i) = y_i.$$

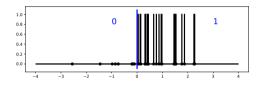
in that case,

$$\hat{\mathcal{R}}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{h(x_i) \neq y_i} = 0.$$

empirical risk = 0 (interpolating)

Overfitting, ctd.

- ▶ As in the previous example: assume $Y = \mathbb{1}_{X \geq 0}$ and $X \sim \mathcal{N}(0,1)$
- ► *h* looks like:



- ▶ since X has a density, $\mathbb{P}(X = x_i) = 0$
- thus we will always predict 0 on new datapoints
- let us compute the true risk:

$$\mathcal{R}(h) = \mathbb{P}(h(X) \neq Y) = \mathbb{P}(0 \neq \mathbb{1}_{X \geq 0}) = 1/2.$$

this is essentially the worst we can get, despite having 0 training error

How to prevent overfitting?

- ▶ **Solution I:** reduce size of *H*
- typical situation: parameterized space $f_{\theta}: \mathcal{X} \to \mathcal{Y}$, with $\theta \in \Theta$
- ▶ in this situation. ERM becomes

$$\hat{ heta} \in rg \min_{ heta \in \Theta} \hat{\mathcal{R}}(f_{ heta}) = rg \min_{ heta \in \Theta} rac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f_{ heta}(X_i))$$

- we can control the number of parameters
- ▶ Solution II: regularize (not exclusive), that is, minimize

$$\hat{\mathcal{R}}(f_{ heta}) + \lambda \Omega(heta) = rac{1}{n} \sum_{i=1}^n \ell(Y_i, f_{ heta}(X_i)) + \lambda \Omega(heta).$$

Example: $\Omega(\theta) = \lambda \|\theta\|^2$ with $\lambda > 0$ some hyperparameter

Empirical risk minimization: summary

- Pros:
 - general framework
 - lacktriangle can be solved approximately when ${\cal H}$ is parameterized
- ► Cons:
 - non-separable data
 - ▶ non-convexity → optimization problem can be hard
 - overfitting
- Other approaches: local averaging
- ▶ Idea: we know $\mathbb{E}[Y \mid X = x]$ or $\mathbb{P}(Y = 1 \mid X = x)$ are "the best we can do"
- ightharpoonup det us approximate them directly
- ightharpoonup typical example = k-nearest neighbors³

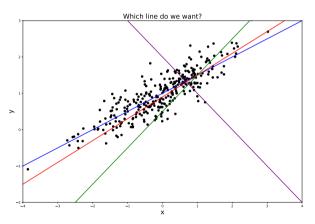
³Fix, Hodges, *Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties*, USAF report. 1951

3. Linear least-square regression

3.1. Framework

Intuition

▶ Goal: find the "best" hyperplane going through our training data



Least-square framework

- ▶ reminders: regression $\Rightarrow \mathcal{Y} = \mathbb{R}$
- ▶ square loss $\ell(y, y') = (y y')^2$
- we know that the optimal predictor is $f^*(x) = \mathbb{E}[Y \mid X = x]$
- **Notation:** $\varphi: \mathcal{X} \to \mathbb{R}^d$ some feature function
- ERM on the class of functions

$$f_{\theta}(x) = \varphi(x)^{\top} \theta = \sum_{j=1}^{d} \varphi(x)_{j} \theta_{j},$$

with $\theta \in \mathbb{R}^d$

- **Remark:** linear in θ , not necessarily in x!
- ► Overall: minimize

$$\hat{\mathcal{R}}(\theta) := \frac{1}{n} \sum_{i=1}^{n} (Y_i - \varphi(X_i)^{\top} \theta)^2.$$

Random design

- \triangleright mathematically, more interesting to see (x_i, y_i) as random variables
- ightharpoonup we write (X_i, Y_i) instead of (x_i, y_i)

Key assumption: (X_i, Y_i) are independent, identically-distributed (i.i.d.) copies of (X, Y).

- ▶ from now on, we will work in this framework
- Remark: distribution shift is a current research topic⁴
- Key difference:

$$\hat{\mathcal{R}}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f(X_i))$$

is a random variable

⁴Sugiyama, Kawanabe, *Machine learning in non-stationary environments: Introduction to covariate shift adaptation*, MIT Pres, 2012

Example 1: linear regression

- **Question:** what is φ ? and why is it useful?
- ightharpoonup univariate inputs: $\mathcal{X} = \mathbb{R}$
- ightharpoonup take d=2
- ▶ Why? allowing an *intercept*: $\varphi(x) = (1, x)^{\top}$ and

$$\Phi = \begin{pmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{pmatrix}$$

Example 2: polynomial regression

- ightharpoonup consider again univariate inputs: $\mathcal{X} = \mathbb{R}$
- ▶ take d = p + 1, with p maximal degree
- ightharpoonup set $\varphi(x)=(1,x,x^2,\ldots,x^p)^{\top}$, and

$$\Phi = \begin{pmatrix} 1 & X_1 & X_1^2 & \cdots & X_1^p \\ \vdots & \vdots & & \vdots \\ 1 & X_n & X_n^2 & \cdots & X_n^p \end{pmatrix} \in \mathbb{R}^{n \times (p+1)}$$

true strength of the linear model: non-linear transformations of the entries

Matrix notation

- ▶ let $Y := (Y_1, ..., Y_n)^\top \in \mathbb{R}^n$ the response vector
- let $\Phi \in \mathbb{R}^{n \times d}$ the matrix of inputs
- ightharpoonup row i of $\Phi = \varphi(X_i)^{\top}$
- with these notation.

$$\hat{\mathcal{R}}(\theta) = \frac{1}{n} \| Y - \Phi \theta \|^2.$$

Reminder:

$$||u||^2 = \langle u, u \rangle = u^{\top} u = \sum_{i=1}^d u_i^2$$

denotes the Euclidean norm

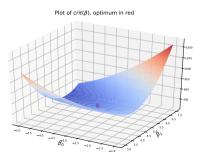
3.2. Ordinary least-squares

Ordinary Least Squares

▶ Reminder: we want to minimize

$$\hat{\mathcal{R}}(\theta) = \frac{1}{n} \| Y - \Phi \theta \|^2.$$

now we have to work a bit because crit is a function of d variables:



Calculus aparte

Reminder: let $f: \mathbb{R}^N \to \mathbb{R}^M$, then the *gradient* of f is defined as

$$\nabla f = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_M}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_M}{\partial x_2} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_1}{\partial x_N} & \frac{\partial f_2}{\partial x_N} & \cdots & \frac{\partial f_M}{\partial x_N} \end{pmatrix} \in \mathbb{R}^{N \times M}$$

Example: when f is real-valued (M = 1), ∇f is a vector, thus a column

Calculus aparte, ctd.

- let us consider first the function $f: x \mapsto Ax$, with $x \in \mathbb{R}^N$ and $A \in \mathbb{R}^{M \times N}$ a fixed matrix
- ▶ let $j \in \{1, ..., M\}$, then we know that

$$(Ax)_j = A_{j,1}x_1 + A_{j,2}x_2 + \cdots + A_{j,N}x_N.$$

▶ let $i \in \{1, ..., N\}$, then

$$\frac{\partial}{\partial x_i} (Ax)_j = A_{j,i}.$$

we deduce from this computation that

$$\forall A \in \mathbb{R}^{M \times N}, \qquad \nabla(Ax) = A^{\top}$$

61

Calculus aparte, ctd.

- ▶ more complicated: let $B \in \mathbb{R}^{N \times N}$ and define $f : x \mapsto x^{\top}Bx$
- ▶ set $1 \in \{1, \dots, N\}$, then

$$(Bx)_j = B_{j,1}x_1 + B_{j,2}x_2 + \cdots + B_{j,N}x_N.$$

we deduce that

$$x^{\top}Bx = \sum_{j,k=1}^{n} B_{j,k}x_jx_k.$$

therefore,

$$\frac{\partial}{\partial x_i}(x^\top B x) = \sum_{i=1}^n (B_{i,j} + B_{j,i}) x_j.$$

in a concise form:

$$\forall B \in \mathbb{R}^{N \times N}, \qquad \nabla(x^{\top}Bx) = (B + B^{\top})x$$

Closed-form solution (i)

- $ightharpoonup \hat{\mathcal{R}}$ is a convex smooth function \Rightarrow look at critical point
- back to the definition:

$$\hat{\mathcal{R}}(\theta) = \frac{1}{n} \|Y - \Phi\theta\|^2$$

$$= \frac{1}{n} (\|Y\|^2 - 2\theta^\top \Phi^\top Y + \theta^\top \Phi^\top \Phi\theta)$$

▶ from the previous slides, we deduce

$$\nabla \hat{\mathcal{R}}(\theta) = \frac{2}{n} \left(\Phi^{\top} \Phi \theta - \Phi^{\top} Y \right)$$

setting to zero yields the normal equations:

$$\Phi^{\top}\Phi\hat{\theta} = \Phi^{\top}Y.$$

Closed-form solution (ii)

Proposition: Assume that Φ has full column rank. Then the unique minimizer of $\hat{\mathcal{R}}$ is given by

$$\hat{\theta} = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}Y$$
.

- \blacktriangleright when it exists, we will refer to $\hat{\theta}$ as the *ordinary least squares* (OLS) solution
- ▶ Remark (i): Φ full column rank $\Leftrightarrow \Phi^{\top}\Phi$ positive-definite (in particular, invertible)
- **Remark (ii):** if $\varphi = id$, recover the well-know formula:

$$\hat{\theta} = (X^{\top}X)^{-1}X^{\top}Y.$$

Remark (iii): $\Phi \hat{\theta}$ (vector of predictions) = orthogonal projection of Y onto Im (Φ)

Numerical resolution, invertible case

- inverting matrices is hard (costly + unstable)
- ▶ What is done in practice: *QR* factorization: write

$$\Phi = QR$$

with $Q \in \mathbb{R}^{n \times d}$ such that $Q^{\top}Q = I$ and $R \in \mathbb{R}^{d \times d}$ upper triangular

- ► fast, and more stable
- ▶ then

$$\Phi^{\top}\Phi = R^{\top}Q^{\top}QR = R^{\top}R$$

which means

$$(\Phi^{\top}\Phi)\,\hat{\theta} = \Phi^{\top}Y$$

if, and only if,

$$R^{\top}R\hat{\theta} = R^{\top}Q^{\top}Y \quad \Leftrightarrow \quad R\hat{\theta} = Q^{\top}Y$$

▶ last step = triangular linear system (easy)

Numerical resolution, non-invertible case

Definition-Theorem (singular value decomposition): Let $A \in \mathbb{R}^{M \times N}$. Then there exist (i) $U \in \mathbb{R}^{M \times M}$ orthogonal, (ii) $V \in \mathbb{R}^{N \times N}$ orthogonal, and (iii) $\Sigma \in \mathbb{R}^{M \times N}$ diagonal with positive entries such that

$$A = U\Sigma V^{\top}$$
.

