Example: linear predictors

- let Ω be a norm on \mathbb{R}^d assume $\mathcal{H} = \{\theta^\top \varphi(x), \Omega(\theta) \leq D\}$
- then

$$R_n(\mathcal{H}) = \mathbb{E}\left[\sup_{\Omega(\theta) \leq D} \frac{1}{n} \sum_{i=1}^n \varepsilon_i \theta^\top \varphi(X_i)\right]$$
$$= \mathbb{E}\left[\sup_{\Omega(\theta) \leq D} \frac{1}{n} \varepsilon^\top \Phi \theta\right]$$
$$= \frac{D}{n} \mathbb{E}\left[\Omega^*(\Phi^\top \varepsilon)\right],$$

where Ω^* is the dual norm of Ω :

$$\Omega^{\star}(u) := \sup_{\Omega(\theta) < 1} u^{\top} \theta$$
.

Example: linear predictors, ctd.

- ▶ Claim: when $p \in [1, +\infty)$ and Ω is the p-norm (see exercise), Ω^* is the q-norm with 1/p + 1/q = 1
- ▶ for the 2-norm:

$$R_{n}(\mathcal{H}) = \frac{D}{n} \mathbb{E} \left[\| \Phi^{\top} \varepsilon \| \right]$$

$$\leq \frac{D}{n} \sqrt{\mathbb{E} \left[\| \Phi^{\top} \varepsilon \|^{2} \right]} \qquad \text{(Jensen's inequality)}$$

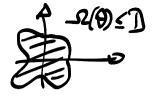
$$= \frac{D}{n} \sqrt{\mathbb{E} \left[\operatorname{trace} \left(\Phi^{\top} \varepsilon \varepsilon^{\top} \Phi \right) \right]}$$

$$= \frac{D}{n} \sqrt{\mathbb{E} \left[\operatorname{trace} \left(\Phi^{\top} \Phi \right) \right]} = \frac{D}{n} \sqrt{\sum_{i=1}^{n} \mathbb{E} \left[\left(\Phi^{\top} \Phi \right)_{i,i} \right]} = \frac{D}{n} \sqrt{\sum_{i=1}^{n} \mathbb{E} \left[\| \varphi(X_{i}) \|^{2} \right]}$$

$$= \frac{D}{\sqrt{n}} \sqrt{\mathbb{E} \left[\| \varphi(X) \|^{2} \right]} \Rightarrow \text{dimension-free bound with the same rate!}$$

17. Zhuz et al.

Example: linear predictors, ctd.



we can get a bound on the estimation error:

Proposition: assume that ℓ is L-Lipschitz and continuous. Consider linear predictors with bounded coefficients, that is, $f_{\theta}(x) = \theta^{\top} \varphi(x)$ with $\|\theta\| \leq D$. Assume further that

$$\mathbb{E}\left[\left\|arphi(X)
ight\|^{2}
ight] \leq R^{2}.$$
 Let \hat{f} be the empirical risk minimizer. Then

$$\mathbb{E}\left[\mathcal{R}(\hat{f})\right] \leq \inf_{\|\theta\| \leq D} \mathcal{R}(f_{\theta}) + \underbrace{\frac{4LRD}{\sqrt{n}}}.$$

Proof of the proposition

recall the decomposition of the estimation error:

$$\mathcal{R}(\hat{f}) - \inf_{f \in \mathcal{H}} \mathcal{R}(f) \le 2 \sup_{f \in \mathcal{H}} \left| \hat{\mathcal{R}}(f) - \mathcal{R}(f) \right|.$$

by symmetrization:

$$\mathbb{E}\left[\mathcal{R}(\hat{f})\right] - \inf_{f \in \mathcal{H}} \mathcal{R}(f) \leq 4R_n(\mathcal{H}).$$

▶ set $\mathcal{F} := \{f_{\theta}, \|\theta\| \leq D\}$. Since the loss is *L*-Lipschitz, by contraction (see exercise),

$$R_n(\mathcal{H}) \leq LR_n(\mathcal{F})$$
.

by previous computation,

$$R_n(\mathcal{F}) \leq \frac{DR}{\sqrt{n}}$$
.

