8. Concept-based Explainable Al

About the exam

- February 4pm-6pm, 90mn, pen and pager, no documents allowed
- potential questions:
 - What is the difference between the definitions of interpretability and explainability as given in the lecture?
 - Provide an example of a model that is interpretable-by-design. Why is this model considered interpretable?
 - What is a post-hoc method? Give an example.
 - ▶ Is MDI (Mean Decrease Impurity) a global or local interpretability method?
 - Give the pseudo-code of LIME for image data.
 - In LIME for images, what criticism can you give from turning pixels black when creating perturbed images? What alternative approaches are available?
 - Using your notation, give the formula for integrated gradients.
 - **.**..

Introduction

- **So far:** feature-attribution methods
- ightharpoonup pprox compute some measure of importance for each feature
- not entirely satisfying, especially if many features (e.g., images)
- ► Another approach: higher-level attributes used by the model (= concepts)
- either directly used by the model or inferred after training
- What is a concept?
 - symbolic concepts;
 - unsupervised concepts basis;
 - textual concepts;
 - ▶ ..

Symbolic concepts

- ▶ Informal definition: high-level abstractions
- **► Example:** class zebra → striped concept
- generally associated to human-annotated sets of examples
- ightharpoonup \Rightarrow costly + restrictive
- **Example:** image-classification
 - patches of images, someone says whether concept present or not
 - class-level annotation

▶ Figure: images corresponding to the striped concept from from the Broden⁸⁰ dataset

⁸⁰Bau et al., Network Dissection: Quantifying interpretability of deep visual representations, CVPR, 2017

Unsupervised concept basis

- ▶ Informal definition: cluster of similar examples or parts of examples
- **Example:** ACE⁸¹ explanation for tennis ball

Tennis ball and Texture

- ▶ generally extracted from some latent representation *via* clustering⁸²
- ▶ **Important:** do not necessarily coincide with human-defined concepts!

⁸¹Ghorbani et al., Towards Automatic Concept-based Explanations, NeurIPS, 2019

⁸²Chapter 14.3 of Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, Springer, 2004

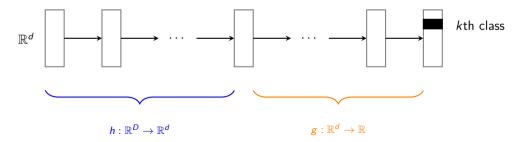
A typology of concept-based XAI

- ► Main categories:⁸³
 - Class-concept relations: quantifying relationship between pre-determined concept and output class of a model
 - Node-concept association: quantifying relationship between pre-determined concept and inner node of a model
 - ► Concept-visualization: visualization in terms of input features

⁸³Poeta, Ciravegna, et al., Concept-based Explainable Artificial Intelligence: A Survey, preprint, 2023

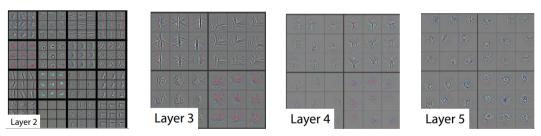
More on latent representation

- ► **Key ingredient in the concept-based literature:** intermediate representation of the input by the network
- **Notation:** $f: \mathbb{R}^D \to \mathbb{R}$ corresponds to logit of class k of our model
- ▶ set $f = g \circ h$, with $h : \mathbb{R}^D \to \mathbb{R}^d$ and $g : \mathbb{R}^d \to \mathbb{R}$
- Schematically:



Which layer to choose?

- ▶ **Intuition:** first layers = low-level visual features
- ▶ the deeper we go, the higher the chances of finding high-level concepts are
- ► Typical choice: last convolutional layer



► Figure: visualizing top activations of a simili AlexNet from random samples⁸⁴

⁸⁴Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV, 2014

8.1. Concept Activation Vectors

Concept Activation Vectors

- ▶ let us look at a second method: TCAV⁸⁵
- **Big picture,** for a given example ξ :
 - 1. get concept + random examples;
 - 2. compute their latent representation;
 - 3. train a linear classifier in the layer with normal vector (V_C) ;
 - **4**. compute $\nabla_{h(\xi)}g$;
 - 5. compute $S := \langle \nabla_{h(\xi)} g, V_C \rangle$.
- ► Linear classifier = logistic regression

