Setting

Soal: predicting
$$y \in \mathbb{R}$$
 from input $x \in \mathbb{R}^d$

assume that we are given training data
$$\{(x^{(1)}, y^{(1)}, c^{(1)}), (x^{(2)}, y^{(2)}, c^{(2)}), \dots, (x^{(n)}, y^{(n)}, c^{(n)})\},$$

$$\{(x^{(1)},y^{(1)},c^{(1)}),(x^{(2)},y^{(2)},c^{(2)}),\ldots,(x^{(n)},y^{(n)},c^{(n)})\}$$

where $X^{(i)}$, $y^{(i)}$ are as usual, and $c^{(i)} \in \mathbb{R}^k$ are concept vectors

- **Example:** concepts from the arthritis task: sclerosis, bone spurs, ...
- $c^{(i)} = (10, 0.1, -0.3, ...)^{\top}$ corresponds to sclerosis being present
- ▶ Concept bottleneck model: f(x) = g(h(x)), where

 - $h: \mathbb{R}^d \longrightarrow \mathbb{R}$ predicts concepts from input $g: \mathbb{R} \longrightarrow \mathbb{R}$ predicts output from concepts

$$f(x) = g(h(x))$$

Independent bottleneck

- ▶ there are several natural ways to train $f = g \circ h$
- let us call \hat{g} and \hat{h} the trained versions of g and h
- ► Loss functions:
 - lacklet $\ell: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ for the outputs
 - lacksquare $orall j \in [k]$, define $\ell_i: \mathbb{R} imes \mathbb{R} o \mathbb{R}_+$ the loss for concept j

Independent bottleneck: earn \hat{g} and \hat{h} independently:

$$\left(\ell_{j} = -log(c_{j})\right)$$

$$\hat{h} \in \arg\min_{h} \sum_{i=1}^{n} \sum_{i=1}^{k} \ell_{j}(h_{j}(x^{(i)}), c_{j}^{(i)}), \quad \text{and} \quad \hat{g} \in \arg\min_{g} \sum_{i=1}^{n} \ell(g(c^{(i)}), y^{(i)}).$$

- ▶ **Intuition:** learn (independently) a good concept predictor and a good predictor relying only on concepts
- **Beware:** although \hat{g} trained using true concepts, $\hat{f} = \hat{g} \circ \hat{h}$

Other possibilities

Sequential bottleneck: \hat{h} learned as before, \hat{g} learned using \hat{h}

$$\hat{h} \in \arg\min_{h} \sum_{i=1}^{n} \sum_{j=1}^{k} \ell_{j}(h_{j}(x^{(i)}), c_{j}^{(i)}), \quad \text{and} \quad \hat{g} \in \arg\min_{g} \sum_{i=1}^{n} \ell(g(\hat{h}(x^{(i)}), y^{(i)}).$$

$$\hat{g} \in \mathop{\mathsf{arg\,min}} \sum_{i=1}^m \ell(g(\hat{h}(x^{(i)})), y^{(i)})$$

Joint bottleneck: minimize a weighted sum of the two objectives:

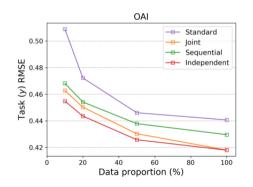
with $\lambda > 0$ some hyperparameter

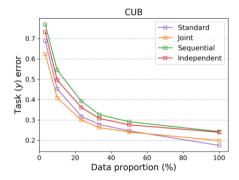
Standard model: ignores concepts altogether:

$$\hat{g}, \hat{h} \in \operatorname*{arg\,min}_{g,h} \sum_{i=1}^n \ell(g(h(x^{(i)})), y^{(i)}).$$

Empirical results

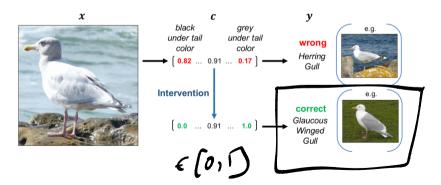
- ▶ all models are good at predicting concepts
- ▶ then the metric is really accuracy: depends on the task
- ▶ ... and always a bit smaller than without relying on concepts :(