The matrix Σ is unique up to ordering of its diagonal elements.

- we call $\sigma_i := \Sigma_{ii}$ the **singular values** of A
- ▶ they are the square roots of the eigenvalues of A^TA
- only rank (A) of them are non-zero
- ▶ the columns of U (resp. V) are the eigenvectors of AA^{\top} (resp. $A^{\top}A$)

Generalized inverse

pseudo-inverse of a diagonal matrix:

$$egin{pmatrix} d_1 & 0 & \cdots & 0 & 0 \ 0 & \ddots & \ddots & dots & dots & \cdots \ 0 & \cdots & 0 & d_p & 0 \end{pmatrix} \mapsto egin{pmatrix} d_1^\dagger & 0 & \cdots & 0 \ 0 & \ddots & \ddots & dots \ dots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & d_p^\dagger \ 0 & \cdots & 0 & 0 \ dots & dots & dots \end{pmatrix}$$

where $x^{\dagger} = x^{-1}$ is $x \neq 0$ and 0 otherwise

▶ the **Moore-Penrose pseudo-inverse** of *M* is then defined as

$$M^{\dagger} = V \Sigma^{\dagger} U^{\top}$$
.

We always have $M^{\dagger}MM^{\dagger}=M^{\dagger}$ and $MM^{\dagger}M=M$.

- **Example:** if *M* is invertible, then $M^{-1} = M^{\dagger}$.
- ightharpoonup from now on, we set $(X^{\top}X)^{-1} = (X^{\top}X)^{\dagger}$

Conclusion on least squares

now we can look at the solutions:

Theorem (James, 1978): Let $A \in \mathbb{R}^{d \times d}$ and $b \in \mathbb{R}^d$. If $AA^{\dagger}b = b$, the complete set of solutions of Ax = b is given by

$$z = A^{\dagger}b + (I_d - A^{\dagger}A)w,$$

for $w \in \mathbb{R}^d$.

 $ightharpoonup A^{\dagger}A$ is an orthogonal projection, $I_d - A^{\dagger}A$ is the orthogonal projection on $\operatorname{Im}(A^{\dagger}A)^{\perp}$ and

$$||A^{\dagger}b + (I_d - A^{\dagger}A)w||^2 = ||(A^{\dagger}A)A^{\dagger}b + (I_d - A^{\dagger}A)w||^2$$

= $||A^{\dagger}b||^2 + ||(I_d - A^{\dagger}A)w||^2$.

taking the Moore-Penrose pseudo-inverse guarantees that we take the solution with smallest Euclidean norm.

Gradient descent

- yet another possibility: gradient descent
- ▶ **Idea:** minimize $\hat{\mathcal{R}}$ following the steepest descent line
- formally, build the sequence of iterates

$$\begin{cases} \theta^{(0)} &= \theta_0 \\ \theta^{(t+1)} &= \theta^{(t)} - \gamma \nabla \hat{\mathcal{R}}(\theta^{(t)}) \end{cases}$$

with $\gamma > 0$ the *stepsize*

- lacktriangle if convergence, then $\nabla\hat{\mathcal{R}}=0$: minimizer
- lacktriangle computational complexity for each step is reduced to $\mathcal{O}\left(d\right)$
- ▶ it T steps, with $T \ll d^2$, much faster

3.3. Fixed design analysis

Setting

- **Fixed design:** in this section, we assume that Φ is *deterministic*
- ▶ namely, fixed, deterministic $x_1, ..., x_n \in \mathcal{X}$
- **Assumption I:** there exists $\theta^* \in \mathbb{R}^d$ such that

$$\forall i \in [n], \qquad Y_i = \varphi(x_i)^\top \theta^* + \varepsilon_i,$$

with ε_i noise variables

in matrix notation, we still have:

$$Y = \Phi \theta^* + \varepsilon$$
.

- **Assumption II:** the ε_i s are independent, have zero mean, and variance $\mathbb{E}\left[\varepsilon_i^2\right] = \sigma^2$
- ▶ Remark (i): we do not assume identically distributed
- Remark (ii): variance assumption is sometimes called homoscedasticity

Mahalanobis distance

for any positive-definite matrix A, we set

$$\forall u \in \mathbb{R}^d, \qquad \|u\|_A^2 := u^\top A u.$$

- **Remark (i):** taking A = I, we recover the Euclidean norm
- **Remark (ii):** intuition when A is diagonal: weighting the features
- ▶ the function

$$d_A(x,y) := \|x - y\|_A$$

is often called Mahalanobis distance

Excess risk

- under our assumptions, we now turn to the computation of the Bayes risk and excess risk of ordinary least squares
- ▶ **Definition:** excess risk = true risk − Bayes risk
- **Notation:** we set $\hat{\Sigma} := \frac{1}{n} \Phi^{\top} \Phi \in \mathbb{R}^{d \times d}$ the (empirical) covariance matrix

Proposition (excess risk of OLS): under assumptions I and II, for any $\theta \in \mathbb{R}^d$, we have $\mathcal{R}^{\star} = \sigma^2$ and

$$\mathcal{R}(heta) - \mathcal{R}^\star = \| heta - heta^\star\|_{\hat{\Sigma}}^2$$
.

- **Remark (i):** in the presence of noise $(\sigma^2 > 0)$, the Bayes risk is positive
- **Remark (ii):** excess risk is the squared distance between our parameter and the true parameter in the geometry defined by $\hat{\Sigma}$

Excess risk, ctd.

Proof: we know that $Y = \Phi \theta^* + \varepsilon$, thus

$$\mathcal{R}(\theta) = \mathbb{E}\left[\frac{1}{n}\|Y - \Phi\theta\|^{2}\right]$$

$$= \mathbb{E}\left[\frac{1}{n}\|\Phi\theta^{*} + \varepsilon - \Phi\theta\|^{2}\right]$$

$$= \frac{1}{n}\mathbb{E}\left[\|\Phi(\theta^{*} - \theta)\|^{2} + 2\varepsilon^{\top}\Phi(\theta^{*} - \theta) + \|\varepsilon\|^{2}\right]$$

$$= \sigma^{2} + \frac{1}{n}(\theta - \theta^{*})^{\top}\Phi^{\top}\Phi(\theta - \theta^{*}). \qquad (\mathbb{E}\left[\varepsilon_{i}\right] = 0, \mathbb{E}\left[\varepsilon_{i}^{2}\right] = \sigma^{2})$$

Since $\hat{\Sigma}$ is invertible, θ^* is the unique global minimizer and the minimum value is σ^2 .

Bias / variance decomposition

Proposition (bias-variance): Let $\hat{\theta} \in \mathbb{R}^d$. Then, under assumption I and II,

$$\begin{split} \mathbb{E}\left[\mathcal{R}(\hat{\theta})\right] - \mathcal{R}^{\star} = & \left\|\mathbb{E}[\hat{\theta}] - \theta^{\star}\right\|_{\hat{\Sigma}}^{2} + & \mathbb{E}\left[\left\|\hat{\theta} - \mathbb{E}[\hat{\theta}]\right\|_{\hat{\Sigma}}^{2}\right] \\ \text{expected excess risk} &= & \text{bias} &+ & \text{variance} \end{split}$$

Proof: using the previous proposition:

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta})\right] - \mathcal{R}^* = \mathbb{E}\left[\left\|\hat{\theta} - \theta^*\right\|_{\hat{\Sigma}}^2\right]$$
$$= \mathbb{E}\left[\left\|\hat{\theta} - \mathbb{E}[\hat{\theta}] + \mathbb{E}[\hat{\theta}] - \theta^*\right\|_{\hat{\Sigma}}^2\right],$$

then develop.

Expectation and variance

Reminder: the OLS solution is given by

$$\hat{\theta} = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}Y = \frac{1}{n}\hat{\Sigma}^{-1}\Phi^{\top}Y.$$

Proposition (mean and variance of OLS): Let $\hat{\theta}$ be the OLS solution. Assume I and II. Then $\hat{\theta}$ satisfies

$$\mathbb{E}[\hat{\theta}] = \theta^*$$
 and $\operatorname{Var}(\hat{\theta}) = \frac{\sigma^2}{n} \hat{\Sigma}^{-1}$.

- **Remark (i):** in the language of statistics, we say that $\hat{\theta}$ is an *unbiased estimator* of θ^*
- **Remark (ii):** the matrix $\hat{\Sigma}^{-1}$ is sometimes called the *precision* matrix

Expectation and variance, proof

Proof: We know that $\mathbb{E}[Y] = \Phi \theta^*$, thus

$$\mathbb{E}[\hat{ heta}] = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}\Phi\theta^{\star} = \theta^{\star}$$
 .