123

4.3. Approximation error

excos risk: R(1)_ Eurther decomposition

Reminder: approximation error is defined as

estimation R(1) - R(1) inf $R(f) - R^*$.

$$\inf_{f\in\mathcal{H}}\mathcal{R}(f)-\mathcal{R}^{\star}$$
 .

- deterministic, small if function class is large
- ▶ let us focus on parametric models, in particular $\mathcal{H} = \{f_{\theta}, \theta \in \Theta\}$
- \triangleright θ^* parameter corresponding to f^*
- ▶ typically does not belong to Θ!
- further decomposition of the approximation error:

$$\inf_{ heta \in \Theta} \mathcal{R}(f_{ heta}) - \mathcal{R}^\star = \left(\inf_{ heta \in \Theta} \mathcal{R}(f_{ heta}) - \inf_{ heta \in \mathbb{R}^p} \mathcal{R}(f_{ heta})
ight) + \left(\inf_{ heta \in \mathbb{R}^p} \mathcal{R}(f_{ heta}) - \mathcal{R}^\star
ight) \,.$$

Remark: both positive terms

= set of hypotheses R*: Bryse risk

int
$$R(I) - R^{*} = \inf_{\theta \in \Theta} R(I_{\theta}) - R^{*}$$

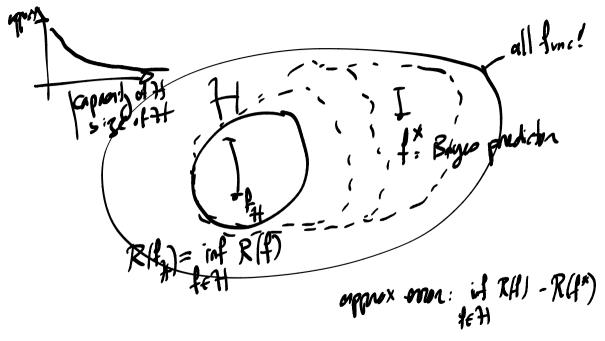
of $R(I) - R^{*} = \inf_{\theta \in \Theta} R(I_{\theta}) - \inf_{\theta \in R^{k}} R(I_{\theta})$

of $R(I) - R^{*} = \inf_{\theta \in R^{k}} R(I_{\theta}) - R^{*}$

of $R(I) - R^{*} = \inf_{\theta \in R^{k}} R(I_{\theta}) - R^{*}$

of $R(I) - R^{*} = \inf_{\theta \in R^{k}} R(I_{\theta}) - R^{*}$

of $R(I) - R^{*} = \inf_{\theta \in R^{k}} R(I_{\theta}) - R^{*}$



Incompressible approximation error

Recall:

$$\inf_{\theta \in \Theta} \mathcal{R}(f_{\theta}) - \mathcal{R}^{\star} = \left(\inf_{\theta \in \Theta} \mathcal{R}(f_{\theta}) - \inf_{\theta \in \mathbb{R}^{p}} \mathcal{R}(f_{\theta})\right) + \left(\inf_{\theta \in \mathbb{R}^{p}} \mathcal{R}(f_{\theta}) - \mathcal{R}^{\star}\right).$$

- let us start with the second term

Ex: neural notworks 60 s Cybenko (?)
universal approximation realts of

Upper bounds

Now focus on
$$\inf_{\theta \in \Theta} \mathcal{R}(f_{\theta}) - \inf_{\theta \in \mathbb{R}^{p}} \mathcal{R}(f_{\theta})$$

This term is typically upper bounded by a **distance** between the best candidate in Θ and

this term is typically upper bounded by a distance between the best candidate in Θ and the best candidate in ℝ^d
 Example: f_θ(x) = θ^Tφ(x), Θ = {θ ∈ ℝ^d, ||θ|| ≤ D}
 for a L-Lipschitz loss, we write