Concept intervention

- ▶ Concept intervention: modifying concept values to get more accurate prediction
- **Example:**



Summary

- ► Concept bottleneck: explainable-by-design concept-based model
- requires user-defined concepts
- allows for concept intervention
- many extensions
- Remark: also possible to perform transplantation on existing network, introducing concept layer instead of existing layer

9. Explanations for attention-based models

9.1. Attention mechanism

Setting

- \blacktriangleright in this chapter, we work in the context of NLP \rightarrow same context as for LIME for text data
- ▶ Reminder: document x = ordered sequence of T tokens → $X = (X, Y_{\bullet}, X_{\bullet}, \dots, X_{\bullet})$
- lacktriangle for simplicity's sake, dictionary =[D] with $D\geq 1$
- **Example:** D = 10

$$x = (5, 0, 3, 3, 7, 9).$$

- ightharpoonup T = length of the document is 6
- tasks we have in mind:
 - classification: given x, predict the correct class (example: sentiment analysis)
 - ▶ next-token prediction, a.k.a. sequence modeling: given $(x_1, x_2, ..., x_{t-1})$, make a reasonable guess for x_t (example: language modeling)
 - sequence-to-sequence: given x, predict another sequence y (example: neural machine translation)
- attention is a mechanism used in modern architectures to tackle those

Token embeddings

Bohdanv et al, 15 Vasnani et al, 17

- ▶ **First step:**⁹³ vector representation of each token
- ▶ for each $t \in [T]$, token $x_t = j$ is embedded as

$$e_t := (W_e)_{:,j} + W_p(t) \in \mathbb{R}^{d_e}$$

where:

$$(\cdots,3,\cdots,3,)$$

 $lackbox{W}_e \in \mathbb{R}^{d_e imes D}$ matrix containing embeddings of all tokens

 $V_p: \mathbb{N} \to \mathbb{R}^{d_e}$ positional embedding **Typically,** W_e and W_p are learned, W_p can also be set to something arbitrary $\begin{cases} W_p(t)_{2i} &= \cos(t/T_{\text{max}}^{2i/d_e}) \\ W_p(t)_{2i-1} &= \sin(t/T_{\text{max}}^{2i/d_e}). \end{cases}$

⁹³I am following Phuong and Hutter, Formal Algorithms for Transformers, preprint, 2022

Keys, queries, values Y => E =

VI-DE-

- ightharpoonup max length for documents = T_{max}
- ▶ **Note:** 94 in modern architectures, $T_{\rm max} \approx 10^5$
- **Padding** until $T_{\sf max}$ with <EOS> token, to simplify $T=T_{\sf max}$ in these notes
- ▶ **Next step:** for each $t \in [t]$, e_t transformed into:

$$\begin{cases} k_t &:= W_k e_t + b_k \in \mathbb{R}^{d_{\text{att}}} \\ q_t &:= W_q e_t + b_q \in \mathbb{R}^{d_{\text{att}}} \\ v_t &:= W_v e_t + b_v \in \mathbb{R}^{d_{\text{out}}} \end{cases}$$
 (key) (query) (value)

- lacksquare matrices $W_k, W_q \in \mathbb{R}^{d_{ ext{att}} imes d_e}$, and $W_v \in \mathbb{R}^{d_{ ext{out}} imes d_e}$ are learned
- bias vectors $b_k, b_q \in \mathbb{R}^{d_{att}}$, $b_v \in \mathbb{R}^{d_{out}}$ also learnable, set to zero for simplicity

 $^{^{94}}$ for instance, Claude 2.1 has a context size of 200k tokens, corresponding to roughly the length of B ω n Stoker's Dracula

Single-query attention

- **Definition:** for any vector $u \in \mathbb{R}^d$, define coordinate-wise.