⁸⁵Kim et al., Interpretability beyond feature attribution: quantitative testing with concept activation vectors, ICML. 2018

Reminder: logistic regression

- ightharpoonup classification with labels $\mathcal{Y} = \{0, 1\}$
- ▶ however, we predict the probability of belonging to class 1
- hypothesis class:

$$\mathcal{H} = \{ x \mapsto \phi(\langle w, x \rangle), w \in \mathbb{R}^d \},\,$$

with ϕ the *logistic function* (aka *sigmoid* function)

$$\phi(z) = \frac{1}{1 + \mathrm{e}^{-z}} \,.$$

- ▶ Intuition: squeeze the score between 0 and 1 to transform it into a probability
- $ightharpoonup \mathbb{P}(y=1\,|\,x) = \phi(w^{ op}x) \text{ and } \mathbb{P}(y=0\,|\,x) = 1 \phi(w^{ op}x)$

Logistic function

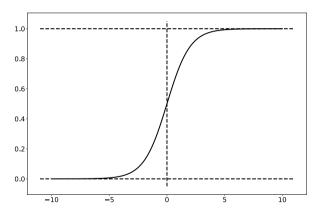
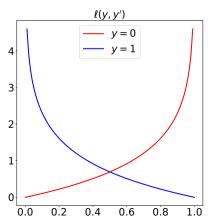


Figure: the logistic function $\phi: t \mapsto 1/(1 + e^{-t})$.

Logistic loss

- ▶ Loss function: logistic loss (also called binary cross entropy)
- ightharpoonup formally, for any y, y',

$$\ell(y, y') = -(1 - y) \log(1 - y') - y \log y'.$$



Logistic regression

- ▶ finally, logistic regression = empirical risk minimization with the logistic loss
- ▶ that is, minimize for $w \in \mathbb{R}^d$

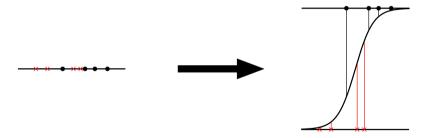
$$\hat{\mathcal{R}}(w) = \sum_{i=1}^n \left\{ -(1-y_i)\log(1-\phi(w^\top x_i)) - y_i\log\phi(w^\top x_i) \right\}.$$

- ▶ Remark (i): equivalent to maximum likelihood for a certain prior distribution
- Remark (ii): not so easy to optimize, at least simple expression for the gradient:

$$\forall j \in [d], \qquad \frac{\partial \hat{\mathcal{R}}(w)}{\partial w_j} = -\sum_{i=1}^n (y_i - \phi(w^\top x_i)) x_{i,j}.$$

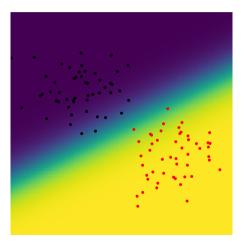
Logistic regression in dimension 1

Example: in dimension one:



Logistic regression in dimension 2

Example: in dimension two:



Recap

- What happens when we call sklearn.linear_model.LogisticRegression?
- lacktriangle penalty is $\ell_2 o$ there is regularization by default! (not much though, C=1)
- fit_intercept is True
- solver is liblinear which uses coordinate descent
- or lbfgs (limited memory Broyden-Fletcher-Goldfarb-Shanno⁸⁶, 1989)
- not that important: variant of gradient descent

⁸⁶Liu, Nocedal, *On the limited memory method for large scale optimization*, Mathematical Programming B

TCAV step 1: examples

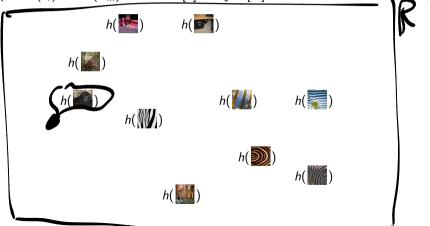
▶ a **concept** is encoded as a set of *n* images c_1, \ldots, c_n :

 \triangleright these images will be confronted to m images X_1, \ldots, X_m chosen randomly in the train

Remark: typical values are n = m = 20

CAV step 2: latent representation

- **Reminder:** we decompose $f = g \circ h$
- ▶ we compute $h(c_i)$ and $h(X_m)$ for all $i \in [n]$ and $j \in [m]$



