
Let‘s build a compiler

Why build a compiler?

Rust?

Go?

Python?

C--
ARM?

RISC-V?

HANS?

x86

What the computer sees

What the computer sees
Function main

Declare n, res

Sequence

Sequence

Assign n = 5

if

n > 5 Sequence Assign res = n

Sequence

return res

…

Building the Abstract Syntax Tree

Semantic Analysis

• We create a Symbol Table to
uniquely identify variables (
and constants, objects,
functions…)

• The Symbol Table contains all
useful information about the
variables

• Memory Location, Type...

Function main

Assign x = 3141

Sequence

Sequence

if

x > 1337 Sequence Assign i = 2

return x

Declare i Assign i = 1

SequenceDeclare i

Symbol Table

Assembly and the Stack

Runtime

• No function calls → all in one stack frame

• We can‘t allocate registers yet
• Every variable gets saved to the stack

• When we need it, we load it from the stack
• Whenever an expression is calculated, ist result gets put in rax

Code Generation

Comparison to rustc
Our compiler rustc

SourceSource

AST AST

.asm

High-Level IR

THIR

.asm

Mid-Level IR

LLVM IR

LLVM Intermediate Representation

• „High-Level Assembly“
• Single Static Assignment (SSA)
 Infinite Registers

• Typed
• Control Flow Graph:

• Basic Blocks without branches
• Basic Block starts with a label

and ends with a branch
• Arranged in a directed Graph

Some Optimizations

• Technically only improvements
• Arithmetic simplification:

a := x * 8 => a := x <= 3 (is th is actually faste r?)
b := y * 0 => b := 0

• Constant folding:
c := 2 + 2 => c := 4

• Cvpy P rvpagativn:
x := 4 x := 4 x := 4
y := x => y := 4 => y := 4
z := y + 2 z := x + 2 z := 6

Register Allocation

• What if we used 100%
of the registers?

• Determine which
variables conflict with
each other

• Assuming we have
four registers: Can we
allocate them?

Register Interference Graph

• Construct the Register Interference Graph
• Each variable is a node
• Iff two variables conflict, they are connected

• Now it‘s a graph colouring problem!
• Largest clique: {b, c, e, f} / {c, d, e, f}

• What if we only have three registers?
• Put some variables in memory („spilling“)
• Or recompute
• Performance depends on which ones are spilt

	Slide 1: Let‘s build a compiler
	Slide 2: Why build a compiler?
	Slide 3: What the computer sees
	Slide 4: What the computer sees
	Slide 5: Building the Abstract Syntax Tree
	Slide 6: Semantic Analysis
	Slide 7: Symbol Table
	Slide 8: Assembly and the Stack
	Slide 9: Runtime
	Slide 10: Code Generation
	Slide 11: Comparison to rustc
	Slide 12: LLVM Intermediate Representation
	Slide 13: Some Optimizations
	Slide 14: Register Allocation
	Slide 15: Register Interference Graph