$$\forall j \in [d],$$

$$orall j \in [d], \qquad \qquad ext{softmax}(u)_j = rac{\mathrm{e}^{u_j}}{\sum_k \mathrm{e}^{u_k}} \,.$$

- **Intuition:** squeezes everyone into [0,1]; if coordinate j much higher then close to 1
- ▶ for a given query $q \in \mathbb{R}^{d_{att}}$, each token x_t with $t \in [T_{max}]$ receives attention weight ⁹⁵

$$\mathsf{g} = \frac{\exp\left(q^\top k_t/\sqrt{d_{\mathsf{att}}}\right)}{\sum_{u=1}^{T_{\mathsf{max}}} \exp\left(q^\top k_t/\sqrt{d_{\mathsf{att}}}\right)} \ .$$

Intuition: if query "matches" with k_t , then α_t large

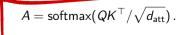
⁹⁵ Bahdanau, Cho, Bengio, Neural machine translation by jointly learning to align and translate, ICLR, 2015

Self-attention

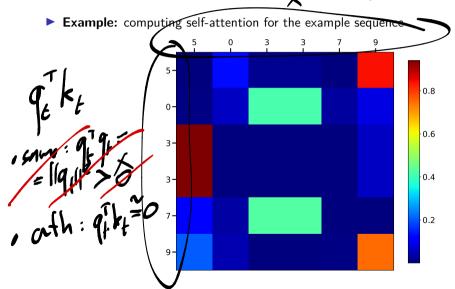
- Typical situation: compute attention for $q=q_t$, for all $t\in [T_{\max}]$
- this is called self-attention
- ▶ formally speaking, compute the matrix $A(x) \in \mathbb{R}^{T_{\text{max}} \times T_{\text{max}}}$ with

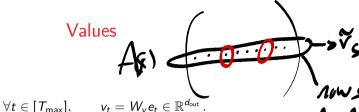
$$\forall s,t \in [T_{\mathsf{max}}], \qquad \mathcal{A}(x)_{s,t} = \frac{\exp\left(q_s^{\top} k_t / \sqrt{d_{\mathsf{att}}}\right)}{\sum_{u=1}^{T_{\mathsf{max}}} \exp\left(q_s^{\top} k_u / \sqrt{d_{\mathsf{att}}}\right)}.$$

- rows of A(x) correspond to attention of tokens with respect to the sequence
- ▶ Additional notation: $E = E(x) \in \mathbb{R}^{T \times d_e}$ collection of embeddings
- ▶ $Q = EW_q^{\top} \in \mathbb{R}^{T \times d_{\text{att}}}$, $K = EW_k^{\top} \in \mathbb{R}^{T \times d_{\text{att}}}$ ▶ extending definition of softmax to matrices (row-wise):



Self-attention, example





Recall: values

$$\forall t \in [T_{\mathsf{max}}],$$

$$v_t = W_v e_t \in \mathbb{R}^{d_{\text{out}}}$$
.

- **Final step:** aggregate value vectors depending on attention coefficients
- ightharpoonup namely, for all $s \in [T_{max}]$,

$$ilde{v}_s = \sum_{t=1}^{{T_{\mathsf{max}}}} {\mathcal{A}}(x)_{s,t} v_t \in \mathbb{R}^{d_{\mathsf{out}}}$$
 .

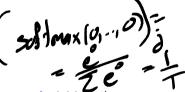
- ▶ To summarize: attention blocks take as input sequence of T tokens and outputs T vectors of size d_{out}
- ▶ **Intuition:** key = description, query = what we are looking for
- \triangleright value = convex combination of the values with weight close to 1 if e_s and e_t match

More intuition

- **At initialization:** W_q and W_k random matrices (coef. i.i.d. $\mathcal{N}\left(0,\sigma^2\right)$)
- ightharpoonup thus q_s and k_t are orthogonal with high probability and

$$\forall s,t \in [T_{\mathsf{max}}], \qquad q_s^{\top} k_t \approx 0.$$

the attention scores look like



$$A(x) \approx \begin{pmatrix} 1/T & 1/T & \cdots & 1/T \\ 1/T & 1/T & \cdots & 1/T \\ \vdots & & & \vdots \\ 1/T & 1/T & \cdots & 1/T \end{pmatrix} \qquad \downarrow \sum_{t=1}^{T} V_{t}$$