We deduce that

$$\hat{\theta} - \theta^* = (\Phi^{\top} \Phi)^{-1} \Phi^{\top} (\Phi \theta^* + \varepsilon) - \theta^*$$
$$= (\Phi^{\top} \Phi)^{-1} \Phi^{\top} \varepsilon,$$

from which we compute the variance

$$Var(\hat{\theta}) = \mathbb{E}\left[(\Phi^{\top} \Phi)^{-1} \Phi^{\top} \varepsilon \varepsilon^{\top} \Phi (\Phi^{\top} \Phi)^{-1} \right]$$

$$= \sigma^{2} (\Phi^{\top} \Phi)^{-1} (\Phi^{\top} \Phi) (\Phi^{\top} \Phi)^{-1} \qquad (\mathbb{E}\left[\varepsilon_{i} \varepsilon_{j}\right] = \sigma^{2} \mathbb{1}_{i=j})$$

$$= \sigma^{2} (\Phi^{\top} \Phi)^{-1}.$$

Excess risk of OLS

Proposition (expected excess risk of OLS): Assume I and II. Then the (expected) excess risk of the ERM is equal to

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta})\right] - \mathcal{R}^{\star} = \frac{\sigma^2 d}{n}.$$

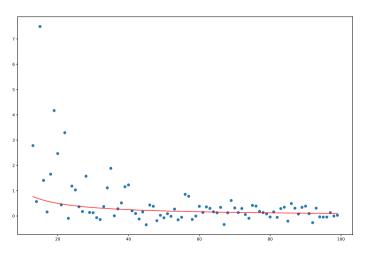
- **Remark (i):** decreasing when $n \to +\infty$ (consistency)
- **Remark (ii):** but, for fixed n, quite bad when $d \approx n$...
- Remark (iii): one can show that

$$\mathbb{E}\left[\hat{\mathcal{R}}(\hat{\theta})\right] = \frac{n-d}{n}\sigma^2 = \sigma^2 - \frac{d}{n}\sigma^2,$$

thus training error underestimates test error, which is

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta})\right] = \sigma^2 + \frac{d}{n}\sigma^2.$$

Excess risk of OLS, illustration



▶ **Figure:** excess risk as a function of n (one simulation per n). Gaussian noise, dimension 10, $\theta^* = 1$. In red, the expected value $\sigma^2 d/n$.

Excess risk of OLS, proof

Proof: Using our previous computations:

$$\begin{split} \mathbb{E}\left[\mathcal{R}(\hat{\theta})\right] - \mathcal{R}^{\star} &= \mathbb{E}\left[\left\|\hat{\theta} - \theta^{\star}\right\|_{\hat{\Sigma}}^{2}\right] \\ &= \mathbb{E}\left[\operatorname{trace}\left((\hat{\theta} - \theta^{\star})^{\top}\hat{\Sigma}(\hat{\theta} - \theta^{\star})\right)\right] \qquad \text{(definition of } \|\cdot\|_{\hat{\Sigma}}) \\ &= \mathbb{E}\left[\operatorname{trace}\left((\hat{\theta} - \theta^{\star})(\hat{\theta} - \theta^{\star})^{\top}\hat{\Sigma}\right)\right] \qquad \text{(cyclic property of the trace)} \\ &= \operatorname{trace}\left(\operatorname{Var}(\hat{\theta})\hat{\Sigma}\right) \qquad \qquad \text{(linearity)} \\ &= \operatorname{trace}\left(\frac{\sigma^{2}}{n}\hat{\Sigma}^{-1}\hat{\Sigma}\right) \qquad \qquad \text{(variance computation)} \\ &= \frac{\sigma^{2}}{n}\operatorname{trace}\left(I_{d}\right) \end{split}$$

3.4. Ridge regression

Introduction

- **Reminder:** when $n \approx d$, OLS does not fare too good
- ightharpoonup even more complicated when d > n
- > yet, this is a common occurrence
- **Possible solution:** L^2 regularization

Definition: let $\lambda > 0$. With our notation, the ridge least-squares estimator $\hat{\theta}_{\lambda}$ is defined as the minimizer of

$$\frac{1}{n} \|Y - \Phi\theta\|^2 + \lambda \|\theta\|^2.$$

one can easily show the following:

Proposition: we have $\hat{\theta}_{\lambda} = \frac{1}{n} (\hat{\Sigma} + \lambda I_d)^{-1} \Phi^{\top} Y$.

A note on invertibility

- lacksquare in the previous proposition we inverted the matrix $M:=\hat{\Sigma}+\lambda\,\mathsf{I}_d$
- Why can we do that?
- $ightharpoonup \hat{\Sigma}$ is positive semi-definite, $\lambda \, \mathsf{I}_d$ "pushes" the spectrum in \mathbb{R}_+^\star
- more rigorously, if M was not invertible, one would have

$$\det\left(\frac{1}{n}\Phi^{\top}\Phi + \lambda \mathsf{I}_d\right) = 0.$$

- \blacktriangleright meaning that $-\lambda$ would be an eigenvalue of $\Phi^{\top}\Phi$: this is not possible
- ▶ **Note:** this was the main motivation when first introduced⁵

⁵Hoerl, Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics, 1970

Fixed design analysis

- as with OLS, we can compute the expected excess risk
- only a bit more complicated because of the regularization...
- bias-variance decomposition still holds:

Proposition (ridge bias-variance decomposition): Let $\hat{\theta}_{\lambda}$ as before. Under assumption I and II,

$$\mathbb{E}[\mathcal{R}(\hat{\theta}_{\lambda})] - \mathcal{R}^{\star} = \left\| \mathbb{E}[\hat{\theta}_{\lambda}] - \theta^{\star} \right\|_{\hat{\Sigma}}^{2} + \mathbb{E}\left[\left\| \hat{\theta}_{\lambda} - \mathbb{E}[\hat{\theta}_{\lambda}] \right\|_{\hat{\Sigma}}^{2} \right]$$

▶ *Proof:* did not depend on $\hat{\theta}$'s exact expression

Rewriting $\mathbb{E}[\hat{\theta}_{\lambda}]$

we will then use the following:

Lemma: Let $\hat{\theta}_{\lambda}$ be the ridge regressor. Assume that I and II hold. Then

$$\mathbb{E}[\hat{\theta}_{\lambda}] = \theta^{\star} - \lambda (\hat{\Sigma} + \lambda I_d)^{-1} \theta^{\star}.$$

► Proof:

$$\begin{split} \mathbb{E}[\hat{\theta}_{\lambda}] &= \mathbb{E}\left[\frac{1}{n}(\hat{\Sigma} + \lambda \, \mathsf{I}_{d})^{-1} \Phi^{\top} Y\right] & \text{(def. of } \hat{\theta}_{\lambda}) \\ &= \mathbb{E}\left[\frac{1}{n}(\hat{\Sigma} + \lambda \, \mathsf{I}_{d})^{-1} \Phi^{\top} (\Phi \theta^{\star} + \varepsilon)\right] & \text{(assumption I)} \\ &= \frac{1}{n}(\hat{\Sigma} + \lambda \, \mathsf{I}_{d})^{-1} \Phi^{\top} \Phi \theta^{\star} & \text{(linearity } + \varepsilon \text{ centered)} \end{split}$$

Rewriting $\mathbb{E}[\hat{\theta}_{\lambda}]$

ightharpoonup now, by definition of $\hat{\Sigma}$,

$$\mathbb{E}[\hat{ heta}_{\lambda}] = (\hat{\Sigma} + \lambda \, \mathsf{I}_d)^{-1} \hat{\Sigma} heta^{\star} \, .$$

▶ finally, since for any matrix A

$$(A + \lambda I)^{-1}A = I - \lambda(A + \lambda I)^{-1},$$

we deduce the result.

Excess risk

Proposition (ridge excess risk): assume I and II, let $\hat{\theta}_{\lambda}$ as before. Then

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta}_{\lambda})\right] - \mathcal{R}^{\star} = \lambda^{2} \left(\theta^{\star}\right)^{\top} (\hat{\Sigma} + \lambda I_{d})^{-2} \hat{\Sigma} \theta^{\star} + \frac{\sigma^{2}}{n} \operatorname{trace}\left(\hat{\Sigma}^{2} (\hat{\Sigma} + \lambda I_{d})^{-2}\right).$$

- **Remark (i):** when $\lambda \to 0$, we recover the OLS result
- **Remark (ii):** we have an exact description of the bias / variance evolution w.r.t. λ (!)
- **Remark (iii):** bias increases with λ , variance decreases, $\lambda = 0$ not optimal (in general)
- ▶ Remark (iv): the quantity $\operatorname{trace}\left(\hat{\Sigma}^2(\hat{\Sigma} + \lambda I_d)^{-2}\right)$ is called "degrees of freedom" \approx implicit number of parameters

Excess risk, proof

- ▶ *Proof:* we plug the alternative expression of $\mathbb{E}[\hat{\theta}_{\lambda}]$ into the bias / variance decomposition
- ▶ the bias term is clear, variance yields

$$\mathbb{E}\left[\left\|\hat{\theta}_{\lambda} - \mathbb{E}[\hat{\theta}_{\lambda}]\right\|_{\hat{\Sigma}}^{2}\right] = \mathbb{E}\left[\left\|\frac{1}{n}(\hat{\Sigma} + \lambda \mathbf{I}_{d})^{-1}\Phi^{\top}\varepsilon\right\|_{\hat{\Sigma}}^{2}\right]$$

$$= \mathbb{E}\left[\frac{1}{n^{2}}\operatorname{trace}\left(\varepsilon^{\top}\Phi(\hat{\Sigma} + \lambda \mathbf{I}_{d})^{-1}\hat{\Sigma}(\hat{\Sigma} + \lambda \mathbf{I}_{d})^{-1}\Phi^{\top}\varepsilon\right)\right]$$

$$= \mathbb{E}\left[\frac{1}{n^{2}}\operatorname{trace}\left(\Phi^{\top}\varepsilon\varepsilon^{\top}\Phi(\hat{\Sigma} + \lambda \mathbf{I}_{d})^{-1}\hat{\Sigma}(\hat{\Sigma} + \lambda \mathbf{I}_{d})^{-1}\right)\right]$$
(trace cyclic property)
$$= \frac{\sigma^{2}}{n}\operatorname{trace}\left(\hat{\Sigma}(\hat{\Sigma} + \lambda \mathbf{I}_{d})^{-1}\hat{\Sigma}(\hat{\Sigma} + \lambda \mathbf{I}_{d})^{-1}\right). \qquad (\mathbb{E}\left[\varepsilon\varepsilon^{\top}\right] = \sigma^{2}\mathbf{I}_{d})$$

Excess risk, proof

finally, since

$$(\hat{\Sigma} + \lambda I_d)(\hat{\Sigma} + \lambda I_d)^{-1} = (\hat{\Sigma} + \lambda I_d)^{-1}(\hat{\Sigma} + \lambda I_d) = I_d$$

we deduce that

$$\hat{\Sigma}(\hat{\Sigma} + \lambda \, \mathsf{I}_d)^{-1} = (\hat{\Sigma} + \lambda \, \mathsf{I}_d)^{-1} \hat{\Sigma} \left(= \mathsf{I}_d - \lambda (\hat{\Sigma} + \lambda \, \mathsf{I}_d)^{-1} \right) \,.$$

together with the trace cyclic property, this allows us to write

$$\operatorname{trace}\left(\hat{\Sigma}(\hat{\Sigma} + \lambda I_d)^{-1}\hat{\Sigma}(\hat{\Sigma} + \lambda I_d)^{-1}\right) = \operatorname{trace}\left(\hat{\Sigma}^2(\hat{\Sigma} + \lambda I_d)^{-2}\right)$$

and to conclude.