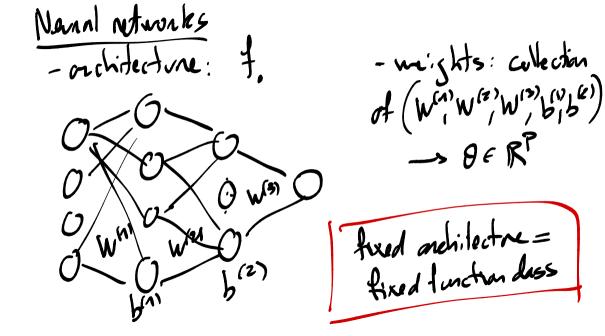
for a
$$L$$
-Lipschitz loss, we write
$$\inf_{\theta \in \Theta} \mathcal{R}(f_{\theta}) - \inf_{\theta \in \mathbb{R}^{p}} \mathcal{R}(f_{\theta}) = \mathbb{E}\left[\ell(\theta_{1}^{\top}\varphi(X), Y) - \ell((\theta^{\star})^{\top}\varphi(X), Y)\right]$$

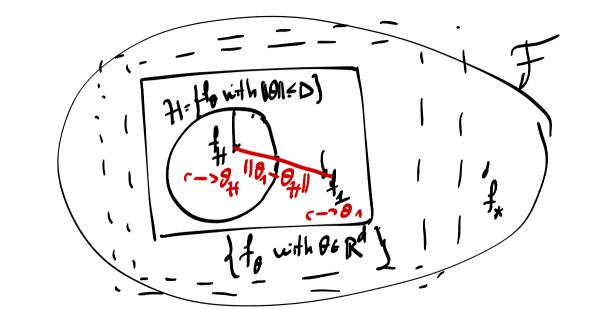
$$\mathcal{R}(f_{\theta}) = \mathbb{E}\left[\ell(\theta_{1}^{\top}\varphi(X), Y) - \ell((\theta^{\star})^{\top}\varphi(X), Y)\right]$$

$$\mathcal{R}(f_{\theta}) = \mathbb{E}\left[\ell(\theta_{1}^{\top}\varphi(X), Y) - \ell((\theta^{\star})^{\top}\varphi(X), Y)\right]$$

$$\mathcal{R}(f_{\theta}) = \mathbb{E}\left[\ell(\theta_{1}^{\top}\varphi(X), Y) - \ell((\theta^{\star})^{\top}\varphi(X), Y)\right]$$

Remark: equal to zero if $\|\theta^*\| \le D$ (well-specified model) $\left\{ \left[\mathcal{L}(\theta_1^* \mathcal{Q}(\mathsf{X}), \mathsf{Y}) \right] - \left[\mathcal{L}(\theta_1^* \mathcal{Q}(\mathsf{X}), \mathsf{Y}) \right] \right\}$





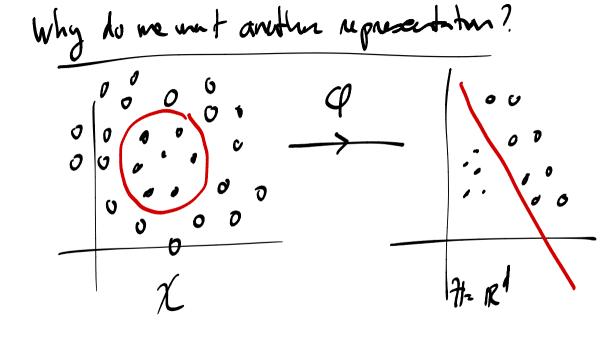
5. Kernel methods

5.1. Positive semi-definite kernels

- ▶ What we have seen so far: linear classification / linear regression
- works well if the data is linearly separable
- ▶ **Problem:** that is not always the case!
- ▶ what if we could transport the data to another space where it is well-behaved?
- ▶ for instance a very high-dimensional space
- ► first we define a (positive-definite) kernel
- ▶ many definitions in maths, introduced in machine learning by Aizerman, Braverman, and Rozonoer in the 60s⁷

Q - k

⁷Aizerman, Braverman, Rozonoer, *Theoretical foundations of the potential function method in pattern recognition learning*, Automation and Remote Control, 1964