CAV step 3: linear classifier

► train a linear classifier (concept = positive class) V_C = normal vector to the separating hyperplane h(_____) h(**()**)

CAV step 4: gradient computation

now we consider a particular example for which we want to measure concept activation:

$$\xi =$$

we compute the **gradient of the output with respect to the latent representation:**

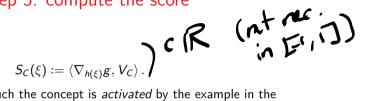
$$\nabla_{h(\xi)}g = \left(\frac{\partial g(y)}{\partial y_j}\Big|_{y=h(\xi)}\right)_{j\in[d]} \in \mathbb{R}^d.$$

Intuition: measures influence of each latent feature on the prediction

CAV step 5: compute the score

Definition:

$$c(\xi) := \langle \nabla_{b(\xi)} g, V_C \rangle$$



- **Intuition:** S_C encodes how much the concept is *activated* by the example in the considered laver
- **Examples:**

$$\xi =$$

$$\Rightarrow$$
 $S_C(\xi) = 0.98$

$$\xi =$$

$$S_C(\xi) = -0.07.$$

CAV: intuition

let us build some intuition under simplifying assumption

- ► **Assumption (i):** working in the last layer
- $ightharpoonup
 otag g(u)
 otag w^{ op} u$ with $w \in \mathbb{R}^d$
- for any $j \in [a]$, w_i measure exactly the contribution of $h(x)_i$ to the class logit
- we compute:

$$\nabla_{h(x)}g = (w^{\top})^{\top} = w \in \mathbb{R}^d$$
.

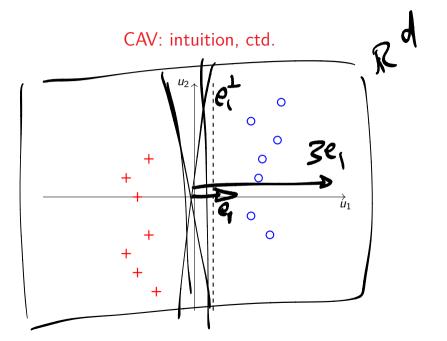
Assumption (ii): concepts and random examples are separated by the hyperplane
$$e_1^\perp$$

→ the concept vector is given by:

$$V_C = \lambda e_1$$
,

with λ a positive constant.

Notation: only true up to complications coming from sampling and optimization



CAV: intuition, ctd.

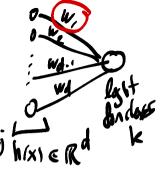
• under Assumptions (i) and (ii), we can compute S(x):

$$S(x) = \langle \nabla_{h(x)} V_C \rangle = w^{\top} \lambda e_1 = \lambda w_1$$

- remember: $\lambda > 0$
- ightharpoonup thus sign $(S) = sign(w_1)$
- $\gt S > 0$ means that $w_1 > 0$; pushing in the direction of e_1 increases the class logit
- \triangleright we can keep this intuition in a more general setting: pushing in the direction of V_C should increase the class logit ce small >
- ► Why? Taylor expansion:

$$g(h(x) + \varepsilon V_C) \approx g(h(x)) + (\varepsilon V_C)^{\top} \nabla_{h(x)} g = f(x) + \varepsilon S(x)$$
.

Disclaimer: no absolute certainty

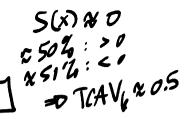


Testing with CAVs

- let k be a class label and \mathcal{X}_k the set of inputs with that label
- we can compute scores across entire classes of inputs:

$$\mathsf{TCAV}_k := rac{|x \in \mathcal{X}_k : \mathcal{S}(x) > 0|}{|\mathcal{X}_k|} \in [0,1]\,.$$

- ► Intuition: fraction of k-class inputs whose activation vector is positively influenced by concept C
- Remark: dependency on the random examples
- ▶ Kim et al. suggest to run the experiment 500 times
- ▶ then perform two-sided t-test, with null hypothesis = ${TCAV = 0.5}$