Choice of regularization

Proposition (choice of regularization parameter): Assume that I and II hold. Set

$$\lambda^{\star} := \frac{\sigma \operatorname{trace}(\hat{\Sigma})^{1/2}}{\|\theta^{\star}\| \sqrt{n}}$$

as regularization parameter. Then

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta}_{\lambda^{\star}})\right] - \mathcal{R}^{\star} \leq \frac{\sigma \operatorname{trace}(\hat{\Sigma})^{1/2} \|\theta^{\star}\|}{\sqrt{n}}.$$

- **Remark (i):** of course, in practice, we know neither σ , nor θ^* ...
- **Remark (ii):** λ^* maybe not optimal for the true risk
- **Remark (iii):** slower rate of convergence, but σ instead of σ^2

Choice of regularization, proof

- we take for granted that all eigenvalues of $\lambda(\hat{\Sigma} + \lambda I_d)^{-2}\hat{\Sigma}$ are smaller than 1/2
- as a consequence:

$$B = \lambda^{2} (\theta^{\star})^{\top} (\hat{\Sigma} + \lambda I_{d})^{-2} \hat{\Sigma} \theta^{\star}$$

$$= \lambda (\theta^{\star})^{\top} \left[\lambda (\hat{\Sigma} + \lambda I_{d})^{-2} \hat{\Sigma} \right] \theta^{\star}$$

$$\leq \frac{\lambda}{2} \|\theta^{\star}\|^{2}.$$

in the same fashion:

$$\begin{split} V &= \frac{\sigma^2}{n} \mathrm{trace} \left(\hat{\Sigma}^2 (\hat{\Sigma} + \lambda \, \mathsf{I}_d)^{-2} \right) \\ &= \frac{\sigma^2}{\lambda n} \mathrm{trace} \left(\hat{\Sigma} \left(\lambda (\hat{\Sigma} + \lambda \, \mathsf{I}_d)^{-2} \hat{\Sigma} \right) \right) \leq \frac{\sigma^2}{2\lambda n} \mathrm{trace} \left(\hat{\Sigma} \right) \,. \end{split}$$

Proof, ctd.

putting both bounds together, we get

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta}_{\lambda})\right] - \mathcal{R}^{\star} \leq \frac{\lambda}{2} \left\|\theta^{\star}\right\|^{2} + \frac{\sigma^{2}}{2\lambda n} \mathrm{trace}\left(\hat{\Sigma}\right) \,.$$

ightharpoonup minimizing in λ yields

$$\lambda^* = \frac{\sigma \operatorname{trace} \left(\hat{\Sigma}\right)^{1/2}}{\|\theta^*\| \sqrt{n}}.$$

one readily checks the last inequality.

Dimension free bound?

recall that our upper bound reads

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta}_{\lambda^{\star}})\right] - \mathcal{R}^{\star} \leq \frac{\sigma \operatorname{trace}(\hat{\Sigma})^{1/2} \|\theta^{\star}\|}{\sqrt{n}}.$$

- no explicit dependency in d
- under some assumptions (e.g., sparsity), $\|\theta^{\star}\| \ll d$
- ▶ moreover, if $\|\varphi(x)\| \le R$,

$$\operatorname{trace}\left(\hat{\Sigma}\right) = \sum_{j=1}^{d} \hat{\Sigma}_{j,j} \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{d} \varphi(x_i)_j^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} \|\varphi(x_i)\|^2 \le R^2.$$

3.5. Random design analysis

Random design analysis

- **Random design**: (X_i, Y_i) i.i.d. from some distribution p on $\mathcal{X} \times \mathcal{Y}$
- ▶ **Goal:** prove the same excess risk bound (i.e., $\approx \frac{\sigma^2 d}{n}$)
- Important: we make the same assumptions, transposed to the random design setting:
 - **Assumption I:** $\exists \theta^* \in \mathbb{R}^d$ such that

$$\forall i \in [n], \qquad Y_i = \varphi(X_i)^\top \theta^* + \varepsilon_i,$$

- Assumption II: the noise distribution of ε_i is independent from that of X_i , $\mathbb{E}[\varepsilon_i] = 0$, and $\mathbb{E}[\varepsilon_i^2] = \sigma^2$.
- ▶ notable consequence of our assumptions:

$$\mathbb{E}\left[Y_i\mid X_i\right]=\varphi(X_i)^{\top}\theta^{\star}.$$

Excess risk

the excess risk has a similar decomposition:

Proposition (excess risk for random design least-squares regression): Assume that I and II hold. Then $\mathcal{R}^{\star}=\sigma^2$, and

$$\forall \theta \in \mathbb{R}^d, \qquad \mathcal{R}(\theta) - \mathcal{R}^* = \|\theta - \theta^*\|_{\Sigma}^2,$$

where $\Sigma := \mathbb{E}\left[\varphi(X)\varphi(X)^{\top}\right]$.

- **Intuition:** $\hat{\Sigma}$ is replace by its expectation, which is Σ
- (recall that $\hat{\Sigma} = \frac{1}{n} \Phi^{\top} \Phi$)

Excess risk, proof

▶ **Proof:** let (X_0, Y_0) be a "new" observation, with noise ε_0

$$\mathcal{R}(\theta) = \mathbb{E}\left[(Y_0 - \theta^\top \varphi(X_0))^2 \right]$$

$$= \mathbb{E}\left[(\varphi(X_0)^\top \theta^* + \varepsilon_0 - \theta^\top \varphi(X_0))^2 \right]$$

$$= \mathbb{E}\left[(\varphi(X_0)^\top \theta^* - \theta^\top \varphi(X_0))^2 \right] + 2\mathbb{E}\left[\varepsilon_0 (\theta^* - \theta)^\top \varphi(X_0) \right] + \mathbb{E}\left[\varepsilon_0^2 \right]$$
(AI)

by independence, and since the noise is centered,

$$\mathbb{E}\left[\varepsilon_0(\theta^{\star}-\theta)^{\top}\varphi(X_0)\right] = \mathbb{E}\left[\varepsilon_0\right]\mathbb{E}\left[(\theta^{\star}-\theta)^{\top}\varphi(X_0)\right] = 0.$$

now we can conclude:

$$\mathcal{R}(\theta) = \mathbb{E}\left[((\theta^* - \theta)^\top \varphi(X_0))^2 \right] + \mathbb{E}\left[\varepsilon_0^2\right]$$
(AII)
$$= (\theta - \theta^*)^\top \mathbb{E}\left[\varphi(X_0)\varphi(X_0)^\top \right] (\theta - \theta^*) + \sigma^2$$
(linearity)
$$= (\theta - \theta^*)^\top \Sigma(\theta - \theta^*) + \sigma^2. \quad \Box$$
(definition of Σ)

Excess risk of OLS

• we now use the previous result to investigate $\hat{\theta}$:

Proposition: Assume that I and II hold. Assume further that $\hat{\Sigma}$ is almost surely invertible. Then the expected excess risk of the OLS estimator is equal to

$$\mathbb{E}\left[\mathcal{R}(\hat{ heta})
ight] - \mathcal{R}^\star = rac{\sigma^2}{n} \mathbb{E}\left[\mathrm{trace}\left(\Sigma \hat{\Sigma}^{-1}
ight)
ight] \,.$$

- **Remark (i):** $\hat{\Sigma}$ has the same definition, but is now a *random* quantity
- **Remark (ii):** under reasonable assumptions (e.g., density), $\hat{\Sigma}$ is almost surely invertible
- ▶ Intuition: $det(\hat{\Sigma}) = 0$ is a "zero-measure" condition

Excess risk of OLS, proof

• from the definition of $\hat{\theta}$.

$$\hat{\theta} = \frac{1}{n}\hat{\Sigma}^{-1}\Phi^{\top}Y = \frac{1}{n}\hat{\Sigma}^{-1}\Phi^{\top}(\Phi\theta^{*} + \varepsilon) = \theta^{*} + \frac{1}{n}\hat{\Sigma}^{-1}\Phi^{\top}\varepsilon.$$

using the previous result:

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta})\right] - \mathcal{R}^{\star} = \mathbb{E}\left[\left(\frac{1}{n}\hat{\Sigma}^{-1}\Phi^{\top}\varepsilon\right)^{\top}\Sigma\left(\frac{1}{n}\hat{\Sigma}^{-1}\Phi^{\top}\varepsilon\right)\right]$$

$$= \mathbb{E}\left[\operatorname{trace}\left(\Sigma\left(\frac{1}{n}\hat{\Sigma}^{-1}\Phi^{\top}\varepsilon\right)\left(\frac{1}{n}\hat{\Sigma}^{-1}\Phi^{\top}\varepsilon\right)^{\top}\right)\right] \qquad \text{(cyclic property)}$$

$$= \frac{1}{n^{2}}\mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\Phi^{\top}\varepsilon\varepsilon^{\top}\Phi\hat{\Sigma}^{-1}\right)\right]$$

Excess risk of OLS, proof ctd.

▶ now we use properties of the conditional expectation:

$$\begin{split} \mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\boldsymbol{\Phi}^{\top}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\boldsymbol{\Phi}\hat{\Sigma}^{-1}\right)\right] &= \mathbb{E}\left[\mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\boldsymbol{\Phi}^{\top}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\boldsymbol{\Phi}\hat{\Sigma}^{-1}\right)\mid X_{1},\ldots,X_{n}\right]\right] \\ &\quad (\mathsf{tower property}) \\ &= \mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\boldsymbol{\Phi}^{\top}\mathbb{E}\left[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\mid X_{1},\ldots,X_{n}\right]\boldsymbol{\Phi}\hat{\Sigma}^{-1}\right)\right] \\ &\quad (\boldsymbol{\Phi},\hat{\Sigma} \text{ are } X_{1},\ldots,X_{n}\text{-measurable}) \\ &= \mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\boldsymbol{\Phi}^{\top}\mathbb{E}\left[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\right]\boldsymbol{\Phi}\hat{\Sigma}^{-1}\right)\right] \quad (\mathsf{independence}) \\ &= \sigma^{2}\mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi}\hat{\Sigma}^{-1}\right)\right] \quad (\mathbb{E}\left[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\right] = \sigma^{2}\operatorname{I}_{d}) \\ &= \sigma^{2}\mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\right)\right] \, . \end{split}$$

Gaussian design

 \blacktriangleright to be more precise, we need to specify a distribution for the $\varphi(X_i)$ s

Proposition: Assume that I and II hold. Assume further that $\varphi(X) \sim \mathcal{N}(0, \Sigma)$. Then the expected risk of OLS is given by

$$\mathbb{E}\left[\mathcal{R}(\hat{ heta})
ight] - \mathcal{R}^\star = rac{\sigma^2 d}{n-d-1}\,.$$

Remark: we (nearly) recover the $\sigma^2 d/n$ bound from fixed design!