Positive semi-definite kernels

Definition: a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *positive semi-definite kernel* if k(x,x') = k(x',x) for any $x,x' \in \mathcal{X}$, and

$$\forall x_1,\ldots,x_n \in \mathcal{X}, \forall c_1,\ldots,c_n \in \mathbb{R}, \quad \sum_{i=1}^n \sum_{j=1}^n c_i c_j k(x_i,x_j) \geq 0.$$

- ▶ in other words, the Gram matrix $K = (k(x_i, x_j)_{i,j=1}^n)$ is positive definite for any input data x_1, \ldots, x_n
- kernel methods take this K as input
- ▶ **Remark:** this is *costly*, $\mathcal{O}\left(n^2\right)$ whatever we do, with possible dependency in the dimensionality of the data
- \triangleright Beware: unlike the name suggests, k has no reason to be positive

PSd: | Spec(M) CR+

| M sym.

eigenvalue / aigenvectors:
$$MC = \lambda C$$
, λCR

= $\delta C^T MC = C^T (\lambda C) = \lambda |C|^2 > 0$

(argand analys)

 $\delta \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j M_{i,j}$

Fundamental example

- suppose that $\mathcal{X} = \mathbb{R}$
- then k(x,y) := xy is a positive definite kernel
- ► Why? first, we check that k(x,y) = k(y,x) Symmetric ightharpoonup second, let $n\geq 1$, $x_1,\ldots,x_n\in\mathbb{R}^d$, and $c_1,\ldots,c_n\in\mathbb{R}$, then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j x_i x_j$$

$$= \left(\sum_{i=1}^{n} c_i x_i\right)^2$$

$$\geq 0.$$

Fundamental example, ctd.

- lacksquare we can extend this example: set $k(x,y) := x^{ op} y$ on $\mathcal{X} = \mathbb{R}^d$
- let $n \geq 1$, $x_1, \ldots, x_n \in \mathbb{R}^d$, and $c_1, \ldots, c_n \in \mathbb{R}$, then

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j x_i^{\top} x_j = \sum_{i=1}^{n} C_i x_i \left(\sum_{i=1}^{n} c_i x_i \right)^2$$

$$= \left\| \sum_{i=1}^{n} c_i x_i \right\|^2$$

$$\geq 0.$$
Solved the linear linear

- $k(x,y) := x^{\top}y$ is usually called the **linear kernel**
- Intuition: kernels, are a generalization of inner product

Other examples

▶ Polynomial kernel:

$$\mathcal{X} = \mathbb{R}^d, \qquad k(x,y) = (x^{\top}y + c)$$

min kernel:

$$\mathcal{X} = \mathbb{R}, \qquad k(x, y) = \min(x, y).$$

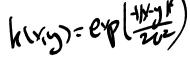
Gaussian kernel:

$$\mathcal{X} = \mathbb{R}^d, \quad k(x,y) = \exp\left(\frac{-\|x-y\|^2}{2\nu^2}\right).$$

Exponential kernel:

$$\mathcal{X} = \mathbb{R}^d$$
, $k(x,y) = \exp\left(\frac{-\|x-y\|}{2\nu}\right)$.

Choosing the bandwidth

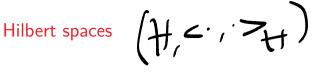


- lacktriangle Gaussian and Laplace kernel: one has to choose the bandwidth parameter u
- ▶ indeed, if ν is too large with respect to the typical value of $||x_i x_j||$, then $K \approx I_n$
- lacktriangle in the other direction, if u is too small, then $K pprox {f 11}^{ op}$
- ightharpoonup both cases are degenerate: whatever we do with K is not going to work very well
- ▶ one possible solution: median heuristic⁸

$$u = \mathsf{Med}\{\|x_i - x_j\|, \quad 1 \leq i, j \leq n\}.$$

- preferable to the mean (too sensitive to extreme values)
- we can pick other quantiles

⁸Garreau, Jitkrittum, Kanagawa, *Large sample analysis of the median heuristic*, 2017



Definition: A *Hilbert space* is a real or complex vector space which is also a complete metric space with respect to the distance function induced by the inner product.