Reminder: statistical testing

- ▶ Informal definition: decide whether the observations agree with our model
- ightharpoonup initial research hypothesis: nothing interesting happens, e.g., TCAV = 0.5
- ▶ Other example: efficiency of a drug, initial hypothesis = no effect
- formally, we work in a statistical model

$$\mathcal{P} = \{P_{\theta} \text{ s.t. } \theta \in \Theta\},$$

and **split** Θ in two *disjoint* subsets Θ_0 and Θ_1

- **Remark:** we do not require $\Theta_0 \cup \Theta_1 = \Theta$
- we define
 - ▶ $H_0: \theta \in \Theta_0$ the null hypothesis
 - ▶ and $H_1: \theta \in \Theta_1$ the alternative hypothesis
- ▶ given realization of $X \sim P_{\theta}$, we want to decide whether H_0 or H_1 holds

Reminder: statistical testing

Definition: we call *test* of H_0 versus H_1 any function ϕ with values in $\{0,1\}$, where ϕ is X-measurable and can depend on Θ_0 and Θ_1 . When $\phi(X)=0$, we conserve H_0 , when $\phi(X)=1$ we *reject* H_0 .

- **Remark:** any test can be written $\phi(X) = \mathbb{1}_{h(X) \in R}$, where h is X-measurable
- we call h the test statistic and R the critical region
- Important: presumed innocent until proven guilty: reject the null only if enough evidence is collected
- \blacktriangleright we have to be conservative in choosing H_0

Type I and II errors, ctd.

- ▶ type I error = wrongly rejecting the null = **false positive**
- ▶ type II error = not rejecting a false null hypothesis = **false negative**

Error types		Null hypothesis is	
Decision		True	False
about	don't reject	correct inference	type II error
		= true negative	= false negative
<i>H</i> ₀	reject	type I error	correct inference
		= false positive	= true positive

- think about testing for a disease:
 - **positive** means sick
 - negative means healthy
- ▶ Important: the situation is not symmetric!, generally we want to control the type II error

One sample Student *t*-test

- \blacktriangleright X_1, \ldots, X_n i.i.d. $\mathcal{N}(\mu, \sigma^2)$, μ and σ unknown
- we want to test

$${\cal H}_0: \mu=\mu_0 \quad {
m vs} \quad {\cal H}_1: \mu
eq \mu_0 \, .$$

► Claim:

$$T = \frac{\overline{x}_n - \mu}{\hat{\sigma}_n / \sqrt{n}} \sim \mathcal{T}_{n-1}$$

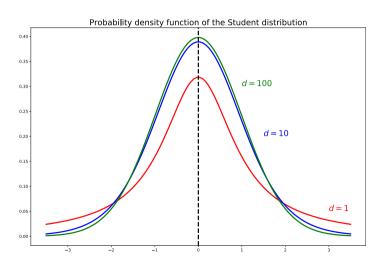
where \mathcal{T}_{n-1} is the **Student's law** with n-1 degrees of freedom

▶ for any given $\alpha \in (0,1)$, set

$$\hat{C}_{1-\alpha} = \left[\hat{\mu}_{1,n} - z_{\alpha/2,n-1} \frac{\hat{\sigma}_n}{\sqrt{n}}, \hat{\mu}_{1,n} + z_{\alpha/2,n-1} \frac{\hat{\sigma}_n}{\sqrt{n}}\right]$$

▶ the *t*-test is given by $\phi(X) = \mathbb{1}_{\mu_0 \notin \hat{C}_{1-\alpha}}$

Student distribution



Conclusion

▶ Summary:

- given annotated examples, TCAV provides class-concept association
- ightharpoonup quantitatively, for each example, gives a **score** S_C
- ightharpoonup > 0 if the concept is active, < 0 otherwise
- for a set of examples, an agglomerated score TCAV
- ightharpoonup > 0.5 if positive influence, < 0.5 otherwise
- influential work, many extensions
- ▶ also used as a ranking tool in other unrelated methods (concrete example in the next section)

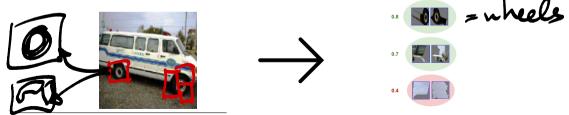
8.2. Automatic Concept-based Explanations (ACE)

Automatic Concept-based Explanations (ACE)

- we now move to another method: ACE⁸⁷
- this method is unsupervised, no need for annotated concept images!
- Big picture:
 - 1. start from set of images of the same class;
 2. segment and resize the images;
 3. cluster in the latent space;

 (R) = im(i)