- initial value vector = average
- progressively learn to put more weights on some tokens depending on the task we are training for

Masked self-attention

- **Masked self-attention:** remove the corresponding $q_s^{\top} k_t$ from the softmax computation
- ightharpoonup trick = define a mask with $-\infty$ when we want to ignore (and 1 otherwise)
- \triangleright then multiply element-wise the QK^{\top} matrix
- Important example: constrain the model to ignore "future" tokens
- ightharpoonup namely, use onl (x_1, \ldots, x_{t-1}) o predict (x_t) unidirectional attention)
- define $M_{s,t}=-\infty$ if $s \leq t, 1$ otherwise
- masked self-attention is given by

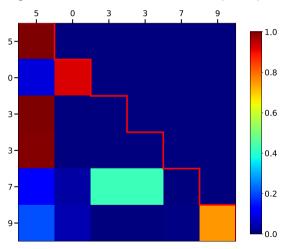
$$A(x, M) = \operatorname{softmax}((M + QK^{\top})/\sqrt{d_{\operatorname{att}}}).$$

on a given line, $\mathrm{e}^{q_s^{ op} k_{\mathrm{t}}} = \mathrm{e}^{-\infty} = 0$ whenever s > t, meaning that

$$\forall s > t$$
, $A(x, M)_{s,t} = \frac{\mathrm{e}^{q_s^\top k_t}}{\sum_{u=1}^s \mathrm{e}^{q_s^\top k_u}}$, and 0 otherwise.

Masked self-attention, example

Example: computing masked self-attention for the example sequence



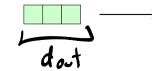
Further refinements

- Cross-attention: in the context of sequence-to-sequence, typical to get a second sequence as context
- ▶ namely, take Q = Q(x) and K = K(z), then compute

$$A(x,z) = \operatorname{softmax}(QK^{\top}/\sqrt{d_{\operatorname{att}}})$$

as before

- ▶ Multi-head: usually, several attention blocks work in parallel on the same input
- ▶ say H heads → concatenate the H outputs $T \times d_{\mathsf{out}}$ to form $T \times (Hd_{\mathsf{out}})$
- Illustration:



9.2. Transformers: the example of GPT-2

GPT-2

- attention mechanism was popularized by the transformer architecture⁹⁶
- lacktriangle in this section, I give more details about GPT-2-small (pprox 117M) 97
- Overview:
 - ▶ BytePair⁹⁸ tokenized input $x \in [D]^T$ (D = 50,304)
 - embedding as described in previous section ($d_e = 768$) $x \mapsto f^{(0)} \in \mathbb{R}^{T \times d_e}$
 - ightharpoonup L = 12 sequential unidirectional self-attention layers
 - lacktriangle each layer has 12 heads ($d_{ ext{out}} = d_e/12 = 64$) $f^{(t)} \mapsto f^{(t+1)} \in \mathbb{R}^{T \times d_e}$
 - final output: linear transformation and softmax $f^{(L)} \mapsto f(x) \in \mathbb{R}^{T \times D}$

⁹⁶ Vaswani et al., Attention is all you need, NeurIPS, 2017

⁹⁷Radford et al., Language Models are Unsupervised Multitask Learners, preprint, 2019

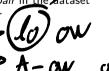
⁹⁸Sennrich et al., Neural machine translation of rare words with subword units, Proc. ACL, 2016

BytePair encoding

- ▶ Overall idea: encode rare words by subword units
- ▶ Intuition: compound words

"Abwasserbehandlungsanlage" \mapsto "Abwasser|behandlungs|anlage"