- ▶ Remark: recall the linear kernel, all we used were properties of inner product
- Let $\Phi: \mathcal{X} \to \mathcal{H}$ be some mapping, \mathcal{H} a Hilbert space with scalar product $\langle \cdot, \cdot \rangle$
- ▶ then $k(x, y) = \langle \Phi(x), \Phi(y) \rangle$ is positive definite:

$$\sum_{i=1}^n \sum_{j=1}^n c_i c_j \langle \Phi(x), \Phi(y) \rangle = \left\| \sum_{i=1}^n c_i \Phi(x_i) \right\|^2 \geq 0,$$

by linearity of the inner product.

Large class of kninels: "nice" we can space + embedding of X in H

Kernel as inner products

Kernel as inner products

Remarkable fact: the converse statement is true!

Theorem:

For any kernel
$$k$$
 on \mathcal{X} , there exists a Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ and a mapping $\Phi: \mathcal{X} \to \mathcal{H}$ such that

$$\forall x, y \in \mathcal{X}, \qquad k(x, y) = \langle \Phi(x), \Phi(y) \rangle.$$

- ▶ **Reminder:** Hilbert space = inner product + *complete* for the associated norm (Cauchy sequences converge in \mathcal{H})
- ► Consequence: we can think of any kernel as a dot product in the feature space
- Main idea: forget about Φ and work only with kernel evaluations (more on that later)

⁹Aronszajn, *Theory of reproducing kernels*, Transactions of the American Mathematical Society, 1950

Proof in the finite case

- ▶ assume that $\mathcal{X} = \{x_1, \dots, x_N\}$ is finite of size N
- ▶ any kernel k is entirely defined by the $N \times N$ positive semi-definite matrix $K := (k(x_i, x_j))_{i=1}^N$
- we can diagonalize K in an orthonormal basis (u_1, \ldots, u_N) with associated (non-negative) eigenvalues $\lambda_1, \ldots, \lambda_N$: $K = U \Lambda U^\top$, with $U_{:,i} = u_i$, $\Lambda = \text{diag}(\lambda)$, $U U^\top = U^\top U = I$
- then we write

$$egin{aligned} k(\mathsf{x}_i,\mathsf{x}_j) &= \left(\sum_{\ell=1}^N \lambda_\ell u_\ell u_\ell^{ op}
ight)_{i,j} \ &= \sum_{\ell=1}^N \lambda_\ell (u_\ell)_i (u_\ell)_j = \left\langle \Phi(\mathsf{x}_i), \Phi(\mathsf{x}_j)
ight
angle, \end{aligned}$$

with

$$\Phi(x_i) := \left(\sqrt{\lambda_1}(u_1)_i, \cdots, \sqrt{\lambda_n}(u_N)_i\right)^{\top}.$$

138

5.2. Reproducing kernel Hilbert spaces

Function spaces

- ▶ among all spaces in the previous statement, one of them has interesting properties
- in particular, it is a space of functions
- ▶ i.e., we can map each point $x \in \mathcal{X}$ to a function $\Phi(x) = k_x \in \mathcal{H}$
- **Example:** $\mathcal{X} = \mathbb{R}$, we map each x to the function $t \mapsto xt$
- ightharpoonup ightharpoonup space of linear functions
- more complicated in general...

Reproducing Kernel Hilbert Space (RKHS)

Definition: let \mathcal{X} be a set and \mathcal{H} be a function space forming a Hilbert space with inner product $\langle \cdot, \cdot \rangle$. The function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *reproducing kernel* of \mathcal{H} if

- \blacktriangleright H contains all functions of the form $k_x: t \mapsto k(x,t)$
- ▶ for every $x \in \mathcal{X}$ and $f \in \mathcal{H}$, the *reproducing property* holds:

$$f(x) = \langle f, k_x \rangle$$
.