Gaussian design, proof

- ightharpoonup define $Z:=\Sigma^{-1/2}\varphi(X)$
- ▶ properties of Gaussian vectors: $Z \sim \mathcal{N}\left(0, I_d\right)$
- we see that

$$\begin{split} \mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\right)\right] &= \operatorname{trace}\left(\mathbb{E}\left[\Sigma(\Sigma^{1/2}Z\Sigma^{1/2}Z^{\top})^{-1}\right]\right) \\ &= \operatorname{trace}\left(\mathbb{E}\left[(ZZ^{\top})^{-1}\right]\right) \,. \end{split}$$

- \triangleright $(ZZ^{\top})^{-1}$ has the inverse Wishart distribution
- we read in the tables:

$$\mathbb{E}\left[(ZZ^{\top})^{-1}\right] = \frac{1}{n-d-1} \,\mathsf{I}_d$$

and conclude.

4. Generalization bounds

Reminder: risk decomposition

▶ Reminder:

$$\mathcal{R}(f) - \mathcal{R}^* = \begin{bmatrix} \mathcal{R}(f) - \inf_{h \in \mathcal{H}} \mathcal{R}(h) \end{bmatrix} + \begin{bmatrix} \inf_{h \in \mathcal{H}} \mathcal{R}(h) - \mathcal{R}^* \end{bmatrix}$$
excess risk = estimation error + approximation error

Estimation error:

- always non-negative
- random if there is randomness in the creation of f
- characterizes how much we loose by picking the wrong predictor in a given class

Approximation error:

- \blacktriangleright deterministic, does not depend on f, only on the class of functions \mathcal{H}
- characterizes how much we loose by restricting ourselves to a given class

Decomposition of the estimation error

- **Notation (i):** $f_{\mathcal{H}} \in \arg\min_{f \in \mathcal{H}} \mathcal{R}(f)$, best predictor in our function class
- **Notation (ii):** \hat{f} empirical risk minimizer
- Useful decomposition:

$$\mathcal{R}(\hat{f}) - \inf_{f \in \mathcal{H}} \mathcal{R}(f) = \mathcal{R}(\hat{f}) - \mathcal{R}(f_{\mathcal{H}})$$

$$= \mathcal{R}(\hat{f}) - \hat{\mathcal{R}}(\hat{f}) + \hat{\mathcal{R}}(\hat{f}) - \hat{\mathcal{R}}(f_{\mathcal{H}}) + \hat{\mathcal{R}}(f_{\mathcal{H}}) - \mathcal{R}(f_{\mathcal{H}})$$

$$\leq \sup_{f \in \mathcal{H}} \left\{ \mathcal{R}(f) - \hat{\mathcal{R}}(f) \right\} + \hat{\mathcal{R}}(\hat{f}) - \hat{\mathcal{R}}(f_{\mathcal{H}}) + \sup_{f \in \mathcal{H}} \left\{ \hat{\mathcal{R}}(f) - \mathcal{R}(f) \right\}$$

lacktriangle middle term is ≤ 0 by definition, and we get

$$\mathcal{R}(\hat{f}) - \inf_{f \in \mathcal{H}} \mathcal{R}(f) \leq 2 \sup_{f \in \mathcal{H}} \left| \hat{\mathcal{R}}(f) - \mathcal{R}(f) \right|.$$

Decomposition of the estimation error, ctd.

- **Remark (i):** no more dependency in \hat{f} , we only need to control functions (but we do need uniform control)
- **Remark (ii):** if \hat{f} not global minimizer, say

$$\hat{\mathcal{R}}(\hat{f}) \leq \inf_{f \in \mathcal{H}} \hat{\mathcal{R}}(f) + \varepsilon$$

we need to add ε to our bound

Remark (iii): bound usually grows with size of \mathcal{H} and decreases with n

4.1. Uniform bounds via concentration

Concentration inequalities

- informally speaking: random variable is "close" to its expectation with high probability
- **Example:** Markov, Chebyshev
- more involved:

Proposition (Hoeffding's inequality): let Z_1, \ldots, Z_n be independent random variables such that $Z_i \in [0,1]$ almost surely, then, for any $t \ge 0$,

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}(Z_{i}-\mathbb{E}\left[Z_{i}\right])\right|\geq t\right)\leq2\mathrm{exp}\left(-2nt^{2}\right)\;.$$

Single function

- ▶ assume that $\mathcal{H} = \{f_0\}$ and ℓ a bounded loss function
- then we can control

$$\sup_{f\in\mathcal{H}}\left|\hat{\mathcal{R}}(f)-\mathcal{R}(f)\right|=\hat{\mathcal{R}}(f_0)-\mathcal{R}(f_0)=\frac{1}{n}\sum_{i=1}^n\ell(Y_i,f_0(X_i))-\mathbb{E}\left[\ell(Y,f_0(X))\right].$$

- lacktriangle indeed, since the observations are i.i.d., we can use Hoeffding on the $Z_i:=\ell(Y_i,f_0(X_i))$
- lacktriangle common expectation $=\mathcal{R}(\mathit{f}_0)$
- for any $\delta \in (0, 1/2)$,

$$\mathbb{P}\left(\left|\hat{\mathcal{R}}(f_0) - \mathcal{R}(f_0)\right| \geq \frac{1}{\sqrt{2n}}\sqrt{\log\frac{1}{\delta}}\right) \leq 2\mathrm{exp}\left(-2n\frac{1}{2n}\log 1/\delta\right) = 2\delta.$$

Single function

ightharpoonup scaling by ℓ_{∞} , we obtain:

Proposition: Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be i.i.d. observations of p and f_0 be a fixed predictor. Then, for any $\delta \in (0, 1/2)$, with probability greater than $1 - 2\delta$,

$$\mathcal{R}(f_0) - \hat{\mathcal{R}}(f_0) < rac{\ell_{\infty}}{\sqrt{2n}} \sqrt{\log rac{1}{\delta}}\,,$$

where ℓ_{∞} is an upper bound on $\ell(Y_i, f(X_i))$.

From sup to expectation

- **Problem:** there is often more than one function in \mathcal{H} ...
- still possible, using for instance:

Proposition (McDiarmid's inequality):⁶ Let Z_1, \ldots, Z_n be independent random variables and F a function such that

$$|F(z_1,\ldots,z_{i-1},z_i,z_{i+1},\ldots,z_n)-F(z_1,\ldots,z_{i-1},z_i',z_{i+1},\ldots,z_n)| \leq c.$$

Then

$$\mathbb{P}\left(|F(Z_1,\ldots,Z_n)-\mathbb{E}\left[F(Z_1,\ldots,Z_n)\right]|\geq t\right)\leq 2\mathrm{exp}\left(-2t^2/(nc^2)\right)\,.$$

⁶McDiarmid, On the method of bounded differences, Survey in Combinatorics, 1989

Application of McDiarmid

ightharpoonup set $Z_i := (X_i, Y_i)$, and

$$H(Z_1,\ldots,Z_n):=\sup_{f\in\mathcal{H}}\left\{\mathcal{R}(f)-\hat{\mathcal{R}}(f)\right\}.$$

ightharpoonup Mc Diarmid tells us that, with probability higher than $1-\delta$,

$$H(Z_1,\ldots,Z_n)-\mathbb{E}\left[H(Z_1,\ldots,Z_n)\right]\leq \frac{\ell_\infty\sqrt{2}}{\sqrt{n}}\sqrt{\log\frac{1}{\delta}}.$$

- lacksquare getting bound on $\mathbb{E}\left[H(Z_1,\ldots,Z_n)
 ight]$ automatically yields bound on $\sup_{f\in\mathcal{H}}\left\{\hat{\mathcal{R}}(f)-\mathcal{R}(f)
 ight\}$
- **b** by symmetry, upper bound on $\sup_{f \in \mathcal{H}} \left| \hat{\mathcal{R}}(f) \mathcal{R}(f) \right|$

4.2. Rademacher complexity

Rademacher complexity

- ▶ set Z := (X, Y) and $\mathcal{G} := \{(x, y) \mapsto \ell(y, f(x))\}$, with f in some function class \mathcal{H}
- ▶ Recall: we want to bound

$$\sup_{f\in\mathcal{H}}\left\{\mathcal{R}(f)-\hat{\mathcal{R}}(f)\right\}=\sup_{g\in\mathcal{G}}\left\{\mathbb{E}\left[g(Z)\right]-\frac{1}{n}\sum_{i=1}^{n}g(Z_{i})\right\}.$$

ightharpoonup set $\mathcal{D}:=\{Z_1,\ldots,Z_n\}$ the data

Definition: We call *Rademacher complexity* of the function class \mathcal{G} the quantity

$$R_n(\mathcal{G}) := \mathbb{E}_{\varepsilon,\mathcal{D}} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \varepsilon_i g(Z_i) \right],$$

where the ε_i s are independent Rademacher random variables (that is, $\mathbb{P}(\varepsilon_i = \pm 1) = 1/2$).