- ▶ adaptation of a compression algorithm⁹⁹ to the word segmentation task
- ▶ start from tokens = characters
- for a given number of merges:
 - 1. find the most frequent token pair in the dataset
 - 2. assign a new token to this pair
- Example: ('low','login'



- gi i

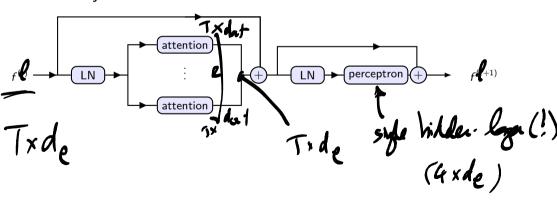
⁹⁹Gage, A new algorithm for data compression, C. Users J., 1994

GPT-2 block

- ▶ sequentially, input $f^{(t)} \in T \times d_e$ goes through
 - lacktriangledown H=12 unidirectional self-attention heads o output $\in \mathbb{R}^{T imes d_{
 m out}}$ with $d_{
 m out}=d_e/12=64$
 - ightharpoonup concatenate everyone, back in \mathbb{R}^{d_e}
 - single-layer perceptron
 - lacktriangle works on each token representation independently (input $\in \mathbb{R}^{d_e}$)
 - ▶ hidden layer of size $4 \times d_e = 3,072$
 - ► GeLU activation
 - ightharpoonup output again in \mathbb{R}^{d_e}
 - ▶ layer output is $f^{(t+1)} \in \mathbb{R}^{T \times d_e}$
- each attention head works in parallel, but there are some connections
- ▶ Additionally: layer-norm before and after self-attention, skip connections

GPT-2 block, ctd.

► Schematically:



Layer normalization

- Layer normalization: alternative to batch normalization
- ▶ Overall idea: normalize across all features from a layer 100
- lacktriangle namely, if layer h has features $f = (f_1, \dots, f_d)^{ op} \in \mathbb{R}^d$, set

$$\mu:=rac{1}{d}\sum_{j=1}^d f_j$$
 and $\sigma^2:=rac{1}{d}\sum_{j=1}^d (f_j-\mu)^2$

▶ then

$$\forall j \in [d], \qquad \mathsf{LN}(f) := \gamma_j \frac{f_j - \mu}{\sqrt{\sigma^2 + \varepsilon}} + \beta_j,$$

where ε is a small, positive offset, while γ and β are learnable parameters

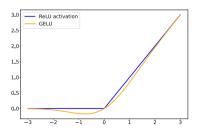
¹⁰⁰Ba, Kiros, Hinton, Layer normalization, preprint, 2016

Gaussian error linear units (GELUs)

- ▶ **GeLUs:**¹⁰¹ smoothed version of ReLU
- **Recall:** Φ is the cumulative distribution function of a $\mathcal{N}(0,1)$:

$$\Phi(x) = \mathbb{P}\left(\mathcal{N}\left(0,1\right) \le x\right) = \frac{1}{2\pi} \int_{-\infty}^{x} e^{\frac{-t^2}{2}} dt.$$

▶ then $GELU(x) := x\Phi(x)$



¹⁰¹Hendrycks and Gimpel, Gaussian error linear units, preprint, 2016

Querying the model at train time

- ▶ after the last attention layer, $f^{(L)} \in \mathbb{R}^{T \times d_e}$
- linear transformation with same weights as embedding $f^{(L)} \mapsto f^{(L)} W_e \in \mathbb{R}^{T \times D}$
- then softmax on each row:

$$f(x) = \operatorname{softmax}(f^{(L)}W_e) \in \mathbb{R}^{T \times D}$$
.