 \triangleright if a reproducing kernel exists, then \mathcal{H} is called a *reproducing kernel Hilbert space* (RKHS)

Equivalent definition

Theorem: the Hilbert space $\mathcal{H} \subseteq \mathbb{R}^{\mathcal{X}}$ is a RKHS if, and only if, for any $x \in \mathcal{X}$, the mapping $f \mapsto f(x)$ is continuous.

- ▶ Proof of \Rightarrow : let k be a reproducing kernel, $x \in \mathcal{X}$ and $f_n \to f$ in \mathcal{H}
- we write

$$|f_n(x) - f(x)| = |\langle f_n - f, k_x \rangle|$$

$$\leq ||f_n - f|| \cdot ||k_x||$$

by Cauchy-Schwarz inequality.

- ▶ $||f_n f|| \rightarrow 0$ and we can conclude
- ▶ **Remark:** $||k_x||^2 = \langle k_x, k_x \rangle = k(x, x)$, thus $|f(x)| \le ||f|| \cdot k(x, x)^{1/2}$

Continuity ctd.

- ▶ *Proof of* \Leftarrow : let $x \in \mathcal{X}$
- **b** by the reproducing property, $L: x \mapsto f(x)$ is a *linear functional*
- ▶ Riesz theorem: there exists ℓ_x such that $L(x) = \langle f, \ell_x \rangle$
- one can check readily the RKHS properties.

Uniqueness

Theorem: if \mathcal{H} is a RKHS, then it has a unique reproducing kernel. Conversely, a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ can be the reproducing kernel of at most one RKHS.

- we talk about the RKHS associated to k
- ightharpoonup Proof: let k and k' be two reproducing kernels
- ▶ then for all $x \in \mathcal{X}$,

$$||k_{x} - k'_{x}||^{2} = \langle k_{x} - k'_{x}, k_{x} - k'_{x} \rangle$$

= $k_{x}(x) - k'_{x}(x) - k_{x}(x) + k'_{x}(x)$
= 0

144

Equivalence psd / RKHS

Theorem: a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive definite if, and only if, it is a reproducing kernel.

▶ **Idea:** build \mathcal{H} as the completion of

$$\mathcal{H}_0 := \left\{ \sum_{i=1}^n \alpha_i k(\cdot, x_i), n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_i \in \mathcal{X} \right\}$$

▶ **Remark:** showing that a kernel is positive definite is enough to get Φ and \mathcal{H} with the reproducing property "for free"

Example

Example: polynomial kernel of degree 2:

$$k(x,y) = (x^{\top}y)^2.$$

proved during the exercise session:

$$k(x,y) = \langle xx^{\top}, yy^{\top} \rangle_F,$$

thus k is positive definite

- Question: what is the RKHS?
- \triangleright we know that \mathcal{H} contains all the functions

$$f(x) = \sum_{i} a_{i} k(x_{i}, x) = \sum_{i} a_{i} \langle x_{i} x_{i}^{\top}, x x^{\top} \rangle = \langle \sum_{i} a_{i} x_{i} x_{i}^{\top}, x x^{\top} \rangle$$

Example, ctd.

- **>** spectral theorem: any symmetric matrix can be decomposed as $\sum_i a_i x_i x_i^{\mathsf{T}}$
- candidate RKHS: set a quadratic functions

$$f_{S}(x) = \langle S, xx^{\top} \rangle = x^{\top} Sx,$$

with S symmetric matrix of size $d \times d$

ightharpoonup inner product on \mathcal{H} :

$$\langle f_S, f_{S'} \rangle = \langle S, S' \rangle_F$$
.

- ightharpoonup we can check that \mathcal{H} is a Hilbert space (isomorphic to $\mathcal{S}^{d\times d}$)
- finally, we check the reproducing property

5.3. More examples

Elementary properties

Proposition: Let $k_i: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a (potentially infinite) family of p.d. kernels. Then

- for any $\lambda_1, \ldots, \lambda_p \geq 0$, the sum $\sum_{i=1}^p \lambda_i k_i$ is positive definite
- ▶ for any $a_1, \ldots, a_p \in \mathbb{N}$, the product $k_1^{a_1} \cdots k_p^{a_p}$ is positive definite
- ightharpoonup if it exists, the limit $k = \lim_{p \to +\infty} k_p$ is positive definite

Moreover, let \mathcal{X}_i be a sequence of sets and k_i positive kernels on each \mathcal{X}_i . Then

$$k((x_1,\ldots,x_p),(y_1,\ldots,y_p)) := \prod_{i=1}^p k_i(x_i,y_i)$$

and

$$k((x_1,\ldots,x_p),(y_1,\ldots,y_p)) := \sum_{i=1}^p k_i(x_i,y_i)$$

are positive definite kernels.