Rademacher complexity, first properties

- Intuition: expectation of maximal dot-product with random labels
- ightharpoonup measures the *capacity* of the set $\mathcal G$

Properties: Rademacher complexity satisfies the following properties:

- ▶ if $\mathcal{G} \subset \mathcal{G}'$, then $R_n(\mathcal{G}) \leq R_n(\mathcal{G}')$;
- $ightharpoonup R_n(\mathcal{G}+\mathcal{G}')=R_n(\mathcal{G})+R_n(\mathcal{G}');$
- $R_n(\alpha \mathcal{G}) = |\alpha| R_n(\mathcal{G});$
- ▶ if g_0 is a function, $R_n(\mathcal{G} + \{g_0\}) = R_n(\mathcal{G})$;
- $ightharpoonup R_n(\mathcal{G}) = R_n(\operatorname{conv}(\mathcal{G})).$

Symmetrization

- Question: why is it useful?
- Rademacher complexity directly controls expected uniform deviation

Proposition (symmetrization): With the previous notation,

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^ng(Z_i)-\mathbb{E}\left[g(Z)\right]\right\}\right]\leq 2R_n(\mathcal{G})\,,$$

and

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\mathbb{E}\left[g(Z)\right]-\frac{1}{n}\sum_{i=1}^ng(Z_i)\right\}\right]\leq 2R_n(\mathcal{G}).$$

Symmetrization, proof

- ▶ let $\mathcal{D}' := \{Z'_1, \dots, Z'_n\}$ be an independent copy of \mathcal{D}'
- ▶ in particular, one has $\mathbb{E}\left[g(Z_i') \mid \mathcal{D}\right] = \mathbb{E}\left[g(Z)\right]$
- we write

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\mathbb{E}\left[g(Z)\right]-\frac{1}{n}\sum_{i=1}^{n}g(Z_{i})\right\}\right]=\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\mathbb{E}\left[g(Z_{i}')\mid\mathcal{D}\right]-\frac{1}{n}\sum_{i=1}^{n}g(Z_{i})\right\}\right]$$

$$=\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[g(Z_{i}')-g(Z_{i})\mid\mathcal{D}\right]\right\}\right].$$

Symmetrization, proof ctd.

▶ since the sup of expectation is ≤ than expectation of the sup,

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\mathbb{E}\left[g(Z)\right]-\frac{1}{n}\sum_{i=1}^{n}g(Z_{i})\right\}\right]\leq\mathbb{E}\left[\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}(g(Z_{i}')-g(Z_{i}))\right\}\mid\mathcal{D}\right]\right]$$

$$=\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}(g(Z_{i}')-g(Z_{i}))\right\}\right]$$

by the tower property.

we notice that

$$g(Z_i') - g(Z_i)$$
 and $\varepsilon_i(g(Z_i') - g(Z_i))$ have the same distribution

(this is what we call symmetrization)

Symmetrization proof, ctd.

thus

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}(g(Z_{i}')-g(Z_{i}))\right\}\right] = \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}(g(Z_{i}')-g(Z_{i}))\right\}\right]$$

$$\leq \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}g(Z_{i})\right\}\right] + \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}-\varepsilon_{i}g(Z_{i})\right\}\right]$$

$$= 2R_{n}(\mathcal{G})$$

since ε and $-\varepsilon$ have the same distribution.

Example: linear predictors

- ▶ let Ω be a norm on $ℝ^d$
- ▶ assume $\mathcal{H} = \{\theta^{\top}\varphi(x), \Omega(\theta) \leq D\}$
- ▶ then

$$egin{aligned} R_n(\mathcal{H}) &= \mathbb{E}\left[\sup_{\Omega(heta) \leq D} rac{1}{n} \sum_{i=1}^n arepsilon_i heta^ op arphi(X_i)
ight] \ &= \mathbb{E}\left[\sup_{\Omega(heta) \leq D} rac{1}{n} arepsilon^ op \Phi heta
ight] \ &= rac{D}{n} \mathbb{E}\left[\Omega^\star(\Phi^ op arepsilon)
ight]\,, \end{aligned}$$

where Ω^* is the *dual norm* of Ω :

$$\Omega^{\star}(u) := \sup_{\Omega(\theta) < 1} u^{\top} \theta$$
.

Example: linear predictors, ctd.

- ▶ Claim: when $p \in [1, +\infty)$ and Ω is the p-norm (see exercise), Ω^* is the q-norm with 1/p + 1/q = 1
- ▶ for the 2-norm:

$$R_{n}(\mathcal{H}) = \frac{D}{n} \mathbb{E} \left[\| \Phi^{\top} \varepsilon \| \right]$$

$$\leq \frac{D}{n} \sqrt{\mathbb{E} \left[\| \Phi^{\top} \varepsilon \|^{2} \right]} \qquad \text{(Jensen's inequality)}$$

$$= \frac{D}{n} \sqrt{\mathbb{E} \left[\operatorname{trace} \left(\Phi^{\top} \varepsilon \varepsilon^{\top} \Phi \right) \right]}$$

$$= \frac{D}{n} \sqrt{\mathbb{E} \left[\operatorname{trace} \left(\Phi^{\top} \Phi \right) \right]} = \frac{D}{n} \sqrt{\sum_{i=1}^{n} \mathbb{E} \left[\left(\Phi^{\top} \Phi \right)_{i,i} \right]} = \frac{D}{n} \sqrt{\sum_{i=1}^{n} \mathbb{E} \left[\| \varphi(X_{i}) \|^{2} \right]}$$

$$= \frac{D}{\sqrt{n}} \sqrt{\mathbb{E} \left[\| \varphi(X) \|^{2} \right]} \Rightarrow \text{dimension-free bound with the same rate!}$$

Example: linear predictors, ctd.

we can get a bound on the estimation error:

Proposition: assume that ℓ is L-Lipschitz and continuous. Consider linear predictors with bounded coefficients, that is, $f_{\theta}(x) = \theta^{\top} \varphi(x)$ with $\|\theta\| \leq D$. Assume further that $\mathbb{E}\left[\|\varphi(X)\|^2\right] \leq R^2$. Let \hat{f} be the empirical risk minimizer. Then

$$\mathbb{E}\left[\mathcal{R}(\hat{f})
ight] \leq \inf_{\| heta\|\leq D} \mathcal{R}(f_{ heta}) + rac{4LRD}{\sqrt{n}}$$
.

- ▶ Remark (i): does not depend on exact expression of the loss
- ▶ Remark (ii): does not depend on the dimension

Proof of the proposition

recall the decomposition of the estimation error:

$$\mathcal{R}(\hat{f}) - \inf_{f \in \mathcal{H}} \mathcal{R}(f) \leq 2 \sup_{f \in \mathcal{H}} \left| \hat{\mathcal{R}}(f) - \mathcal{R}(f) \right|.$$

by symmetrization:

$$\mathbb{E}\left[\mathcal{R}(\hat{f})\right] - \inf_{f \in \mathcal{H}} \mathcal{R}(f) \leq 4R_n(\mathcal{H}).$$

▶ set $\mathcal{F} := \{f_{\theta}, \|\theta\| \leq D\}$. Since the loss is *L*-Lipschitz, by contraction (*see exercise*),

$$R_n(\mathcal{H}) \leq LR_n(\mathcal{F})$$
.

by previous computation,

$$R_n(\mathcal{F}) \leq \frac{DR}{\sqrt{n}}$$
.

4.3. Approximation error

Further decomposition

▶ **Reminder:** approximation error is defined as

$$\inf_{f\in\mathcal{H}}\mathcal{R}(f)-\mathcal{R}^{\star}$$
.

- deterministic, small if function class is large
- ▶ let us focus on parametric models, in particular $\mathcal{H} = \{f_{\theta}, \theta \in \Theta\}$
- \blacktriangleright θ^* parameter corresponding to f^*
- typically does not belong to Θ!
- further decomposition of the approximation error:

$$\inf_{ heta \in \Theta} \mathcal{R}(f_{ heta}) - \mathcal{R}^\star = \left(\inf_{ heta \in \Theta} \mathcal{R}(f_{ heta}) - \inf_{ heta \in \mathbb{R}^p} \mathcal{R}(f_{ heta})
ight) + \left(\inf_{ heta \in \mathbb{R}^p} \mathcal{R}(f_{ heta}) - \mathcal{R}^\star
ight) \,.$$

Remark: both positive terms

Incompressible approximation error

Recall:

$$\inf_{ heta \in \Theta} \mathcal{R}(f_{ heta}) - \mathcal{R}^\star = \left(\inf_{ heta \in \Theta} \mathcal{R}(f_{ heta}) - \inf_{ heta \in \mathbb{R}^p} \mathcal{R}(f_{ heta})
ight) + \left(\inf_{ heta \in \mathbb{R}^p} \mathcal{R}(f_{ heta}) - \mathcal{R}^\star
ight) \,.$$

- let us start with the second term
- for rich model class, this goes to zero

Upper bounds

- ▶ now focus on $\inf_{\theta \in \Theta} \mathcal{R}(f_{\theta}) \inf_{\theta \in \mathbb{R}^p} \mathcal{R}(f_{\theta})$
- ightharpoonup this term is typically upper bounded by a **distance** between the best candidate in \mathbb{R}^d
- **Example:** $f_{\theta}(x) = \theta^{\top} \varphi(x), \ \Theta = \{\theta \in \mathbb{R}^d, \|\theta\| \leq D\}$
- ▶ for a *L*-Lipschitz loss, we write

$$\begin{split} \inf_{\theta \in \Theta} \mathcal{R}(f_{\theta}) - \inf_{\theta \in \mathbb{R}^{p}} \mathcal{R}(f_{\theta}) &= \mathbb{E}\left[\ell(\theta_{1}^{\top} \varphi(X), Y) - \ell((\theta^{\star})^{\top} \varphi(X), Y)\right] \\ &\leq L \mathbb{E}\left[\|\varphi(X)\| \cdot \|\theta_{1} - \theta^{\star}\|\right] \\ &\leq L \mathbb{E}\left[\|\varphi(X)\|\right] \cdot (\|\theta^{\star}\| - D)_{+}. \end{split}$$

Remark: equal to zero if $\|\theta^*\| \leq D$ (well-specified model)

5. Kernel methods

5.1. Positive semi-definite kernels

Representation of the data

- ▶ What we have seen so far: linear classification / linear regression
- works well if the data is linearly separable
- Problem: that is not always the case!
- what if we could transport the data to another space where it is well-behaved?
- for instance a very high-dimensional space
- ▶ first we define a (positive-definite) kernel
- many definitions in maths, introduced in machine learning by Aizerman, Braverman, and Rozonoer in the 60s⁷

 $^{^7}$ Aizerman, Braverman, Rozonoer, *Theoretical foundations of the potential function method in pattern recognition learning*, Automation and Remote Control, 1964

Positive semi-definite kernels

Definition: a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *positive semi-definite kernel* if k(x,x') = k(x',x) for any $x,x' \in \mathcal{X}$, and

$$\forall x_1,\ldots,x_n \in \mathcal{X}, \forall c_1,\ldots,c_n \in \mathbb{R}, \quad \sum_{i=1}^n \sum_{j=1}^n c_i c_j k(x_i,x_j) \geq 0.$$

- ▶ in other words, the Gram matrix $K = (k(x_i, x_j)_{i,j=1}^n)$ is positive definite for any input data x_1, \ldots, x_n
- kernel methods take this K as input
- ▶ **Remark:** this is *costly*, $\mathcal{O}\left(n^2\right)$ whatever we do, with possible dependency in the dimensionality of the data
- \triangleright Beware: unlike the name suggests, k has no reason to be positive

Fundamental example

- ightharpoonup suppose that $\mathcal{X} = \mathbb{R}$
- ▶ then k(x, y) := xy is a positive definite kernel
- **Why?** first, we check that k(x, y) = k(y, x)
- ightharpoonup second, let $n \geq 1, x_1, \ldots, x_n \in \mathbb{R}^d$, and $c_1, \ldots, c_n \in \mathbb{R}$, then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j x_i x_j$$

$$= \left(\sum_{i=1}^{n} c_i x_i\right)^2$$

$$\geq 0.$$

Fundamental example, ctd.

