

Theory of Machine Learning

Exercise sheet 12 — Session 12

Exercise I (Non-expansiveness of the Gaussian kernel) Consider the Gaussian kernel $K : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ such that for all pair of points \mathbf{x}, \mathbf{x}' in \mathbb{R}^d ,

$$K(\mathbf{x}, \mathbf{x}') = e^{-\frac{1}{2\nu^2} \|\mathbf{x} - \mathbf{x}'\|_2^2},$$

where $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^d and the bandwidth $\nu > 0$. Call \mathcal{H} the RKHS of K and consider its RKHS mapping $\phi : \mathbb{R}^d \rightarrow \mathcal{H}$ such that $K(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{H}}$ for all \mathbf{x}, \mathbf{x}' in \mathbb{R}^d . Show that

$$\|\phi(\mathbf{x}) - \phi(\mathbf{x}')\|_{\mathcal{H}} \leq \frac{1}{\nu} \|\mathbf{x} - \mathbf{x}'\|_2.$$

The mapping is called non-expansive whenever $\nu \geq 1$.

1. Show that

$$\|\phi(\mathbf{x}) - \phi(\mathbf{x}')\|_{\mathcal{H}}^2 = K(\mathbf{x}, \mathbf{x}) + K(\mathbf{x}', \mathbf{x}') - 2K(\mathbf{x}, \mathbf{x}').$$

2. Show that

$$\|\phi(\mathbf{x}) - \phi(\mathbf{x}')\|_{\mathcal{H}}^2 = 2 \left(1 - e^{-\frac{1}{2\nu^2} \|\mathbf{x} - \mathbf{x}'\|_2^2} \right).$$

3. Using that $1 + x \leq \exp(x)$ (for all $x \in \mathbb{R}$), show that

$$\|\phi(\mathbf{x}) - \phi(\mathbf{x}')\|_{\mathcal{H}} \leq \frac{1}{\nu} \|\mathbf{x} - \mathbf{x}'\|_2.$$

Exercise II (A useful feature map ϕ) Given the input space $\mathcal{X} := \mathbb{R}^2$, we define the polynomial kernel as $K(\mathbf{x}, \mathbf{x}') := \langle \mathbf{x}, \mathbf{x}' \rangle_{\mathbb{R}^2}^2$.

1. Show that K is a p.d. kernel without any computations.
2. Develop the expression of $K(\mathbf{x}, \mathbf{x}') := \langle \mathbf{x}, \mathbf{x}' \rangle_{\mathbb{R}^2}^2$.
3. Find a feature map $\phi : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ such that $K(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathbb{R}^3}$.
4. Plotting the effect of the feature map ϕ :
 - (a) Generate a dataset with points labeled based on whether they lie inside or outside a unit circle in \mathbb{R}^2 .
 - (b) Visualize this dataset using `matplotlib.pyplot.scatter()`.
 - (c) Create a new dataset in \mathbb{R}^3 by applying the feature map ϕ on each point of the previous dataset.
 - (d) Visualize the transformed data in 3D, showcasing their linear separability.

Exercise III (Construction of the RKHS) Given the input space $\mathcal{X} := \mathbb{R}^d$, we define the polynomial kernel of degree 2 as $K(\mathbf{x}, \mathbf{x}') := \langle \mathbf{x}, \mathbf{x}' \rangle_{\mathbb{R}^d}^2$. The objective is to construct the associated RKHS.

1. **First step: look for an inner-product.** show that

$$K(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}\mathbf{x}^\top, \mathbf{y}\mathbf{y}^\top \rangle_F,$$

with $\langle \cdot, \cdot \rangle_F$ the Frobenius inner-product.

2. **Second step: propose a candidate RKHS.** Show that the RKHS candidate \mathcal{H} contains all the functions of the form:

$$\forall \mathbf{x} \in \mathbb{R}^d, \forall n \in \mathbb{N}^*, \forall \{a_i\}_{i=1}^n \subset \mathbb{R}, \forall \{\mathbf{x}^{(i)}\}_{i=1}^n \subset \mathbb{R}^d, \quad f(\mathbf{x}) := \left\langle \sum_{i=1}^n a_i \mathbf{x}^{(i)} \mathbf{x}^{(i)\top}, \mathbf{x}\mathbf{x}^\top \right\rangle_F.$$

3. **Third step: check that the candidate is the RKHS.** Show that the candidate \mathcal{H} which is the set of quadratic functions is the RKHS.

**Exercise IV (Massart's lemma) ** Let us assume that \mathcal{G} is *finite*, that is, $\mathcal{G} = \{g_1, \dots, g_m\}$. Let us assume further that $\frac{1}{n} \sum_{i=1}^n g_j(X_i)^2 \leq R^2$ for all $j \in [d]$. Show that the Rademacher complexity of the function class \mathcal{G} satisfies

$$R_n(\mathcal{G}) \leq \sqrt{\frac{2 \log m}{n}} R.$$

For simplicity's sake, we consider the X_i s fixed.

- Given $\lambda > 0$, show that

$$\exp \left(\lambda \mathbb{E}_\varepsilon \left[\sup_{g \in \mathcal{G}} \sum_{i=1}^n \varepsilon_i g(X_i) \right] \right) \leq \sum_{g \in \mathcal{G}} \mathbb{E}_\varepsilon \left[\exp \left(\lambda \sum_{i=1}^n \varepsilon_i g(X_i) \right) \right].$$

(*Hint: Jensen's inequality and property of sup.*)

- Show that

$$\sum_{g \in \mathcal{G}} \mathbb{E}_\varepsilon \left[\exp \left(\lambda \sum_{i=1}^n \varepsilon_i g(X_i) \right) \right] = \sum_{g \in \mathcal{G}} \prod_{i=1}^n \frac{1}{2} (\exp(\lambda g(X_i)) + \exp(-\lambda g(X_i))).$$

(*Hint: independence of the ε_i s and direct computation of the remaining expectation.*)

- Using $\frac{e^x + e^{-x}}{2} \leq e^{x^2/2}$ (for all $x \in \mathbb{R}$), show that

$$\sum_{g \in \mathcal{G}} \prod_{i=1}^n \frac{1}{2} (\exp(\lambda g(X_i)) + \exp(-\lambda g(X_i))) \leq \sum_{g \in \mathcal{G}} \exp \left(\frac{\lambda^2}{2} \sum_{i=1}^n g(X_i)^2 \right).$$

- Show that

$$\sum_{g \in \mathcal{G}} \exp \left(\frac{\lambda^2}{2} \sum_{i=1}^n g(X_i)^2 \right) \leq m \exp \left(\frac{n \lambda^2 R^2}{2} \right).$$

(*Hint: refer to the assumptions in the exercise statement on g and \mathcal{G} .*)

- By putting everything together, show that

$$R_n(\mathcal{G}) \leq \frac{1}{n \lambda} \log m + \frac{\lambda R^2}{2}.$$

- Show that $\lambda^* = \frac{1}{R} \sqrt{\frac{2 \log m}{n}}$ minimizes the previous bound.

- Show the Massart's lemma bound.