Taking the exponential

Theorem: if k is a positive definite kernel, then e^k as well.

Proof: we write

$$e^{k(x,y)} = \lim_{n \to +\infty} \sum_{p=0}^{n} \frac{k(x,y)^{p}}{p!},$$

then reason step by step.

- ▶ by the product property, $k(x, y)^p$ is a kernel for any $p \ge 0$
- ▶ as a positive linear combination of kernels, $\sum_{p=0}^{n} \frac{k(x,y)^{p}}{p!}$ is a kernel for all $n \ge 1$
- ightharpoonup finally, e^k is a kernel as a limit of kernels.

5.4. The kernel trick and applications

The kernel trick

- ightharpoonup input data $x_1, \ldots, x_n \in \mathcal{X}$
- \triangleright $k: \mathcal{X} \times \mathcal{X}$ kernel with associated RKHS \mathcal{H}
- ightharpoonup we call $\Phi: \mathcal{X} \to \mathcal{H}$ the feature map
- ▶ **Idea:** imagine that our algorithm only depends on scalar products $x_i^T x_i$
- \blacktriangleright then we can map the x_i to \mathcal{H} and replace the inner products by kernel evaluations, since

$$\langle \Phi(x_i), \Phi(x_j) \rangle = k(x_i, x_j).$$

simple "trick" with many, many applications

Example

- **Example:** computing distances
- suppose that our algo relies on distance computation
- \blacktriangleright that is, $||x-y||^2$
- we can write

$$\|\Phi(x) - \Phi(y)\|^2 = \langle \Phi(x) - \Phi(y), \Phi(x) - \Phi(y) \rangle$$

= $\langle \Phi(x), \Phi(x) \rangle - 2\langle \Phi(x), \Phi(y) \rangle + \langle \Phi(y), \Phi(y) \rangle$
$$\|\Phi(x) - \Phi(y)\|^2 = k(x, x) - 2k(x, y) + k(y, y).$$

in other words,

$$d_{\mathcal{H}}(x,y) = \sqrt{k(x,x) - 2k(x,y) + k(y,y)}.$$

as promised, we do not need to know Φ!

5.5. The representer theorem

Motivation

- lacktriangle let us imagine that we take ${\cal H}$ as hypothesis class
- starting from regularized ERM, our optimization problem will look like

$$\underset{f \in \mathcal{H}}{\operatorname{arg \, min}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \left\| f \right\|^2 \right\} . \tag{\star}$$

- we penalize by the norm because it is an indicator of the *smoothness* of *f*
- Why? Cauchy-Schwarz + exercise:

$$|f(x)-f(y)|=|\langle f,k_x-k_y\rangle|\leq ||f||\cdot ||k_x-k_y||=||f||\cdot d_{\mathcal{H}}(x,y).$$

- \triangleright Eq. (\star) is a complicate problem, potentially *infinite-dimensional*
- Question: how to solve it in practice?

The representer theorem

Theorem: let \mathcal{H} be the RKHS associated to k defined on \mathcal{X} . Let $S = \{x_1, \dots, x_n\} \subseteq \mathcal{X}$ be a finite set of points. Let $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$ be a function, increasing in the last variable. Then any solution to the minimization problem

$$\operatorname*{arg\,min}_{f\in\mathcal{H}}\Psi(f(x_1),\ldots,f(x_n),\|f\|)$$

admits a representation of the form

$$\forall x \in \mathcal{X}, \qquad f(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x).$$

Main consequence: Eq. (⋆) is actually a finite-dimensional problem (!)