- we can extend this example: set $k(x,y) := x^{\top}y$ on $\mathcal{X} = \mathbb{R}^d$
- ▶ let $n \ge 1$, $x_1, ..., x_n \in \mathbb{R}^d$, and $c_1, ..., c_n \in \mathbb{R}$, then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j x_i^{\top} x_j$$

$$= \left\| \sum_{i=1}^{n} c_i x_i \right\|^2$$

$$> 0.$$

- $k(x,y) := x^{T}y$ is usually called the **linear kernel**
- ▶ Intuition: kernels are a generalization of inner product

Other examples

Polynomial kernel:

$$\mathcal{X} = \mathbb{R}^d$$
, $k(x, y) = (x^{\top}y + c)^k$.

min kernel:

$$\mathcal{X} = \mathbb{R}, \qquad k(x,y) = \min(x,y).$$

Gaussian kernel:

$$\mathcal{X} = \mathbb{R}^d, \qquad k(x,y) = \exp\left(\frac{-\left\|x - y\right\|^2}{2\nu^2}\right).$$

Exponential kernel:

$$\mathcal{X} = \mathbb{R}^d, \qquad k(x,y) = \exp\left(\frac{-\|x-y\|}{2\nu}\right).$$

...

Choosing the bandwidth

- lacktriangle Gaussian and Laplace kernel: one has to choose the bandwidth parameter u
- lacktriangle indeed, if u is too large with respect to the typical value of $\|x_i x_j\|$, then $K \approx I_n$
- lacktriangle in the other direction, if u is too small, then $K \approx \mathbf{1} \mathbf{1}^{\top}$
- both cases are degenerate: whatever we do with K is not going to work very well
- one possible solution: median heuristic⁸

$$\nu = \mathsf{Med}\{\|x_i - x_j\|, \quad 1 \le i, j \le n\}.$$

- preferable to the mean (too sensitive to extreme values)
- we can pick other quantiles

⁸Garreau, Jitkrittum, Kanagawa, Large sample analysis of the median heuristic, 2017

Hilbert spaces

Definition: A *Hilbert space* is a real or complex vector space which is also a complete metric space with respect to the distance function induced by the inner product.

- ▶ Remark: recall the linear kernel, all we used were properties of inner product
- ▶ let $\Phi: \mathcal{X} \to \mathcal{H}$ be some mapping, \mathcal{H} a Hilbert space with scalar product $\langle \cdot, \cdot \rangle$
- ▶ then $k(x, y) = \langle \Phi(x), \Phi(y) \rangle$ is positive definite:

$$\sum_{i=1}^n \sum_{j=1}^n c_i c_j \langle \Phi(x), \Phi(y) \rangle = \left\| \sum_{i=1}^n c_i \Phi(x_i) \right\|^2 \geq 0,$$

by linearity of the inner product.

Kernel as inner products

Remarkable fact: the converse statement is true!

Theorem: For any kernel k on \mathcal{X} , there exists a Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ and a mapping $\Phi: \mathcal{X} \to \mathcal{H}$ such that

$$\forall x, y \in \mathcal{X}, \qquad k(x, y) = \langle \Phi(x), \Phi(y) \rangle.$$

- ▶ **Reminder:** Hilbert space = inner product + *complete* for the associated norm (Cauchy sequences converge in \mathcal{H})
- ▶ Consequence: we can think of any kernel as a dot product in the feature space
- \blacktriangleright Main idea: forget about Φ and work only with kernel evaluations (more on that later)

⁹Aronszajn, *Theory of reproducing kernels*, Transactions of the American Mathematical Society, 1950

Proof in the finite case

- ▶ assume that $\mathcal{X} = \{x_1, \dots, x_N\}$ is finite of size N
- ▶ any kernel k is entirely defined by the $N \times N$ positive semi-definite matrix $K := (k(x_i, x_j))_{i=1}^N$
- we can diagonalize K in an orthonormal basis (u_1, \ldots, u_N) with associated (non-negative) eigenvalues $\lambda_1, \ldots, \lambda_N$: $K = U \Lambda U^\top$, with $U_{:,i} = u_i$, $\Lambda = \text{diag}(\lambda)$, $U U^\top = U^\top U = I$
- then we write

$$egin{aligned} k(\mathsf{x}_i,\mathsf{x}_j) &= \left(\sum_{\ell=1}^N \lambda_\ell u_\ell u_\ell^{ op}
ight)_{i,j} \ &= \sum_{\ell=1}^N \lambda_\ell (u_\ell)_i (u_\ell)_j = \left\langle \Phi(\mathsf{x}_i), \Phi(\mathsf{x}_j)
ight
angle, \end{aligned}$$

with

$$\Phi(x_i) := \left(\sqrt{\lambda_1}(u_1)_i, \cdots, \sqrt{\lambda_n}(u_N)_i\right)^{\top}.$$

138

5.2. Reproducing kernel Hilbert spaces

Function spaces

- ▶ among all spaces in the previous statement, one of them has interesting properties
- in particular, it is a space of functions
- ▶ i.e., we can map each point $x \in \mathcal{X}$ to a function $\Phi(x) = k_x \in \mathcal{H}$
- **Example:** $\mathcal{X} = \mathbb{R}$, we map each x to the function $t \mapsto xt$
- ightharpoonup ightharpoonup space of linear functions
- more complicated in general...

Reproducing Kernel Hilbert Space (RKHS)

Definition: let \mathcal{X} be a set and \mathcal{H} be a function space forming a Hilbert space with inner product $\langle \cdot, \cdot \rangle$. The function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *reproducing kernel* of \mathcal{H} if

- \blacktriangleright H contains all functions of the form $k_x: t \mapsto k(x,t)$
- ▶ for every $x \in \mathcal{X}$ and $f \in \mathcal{H}$, the *reproducing property* holds:

$$f(x) = \langle f, k_x \rangle$$
.

 \triangleright if a reproducing kernel exists, then \mathcal{H} is called a *reproducing kernel Hilbert space* (RKHS)

Equivalent definition

Theorem: the Hilbert space $\mathcal{H} \subseteq \mathbb{R}^{\mathcal{X}}$ is a RKHS if, and only if, for any $x \in \mathcal{X}$, the mapping $f \mapsto f(x)$ is continuous.

- ▶ Proof of \Rightarrow : let k be a reproducing kernel, $x \in \mathcal{X}$ and $f_n \to f$ in \mathcal{H}
- we write

$$|f_n(x) - f(x)| = |\langle f_n - f, k_x \rangle|$$

$$\leq ||f_n - f|| \cdot ||k_x||$$

by Cauchy-Schwarz inequality.

- $||f_n f|| \to 0$ and we can conclude
- ▶ Remark: $||k_x||^2 = \langle k_x, k_x \rangle = k(x, x)$, thus $|f(x)| \le ||f|| \cdot k(x, x)^{1/2}$

Continuity ctd.

- ▶ *Proof of* \Leftarrow : let $x \in \mathcal{X}$
- **b** by the reproducing property, $L: x \mapsto f(x)$ is a *linear functional*
- ▶ Riesz theorem: there exists ℓ_x such that $L(x) = \langle f, \ell_x \rangle$
- one can check readily the RKHS properties.

Uniqueness

Theorem: if \mathcal{H} is a RKHS, then it has a unique reproducing kernel. Conversely, a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ can be the reproducing kernel of at most one RKHS.

- we talk about the RKHS associated to k
- ightharpoonup Proof: let k and k' be two reproducing kernels
- ▶ then for all $x \in \mathcal{X}$,

$$||k_{x} - k'_{x}||^{2} = \langle k_{x} - k'_{x}, k_{x} - k'_{x} \rangle$$

= $k_{x}(x) - k'_{x}(x) - k_{x}(x) + k'_{x}(x)$
= 0

Equivalence psd / RKHS

Theorem: a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive definite if, and only if, it is a reproducing kernel.

▶ **Idea:** build \mathcal{H} as the completion of

$$\mathcal{H}_0 := \left\{ \sum_{i=1}^n \alpha_i k(\cdot, x_i), n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_i \in \mathcal{X} \right\}$$

▶ **Remark:** showing that a kernel is positive definite is enough to get Φ and \mathcal{H} with the reproducing property "for free"

Example

Example: polynomial kernel of degree 2:

$$k(x,y) = (x^{\top}y)^2.$$

Claim:

$$k(x, y) = \langle xx^{\top}, yy^{\top} \rangle_F$$
,

thus k is positive definite

- Question: what is the RKHS?
- \triangleright we know that \mathcal{H} contains all the functions

$$f(x) = \sum_{i} a_{i} k(x_{i}, x) = \sum_{i} a_{i} \langle x_{i} x_{i}^{\top}, x x^{\top} \rangle = \langle \sum_{i} a_{i} x_{i} x_{i}^{\top}, x x^{\top} \rangle$$

Example, ctd.

