Theory of Machine Learning

Exercise sheet 10 — Session 10

Exercise I (dual norms) \mathscr{E} . Let $p \in [1, +\infty)$ and q such that 1/p + 1/q = 1. Recall that

$$\forall u \in \mathbb{R}^d, \quad \|u\|_p = \left(\sum_{i=1}^d |u_i|^p\right)^{1/p},$$

and that, for any norm Ω on \mathbb{R}^d , we define the dual norm of Ω by

$$\forall u \in \mathbb{R}^d, \qquad \Omega^{\star}(u) := \sup_{\theta: \Omega(\theta) \le 1} u^{\top} \theta.$$

The goal of this exercise is to show that the dual norm of $\|\cdot\|_p$ is $\|\cdot\|_q$.

1. Show that

$$\sup_{\|\theta\|_p \le 1} u^\top \theta \le \|u\|_q \ .$$

- 2. Define θ coordinate-wise as $\theta_i := \text{sign}(u_i) |u_i|^{q-1}$. Show that $u^\top \theta = ||u||_q^q$
- 3. With the previous θ , show that $\|\theta\|_p = \|u\|_q^{q-1}$.
- 4. Set $v := \theta / \|\theta\|_p$. Show that $u^\top v = \|u\|_q$ and conclude.

Exercise II (Massart's lemma) \mathscr{E} . Let us assume that \mathcal{G} is *finite*, that is, $\mathcal{G} = \{g_1, \dots, g_m\}$. Let us assume further that $\frac{1}{n} \sum_{i=1}^n g_j(X_i)^2 \leq R^2$ for all $j \in [d]$. Show that the Rademacher complexity of the function class \mathcal{G} satisfies

$$R_n(\mathcal{G}) \le \sqrt{\frac{2\log m}{n}} R$$
.

For simplicity's sake, we consider the X_i s fixed.

1. Given $\lambda > 0$, show that

$$\exp\left(\lambda \mathbb{E}_{\varepsilon} \left[\sup_{g \in \mathcal{G}} \sum_{i=1}^{n} \varepsilon_{i} g(X_{i}) \right] \right) \leq \sum_{g \in \mathcal{G}} \mathbb{E}_{\varepsilon} \left[\exp\left(\lambda \sum_{i=1}^{n} \varepsilon_{i} g(X_{i})\right) \right].$$

(Hint: Jensen's inequality and property of sup.)

2. Show that

$$\sum_{g \in \mathcal{G}} \mathbb{E}_{\varepsilon} \left[\exp \left(\lambda \sum_{i=1}^{n} \varepsilon_{i} g(X_{i}) \right) \right] = \sum_{g \in \mathcal{G}} \prod_{i=1}^{n} \frac{1}{2} (\exp \left(\lambda g(X_{i}) \right) + \exp \left(-\lambda g(X_{i}) \right)).$$

(*Hint*: independence of the ε_i s and direct computation of the remaining expectation.)

3. Using $\frac{e^x + e^{-x}}{2} \le e^{x^2/2}$ (for all $x \in \mathbb{R}$), show that

$$\sum_{g \in \mathcal{G}} \prod_{i=1}^n \frac{1}{2} (\exp\left(\lambda g(X_i)\right) + \exp\left(-\lambda g(X_i)\right)) \leq \sum_{g \in \mathcal{G}} \exp\left(\frac{\lambda^2}{2} \sum_{i=1}^n g(X_i)^2\right).$$

4. Show that

$$\sum_{g \in \mathcal{G}} \exp\left(\frac{\lambda^2}{2} \sum_{i=1}^n g(X_i)^2\right) \le m \exp\left(\frac{n\lambda^2 R^2}{2}\right).$$

(*Hint*: refer to the assumptions in the exercise statement on g and \mathcal{G} .)

5. By putting everything together, show that

$$R_n(\mathcal{G}) \le \frac{1}{n\lambda} \log m + \frac{\lambda R^2}{2}$$
.

- 6. Show that $\lambda^* = \frac{1}{R} \sqrt{\frac{2 \log m}{n}}$ minimizes the previous bound.
- 7. Show the Massart's lemma bound.

Exercise III (contraction principle) \mathscr{E} . Let us assume that ϕ_i, ψ_i for $i \in [n]$ are functions on Θ such that for each $i \in [n]$, $\theta, \theta' \in \Theta$ and L > 0,

$$|\phi_i(\theta) - \phi_i(\theta')| \le L |\psi_i(\theta) - \psi_i(\theta')|$$
.

Prove that

$$\mathbb{E}\left[\sup_{\theta\in\Theta}\left\{\sum_{i=1}^n\varepsilon_i\phi_i(\theta)\right\}\right]\leq\mathbb{E}\left[\sup_{\theta\in\Theta}\left\{\sum_{i=1}^n\varepsilon_i\psi_i(\theta)\right\}\right].$$

Hint: reason by induction on n, and take expectation on ε_{n+1} .