Practical use

- recall that we defined $K := (k(x_i, x_j))_{i,j=1}^n$
- before turning to concrete examples, we notice that we can simply express the key quantities
- ▶ for instance, for any $1 \le j \le n$,

$$f(x_j) = \sum_{i=1}^n \alpha_i k(x_i, x_j) = (K\alpha)_j.$$

in the same way,

$$\|f\|^2 = \left\|\sum_{i=1}^n \alpha_i k(x_i, \cdot)\right\|^2 = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_i, x_j) = \alpha^\top K \alpha.$$

5.6. Kernel ridge regression

Kernel Ridge Regression¹⁰ (KRR)

- ▶ regression setting: $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$
- $ightharpoonup \mathcal{Y} \subseteq \mathbb{R}$, but \mathcal{X} could be anything
- \blacktriangleright we have a kernel k on \mathcal{X}
- > same idea than with ridge regression:

$$\hat{f} \in \operatorname*{arg\,min}_{f \in \mathcal{H}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \left\| f \right\|^2 \right\}.$$

ightharpoonup here effect of the regularization is to make \hat{f} smoother

¹⁰Cristianini and Shawe-Taylor, *An introduction to support vector machines and other kernel-based learning methods*, Cambridge University Press, 2000

Solving KRR

▶ representer theorem ⇒

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x),$$

for some $\alpha \in \mathbb{R}^n$

> as per the previous remark, we know that

$$(\hat{f}(x_1),\ldots,\hat{f}(x_n))^{\top}=K\alpha,$$

and

$$\|\hat{f}\|^2 = \alpha^\top K \alpha .$$

thus KRR can be re-written as

$$\hat{\alpha} \in \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^n} \left\{ \frac{1}{n} (K\alpha - y)^\top (K\alpha - y) + \lambda \alpha^\top K\alpha \right\} \,.$$

Solving KRR, ctd.

- Convex, smooth objective ⇒ set the gradient to zero
- \triangleright $\hat{\alpha}$ has to be solution of

$$0 = \frac{-2}{n}K(y - K\alpha) + 2\lambda K\alpha = \frac{2}{n}K[(K + n\lambda I_n)\alpha - y]$$

- ightharpoonup since $\lambda > 0$, $K + n\lambda I_n$ is invertible
- a solution is given by

$$\hat{\alpha} = (K + n\lambda I_n)^{-1} y.$$

- **Remark:** not unique if K is singular
- why? $K + \lambda n I$ and $(K + \lambda n I)^{-1}$ both leave ker K stable, can add ε such that $K\varepsilon = 0$
- but same element in the RKHS...

5.7. Kernel logistic regression

Kernel Logistic Regression¹¹ (KLR)

- ▶ classification setting: $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$
- $ightharpoonup \mathcal{Y} = \{0,1\}$, but \mathcal{X} could be anything
- \blacktriangleright we have a kernel k on \mathcal{X}
- kernelized version of logistic regression:

$$\hat{f} \in \operatorname*{arg\,min}_{f \in \mathcal{H}} \left\{ rac{1}{n} \sum_{i=1}^n \log \left(1 + \mathrm{e}^{-y_i f(\mathbf{x}_i)}
ight) + \lambda \left\| f
ight\|^2
ight\} \,.$$

same regularization effect

¹¹Green, Yandell, Semi-parametric generalized linear models, Generalized linear models, 1985

Solving KLR

- no explicit solution, but convex and smooth
- ▶ again, we can use the representer theorem:

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x)$$

for some $\alpha \in \mathbb{R}^n$

- ightharpoonup again, $(\hat{f}(x_1), \dots, \hat{f}(x_n))^{\top} = K\alpha$ and $\|\hat{f}\|^2 = \alpha^{\top} K\alpha$
- we can rewrite KLR as

$$\hat{\alpha} \in \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^n} \frac{1}{n} \left\{ \sum_{i=1}^n \log \left(1 + \mathrm{e}^{-y_i (K\alpha)_i} \right) + \lambda \alpha^\top K\alpha \right\} \,.$$

this can be solved (approximately) by gradient descent

Illustration