 - 4. remove outliers and rank by TCAV score.
- output concepts are the clusters



⁸⁷Ghorbani et al., Towards Automatic Concept-based Explanations, NeurIPS, 2019

Image segmentation: reminder

- ▶ Overall idea: group pixels of the image by similar color / texture
- group of pixels = superpixel
- ► ACE uses SLIC⁸⁸ (LIME is using quickshift)

▶ Figure: segmentating a zebra image using SLIC

⁸⁸Achanta et al., SLIC Superpixels Compared to State-of-the-Art Superpixel Methods, IEEE TPAMI, 2012

- ► Executive summary:
 - ightharpoonup map each pixel to \mathbb{R}^5 (3 coordinates for color, 2 for position)
 - perform clustering on this set of points
- \triangleright SLIC uses a variant of k-means⁸⁹
- ▶ the **distance** used for clustering is

$$d(i,j)^2 = \frac{d_c^2}{N_c^2} + \frac{d_s^2}{N_s^2},$$

where d_c (resp. d_s) is the distance in the color (resp. spatial) space, and N_c (resp. N_s) are normalization constants

► Remark: connectivity is not enforced

⁸⁹Steinhaus, *Sur la division des corps matériels en parties*, Bull. Acad. Polon. Sci., 1957

ACE step 1: starting images

- ▶ let us go back to ACE
- we start with images from the same class:

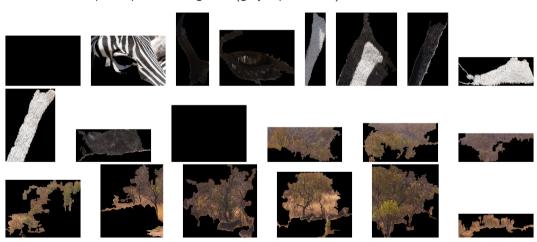
ACE step 2: segment

each image is segmented at different scales using SLIC:

- ▶ default scales = {15,50,80} = k in k. means (?)
- ▶ Intuition: capture all possible concepts (no *a priori* size)
- ▶ **Remark:** this step can be replaced by human intervention

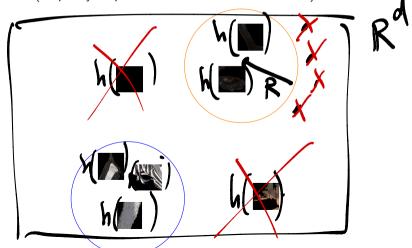
ACE step 2: segment

extract, crop and pad each segment (gray replacement):



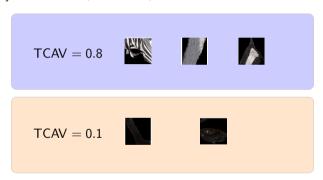
ACE step 3: cluster

- ightharpoonup create clusters in \mathbb{R}^d
- remove outliers (keep only 40 points closer to the cluster's center)



ACE step 4: importance score ACE step 4: importance score ACE step 4: importance score

rank clusters by TCAV score (see previous section!)



▶ Remark: can use any other concept-importance score

Conclusion

Summary:

- ► ACE provides class-concept association with no supervision
- relies on a concept-importance score such as TCAV
- influential work, many extensions:
 - invertible concept-based explanation (ICE)⁹⁰
 - concept recursive activation factorization for explainability (CRAFT)⁹¹

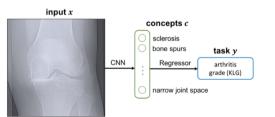
⁹⁰Zhang et al., *Invertible concept-based explanations for CNN models with non-negative concept activation vectors*, AAAI, 2021

⁹¹Fel et al., Concept recursive activation factorization for explainability, CVPR, 2023

8.3. Concept bottleneck models

Introduction

- ▶ so far, we have seen *post-hoc* concept-based explanation methods
- both supervised (TCAV) and unsupervised (ACE)
- ▶ we now look at ad-hoc methods, starting with **concept bottleneck**⁹²
- ▶ Overall idea: layer dedicated to predicting user-defined concepts
- ▶ final output has to rely on this layer ⇒ bottleneck
- ► allows:
 - model transparency (our primary goal)
 - concept intervention
- **Example:**