- for each token, discrete probability distribution on the dictionary = proba of next token
- ▶ At training time: binary cross entropy between the predictions and the example:

$$loss(x^{(1)}, \dots, x^{(n)}) = \sum_{i=1}^{n} \sum_{t \in [T-1]} -\log f(x^{(i)})_{\tilde{x}_{t+1}^{(i)}}.$$

minimize this loss on WebText dataset with Adam 103

 $^{^{102}\}mathrm{Press}$ and Wolf, Using the Output Embedding to Improve Language Models, EACL, 2017 $^{103}\mathrm{Kingma}$ and Ba, Adam: A Method for Stochastic Optimization, ICLR, 2015

Querying the model at test time

- **Decoding:** several options, corresponding to the use-case:
 - classification: train regressor on (part of) $f^{(L)}(x)$ features
 - next-token prediction: use the prediction from the last row $f(x)_{T,:}$, usually take the a
 - sequence generation. Iterate next-token prediction, stop when generating <EOS>
- **Reminder:** arg max u = index of the coordinate of u with maximal value
- Remark: not necessarily taking the argmax when generating sequence:
 - pure sampling: sample according to the proba distribution on [D]
 - ightharpoonup top-k sampling: sample only among the top-k elements of [D]
 - beam search: sample ahead and maximize product proba
 - ► sampling with temperature: 104 sampling with skewed softmax
 - ightharpoonup nucleus sampling: 105 adaptive top-k sampling
 - **.**..

 $^{^{104}}$ Ackley, Hinton, Sejnowski, *A learning algorithm for Boltzmann machines*, Cognitive Science, 1985 105 Holtzman et al., *The curious case of neural text degeneration*, ICLR, 2020

9.3. Explaining transformers

Classification setting

- Reminder: in that case, our model takes real values
- we can use standard techniques
- Example: gradient with respect to the input
- Problem: input is a sequence of discrete tokens... (general issue in XAI for NLP)
- **Solution:** decompose model into $f = g \circ e$, where

$$e:[D]^T\longrightarrow \mathbb{R}^{T\times d_e}$$

embedding function

- lacktriangle compute $abla_{e(\xi)}g\in\mathbb{R}^{T imes d_e}$, then map back to original sequence
- ▶ that is, aggregate the information for each token

Classification setting, ctd.

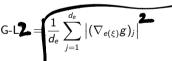
- typical solutions for aggregation:
 - ▶ mean value: 106

$$\mathsf{G} ext{-avg}_t = rac{1}{d_e} \sum_{i=1}^{d_e} (
abla_{e(\xi)} g)_j$$

 I^{1} -norm. 107

 L^2 -norm: 108

$$extsf{G-L1}_t = rac{1}{d_e} \sum_{i=1}^{d_e} \left| (
abla_{e(\xi)} oldsymbol{g})_j
ight|$$



¹⁰⁶Atanasova et al., A diagnostic study of explainibility techniques for text classification, EMNLP, 2020

¹⁰⁷Li et al., Visualizing and understanding models in NLP, Proc. ACL, 2016

¹⁰⁸Poerner et al.. Evaluating neural network explanation methods using hybrid documents and morphosyntactic agreement, Proc. ACL, 2018

Generative setting

- ▶ in that case no clear target...
- ▶ Natural idea: look directly at the attention scores of self-attention heads
- get insights on what a particular head is doing
- ▶ **Problem:** most tokenizers are "sub-words"
- need to transform token-to-token into word-to-word attention map
- ► Solution:¹⁰⁹
 - ▶ for attention *to* a split-up word, *sum* attention weights
 - ▶ for attention from a split-up word, average attention weights
- ightharpoonup formally, if s (resp. t) is split into s_1, \ldots, s_a (resp. t_1, \ldots, t_b), define

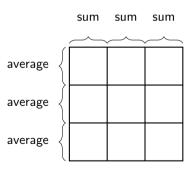
$$ilde{A}_{s,t} := rac{1}{a} \sum_{i=1}^{a} \sum_{j=1}^{b} A_{s_i,t_j} \, .$$

 $^{^{109}\}mbox{Clark}$ et al., What does BERT look at? An analysis of BERT's attention, 2nd BlackBoxNLP workshop (ACL), 2019

Proof of the claim

ightharpoonup Claim: rows of \tilde{A} still sum to one

proof with a drawing:



Looking at individual heads: example

Example from the paper: looking at BERT (X-Y stands for head Y in layer X)