- ▶ spectral theorem: any symmetric matrix can be decomposed as $\sum_i a_i x_i x_i^{\top}$
- candidate RKHS: set a quadratic functions

$$f_{S}(x) = \langle S, xx^{\top} \rangle = x^{\top} Sx,$$

with S symmetric matrix of size $d \times d$

ightharpoonup inner product on \mathcal{H} :

$$\langle f_S, f_{S'} \rangle = \langle S, S' \rangle_F$$
.

- ightharpoonup we can check that \mathcal{H} is a Hilbert space (isomorphic to $\mathcal{S}^{d\times d}$)
- finally, we check the reproducing property

5.3. More examples

Elementary properties

Proposition: Let $k_i: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a (potentially infinite) family of p.d. kernels. Then

- for any $\lambda_1, \ldots, \lambda_p \geq 0$, the sum $\sum_{i=1}^p \lambda_i k_i$ is positive definite
- ▶ for any $a_1, \ldots, a_p \in \mathbb{N}$, the product $k_1^{a_1} \cdots k_p^{a_p}$ is positive definite
- ightharpoonup if it exists, the limit $k = \lim_{p \to +\infty} k_p$ is positive definite

Moreover, let \mathcal{X}_i be a sequence of sets and k_i positive kernels on each \mathcal{X}_i . Then

$$k((x_1,\ldots,x_p),(y_1,\ldots,y_p)) := \prod_{i=1}^p k_i(x_i,y_i)$$

and

$$k((x_1,\ldots,x_p),(y_1,\ldots,y_p)) := \sum_{i=1}^p k_i(x_i,y_i)$$

are positive definite kernels.

Taking the exponential

Theorem: if k is a positive definite kernel, then e^k as well.

Proof: we write

$$e^{k(x,y)} = \lim_{n \to +\infty} \sum_{p=0}^{n} \frac{k(x,y)^{p}}{p!},$$

then reason step by step.

- by the product property, $k(x, y)^p$ is a kernel for any $p \ge 0$
- ▶ as a positive linear combination of kernels, $\sum_{p=0}^{n} \frac{k(x,y)^p}{p!}$ is a kernel for all $n \ge 1$
- ightharpoonup finally, e^k is a kernel as a limit of kernels.

5.4. The kernel trick and applications

The kernel trick

- ▶ input data $x_1, ..., x_n \in \mathcal{X}$
- \triangleright $k: \mathcal{X} \times \mathcal{X}$ kernel with associated RKHS \mathcal{H}
- ightharpoonup we call $\Phi: \mathcal{X} \to \mathcal{H}$ the feature map
- **Idea:** imagine that our algorithm only depends on scalar products $x_i^{\top}x_i$
- \blacktriangleright then we can map the x_i to \mathcal{H} and replace the inner products by kernel evaluations, since

$$\langle \Phi(x_i), \Phi(x_j) \rangle = k(x_i, x_j).$$

▶ simple "trick" with many, many applications

Example

- **Example:** computing distances
- suppose that our algo relies on distance computation
- \blacktriangleright that is, $||x-y||^2$
- we can write

$$\|\Phi(x) - \Phi(y)\|^2 = \langle \Phi(x) - \Phi(y), \Phi(x) - \Phi(y) \rangle$$

= $\langle \Phi(x), \Phi(x) \rangle - 2\langle \Phi(x), \Phi(y) \rangle + \langle \Phi(y), \Phi(y) \rangle$
$$\|\Phi(x) - \Phi(y)\|^2 = k(x, x) - 2k(x, y) + k(y, y).$$

in other words,

$$d_{\mathcal{H}}(x,y) = \sqrt{k(x,x) - 2k(x,y) + k(y,y)}.$$

as promised, we do not need to know Φ!

5.5. The representer theorem

Motivation

- lacktriangle let us imagine that we take ${\cal H}$ as hypothesis class
- starting from regularized ERM, our optimization problem will look like

$$\underset{f \in \mathcal{H}}{\operatorname{arg\,min}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \left\| f \right\|^2 \right\}. \tag{\star}$$

- we penalize by the norm because it is an indicator of the *smoothness* of *f*
- Why? Cauchy-Schwarz + exercise:

$$|f(x)-f(y)|=|\langle f,k_x-k_y\rangle|\leq ||f||\cdot ||k_x-k_y||=||f||\cdot d_{\mathcal{H}}(x,y).$$

- \triangleright Eq. (\star) is a complicate problem, potentially *infinite-dimensional*
- Question: how to solve it in practice?

The representer theorem

Theorem: let \mathcal{H} be the RKHS associated to k defined on \mathcal{X} . Let $S = \{x_1, \dots, x_n\} \subseteq \mathcal{X}$ be a finite set of points. Let $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$ be a function, increasing in the last variable. Then any solution to the minimization problem

$$\operatorname*{arg\,min}_{f\in\mathcal{H}}\Psi(f(x_1),\ldots,f(x_n),\|f\|)$$

admits a representation of the form

$$\forall x \in \mathcal{X}, \qquad f(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x).$$

▶ Main consequence: Eq. (*) is actually a finite-dimensional problem (!)

Practical use

- recall that we defined $K := (k(x_i, x_j))_{i,j=1}^n$
- before turning to concrete examples, we notice that we can simply express the key quantities
- ▶ for instance, for any $1 \le j \le n$,

$$f(x_j) = \sum_{i=1}^n \alpha_i k(x_i, x_j) = (K\alpha)_j.$$

in the same way,

$$\|f\|^2 = \left\|\sum_{i=1}^n \alpha_i k(x_i, \cdot)\right\|^2 = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_i, x_j) = \alpha^\top K \alpha.$$

5.6. Kernel ridge regression

Kernel Ridge Regression¹⁰ (KRR)

- ▶ regression setting: $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$
- $ightharpoonup \mathcal{Y} \subseteq \mathbb{R}$, but \mathcal{X} could be anything
- \blacktriangleright we have a kernel k on \mathcal{X}
- > same idea than with ridge regression:

$$\hat{f} \in \operatorname*{arg\,min}_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \left\| f \right\|^2 \right\}.$$

ightharpoonup here effect of the regularization is to make \hat{f} smoother

¹⁰Cristianini and Shawe-Taylor, *An introduction to support vector machines and other kernel-based learning methods*, Cambridge University Press, 2000

Solving KRR

▶ representer theorem ⇒

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x),$$

for some $\alpha \in \mathbb{R}^n$

> as per the previous remark, we know that

$$(\hat{f}(x_1),\ldots,\hat{f}(x_n))^{\top}=K\alpha,$$

and

$$\|\hat{f}\|^2 = \alpha^\top K \alpha$$
.

thus KRR can be re-written as

$$\hat{\alpha} \in \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^n} \left\{ \frac{1}{n} (K\alpha - y)^\top (K\alpha - y) + \lambda \alpha^\top K\alpha \right\} \,.$$

Solving KRR, ctd.

- convex, smooth objective ⇒ set the gradient to zero
- \triangleright $\hat{\alpha}$ has to be solution of

$$0 = \frac{-2}{n}K(y - K\alpha) + 2\lambda K\alpha = \frac{2}{n}K[(K + n\lambda I_n)\alpha - y]$$

- ▶ since $\lambda > 0$, $K + n\lambda I_n$ is invertible
- a solution is given by

$$\hat{\alpha} = (K + n\lambda I_n)^{-1} y.$$

- **Remark:** if k = linear kernel, $K = XX^{\top}$
- solution we found solving "regular" ridge regression is

$$\hat{\beta} = (X^{\top}X + n\lambda \,\mathsf{I}_d)^{-1}X^{\top}y.$$

Solving KRR, ctd.

- actually leads to the same solution
- can compare the predictions:
- on one side,

$$K\hat{\alpha} = K(K + n\lambda I_n)^{-1} = XX^{\top}(XX^{\top} + n\lambda I_n)^{-1}y$$
.

on the other side,

$$X\hat{\beta} = X(X^{\top}X + n\lambda I_d)^{-1}X^{\top}y$$

Proof: Woodbury identity:

$$(I + AA^{\top})^{-1} = I - A(I + A^{\top}A)^{-1}A^{\top}$$
.

(Woodbury actually has a more general statement)

Uniqueness

Reminder:

$$\hat{\alpha} = (K + n\lambda \,\mathsf{I}_n)^{-1} y \,.$$

- Remark: not the only solution if K is singular
- ▶ Why? $K + \lambda n I$ and $(K + \lambda n I)^{-1}$ both leave ker K stable, can add ε such that $K\varepsilon = 0$
- but correspond to same element in the RKHS!
- **Why:** compute (squared) norm of the difference:

$$\left\| \sum_{i} \alpha_{i} k(\cdot, x_{i}) - \sum_{i} (\alpha_{i} + \varepsilon_{i}) k(\cdot, x_{i}) \right\|^{2} = (\alpha - \varepsilon)^{\top} K(\alpha - \varepsilon) = 0.$$

5.7. Kernel logistic regression

Kernel Logistic Regression¹¹ (KLR)

- ▶ classification setting: $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$
- $ightharpoonup \mathcal{Y} = \{0,1\}$, but \mathcal{X} could be anything
- \blacktriangleright we have a kernel k on \mathcal{X}
- kernelized version of logistic regression:

$$\hat{f} \in \operatorname*{arg\,min}_{f \in \mathcal{H}} \left\{ rac{1}{n} \sum_{i=1}^n \log \left(1 + \mathrm{e}^{-y_i f(\mathbf{x}_i)}
ight) + \lambda \left\| f
ight\|^2
ight\} \,.$$

same regularization effect

¹¹Green, Yandell, Semi-parametric generalized linear models, Generalized linear models, 1985

Solving KLR

- no explicit solution, but convex and smooth
- ▶ again, we can use the representer theorem:

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x)$$

for some $\alpha \in \mathbb{R}^n$

- ightharpoonup again, $(\hat{f}(x_1), \dots, \hat{f}(x_n))^{\top} = K\alpha$ and $\|\hat{f}\|^2 = \alpha^{\top} K\alpha$
- we can rewrite KLR as

$$\hat{\alpha} \in \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^n} \frac{1}{n} \left\{ \sum_{i=1}^n \log \left(1 + \mathrm{e}^{-y_i (K\alpha)_i} \right) + \lambda \alpha^\top K\alpha \right\} \,.$$

this can be solved (approximately) by gradient descent

Illustration