Setting

Soal: predicting
$$y \in \mathbb{R}$$
 from input $x \in \mathbb{R}^d$

assume that we are given training data
$$\{(x^{(1)}, y^{(1)}, c^{(1)}), (x^{(2)}, y^{(2)}, c^{(2)}), \dots, (x^{(n)}, y^{(n)}, c^{(n)})\},$$

$$\{(x^{(1)},y^{(1)},c^{(1)}),(x^{(2)},y^{(2)},c^{(2)}),\ldots,(x^{(n)},y^{(n)},c^{(n)})\}$$

where $X^{(i)}$, $y^{(i)}$ are as usual, and $c^{(i)} \in \mathbb{R}^k$ are concept vectors

- **Example:** concepts from the arthritis task: sclerosis, bone spurs, ...
- $ightharpoonup c^{(i)} = (10, 0.1, -0.3, ...)^{\top}$ corresponds to sclerosis being present
- **Concept bottleneck model:** f(x) = g(h(x)), where
 - $h: \mathbb{R}^d \to \mathbb{R}^k$ predicts concepts from input
 - $ightharpoonup g: \mathbb{R}^k \to \mathbb{R}$ predicts output from concepts

$$f(x) = g(h(x))$$

Independent bottleneck

- ▶ there are several natural ways to train $f = g \circ h$
- let us call \hat{g} and \hat{h} the trained versions of g and h
- **Loss functions:**
 - ho $\ell: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ for the outputs
 - ▶ $\forall j \in [k]$, define $\ell_j : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ the loss for concept j
- ▶ Independent bottleneck: learn \hat{g} and \hat{h} independently:

$$\hat{h} \in \arg\min_{h} \sum_{i=1}^{n} \sum_{j=1}^{k} \ell_{j}(h_{j}(x^{(i)}), c_{j}^{(i)}), \quad \text{and} \quad \hat{g} \in \arg\min_{g} \sum_{i=1}^{n} \ell(g(c^{(i)}), y^{(i)}).$$

- Intuition: learn (independently) a good concept predictor and a good predictor relying only on concepts
- **Beware:** although \hat{g} trained using true concepts, $\hat{f} = \hat{g} \circ \hat{h}$

Other possibilities

- **Sequential bottleneck:** \hat{h} learned as before, \hat{g} learned using \hat{h}
- namely,

$$\hat{h} \in \arg\min_{h} \sum_{i=1}^{n} \sum_{j=1}^{k} \ell_{j}(h_{j}(x^{(i)}), c_{j}^{(i)}), \quad \text{and} \quad \hat{g} \in \arg\min_{g} \sum_{i=1}^{n} \ell(g(\hat{h}(x^{(i)})), y^{(i)}).$$

▶ Joint bottleneck: minimize a weighted sum of the two objectives:

$$\hat{g}, \hat{h} \in \arg\min_{g,h} \sum_{i=1}^{n} \left[\ell(g(h(x^{(i)})), y^{(i)}) + \lambda \sum_{j=1}^{k} \ell_{j}(h_{j}(x^{(i)}), c_{j}^{(i)}) \right],$$

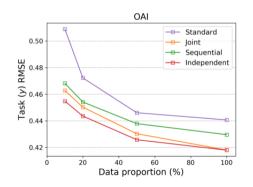
with $\lambda > 0$ some hyperparameter

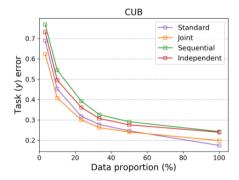
▶ Standard model: ignores concepts altogether:

$$\hat{g},\hat{h}\in \operatorname*{arg\,min}_{g,h}\sum_{i=1}^{n}\ell(g(h(x^{(i)})),y^{(i)})$$
 .

Empirical results

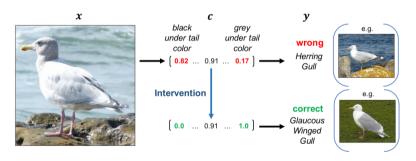
- ▶ all models are good at predicting concepts
- ▶ then the metric is really accuracy: depends on the task
- ▶ ... and always a bit smaller than without relying on concepts :(





Concept intervention

- ▶ Concept intervention: modifying concept values to get more accurate prediction
- **Example:**



Summary

- ► Concept bottleneck: explainable-by-design concept-based model
- requires user-defined concepts
- allows for concept intervention
- many extensions
- Remark: also possible to perform transplantation on existing network, introducing concept layer instead of existing layer