CAIDAS

Introduction to Informatics
for Students from all Faculties

Prof. Dr. Ingo Scholtes

Chair of Machine Learning for Complex Networks
Center for Artificial Intelligence and Data Science (CAIDAS)
Julius-Maximilians-Universitat Wiirzburg
Wiirzburg, Germany

ingo.scholtes@uni-wuerzburg.de

Julius-Maximilians-

Motivation

» filesystems allow applications to store data in files

» but: structure/meaning of these files is determined by
application/user

» how can we store information in a structured,
interoperable, and consistent way?
P customer accounts in a bank
P hotel reservations
P posts/media in social media platforms

we use database systems to organize and store in-
formation and to facilitate fast knowledge extraction

by multiple users and applications archive with boxes

image credit: Archivo-FSP, CC BY-SA 3.0

» efficient database systems are key technology in modern

o Lecture 10 . .
UWNUI\égngJIIIéT D e byt information technology
January 14, 2025 Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 1
Notes:

- Lecture L10: Database Systems 14.01.2025

+ Educational objective: We introduce basic concepts of database systems. We use an example to study relational
database design, introduce the query language SQL and motivate database transactions.

- Introduction to Relational Databases
- Relational Database Design

- Structured Query Language (SQL)

- Database Transactions

+ Exercise sheet 9 21.01.2025

Notes:

Database Management Systems Relational Databases

> database (DB): collection of data on a given “mini-world”,
a part of the world that is of interest for our database

» there are different types of database management
systems

example table

Movie
» hi i - -
example mini-world > hlt:e.rartchlc.al i)rdgrDaBthsbased DBMS [Title [Year] Genre
= - opject-oriente -
We can consider the mini-world of movies, i.e. we want to store information on a — > lJ ti | DBMS Clockwork Orange | 1971 Dystopia
movie collection consisting of movies, actors, and directors. I relationa Samsara 2011 | Documentary
- T Woman of Straw 1964 Crime
> database management system (DBMS): software that > relational database consists of relations (= tables) Highlander 1986 | Phantasy

allows to create, manage, and query a DB that consist of tuples (= table rows) example for a table Movie with three attributes Title, Year,

Genre and four rows, representing four movies

Qs P Cssvems memn

Management interface DB Browser for > tables have attributes (= columns) that must adhere

key functionality of a DBMS DBMS SOLit
Qhite to a given data type, e.g. variable-length text,

» allow user to define databases (DB)

> allow users to insert, modify and delete data into a DB integer or floating point number, date/time, etc.
» support efficient retrieval of information from the DB)))
> guarantee consistency of data » how could we store information on a given
> manage concurrent access by multiple users mini-world in multiple tables?
» user authentication and access auditing
» support transactions
ction to Informatics ecture 10: Database Systems Ja 4, 2025 Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025
Notes: Notes:

We first briefly introduce some key terms and concepts. + There are different types of DBMS that are based on different concepts how the data are organized or stored. For

instance we could store data as a graph or network, where nodes store values and links connected those values.

With the term database we refer to a specific collection of data of interest that we want to store on a so-called

“mini-world”. Such a mini-world is one (tiny) part of the world that we want to model with our database, e.g. the
customers of a bank, all users and posts of a social media platform, or the movies stored in a movie collection.

While a database is one specific collection of data, we call the software that allows us to create, manage and
query such databases a database management systems (DMBS). A single DMBS can manage many different
(maybe thousands of) databases.

A DBMS is an example of a so-called middleware, i.e. a software that sits between the operating system and
other applications that use functions provided by the middleware. As such, the functionality provided by a DBMD
goes way beyond what is provided by the filesystem or the OS. It allows us to define databases, insert, modify
and delete data, it supports the efficient retrieval of data and guarantees the consistency of data. It also
manages concurrent access, allows certain uses to only access some parts of a database and supports
transactions (later more on this).

While we could build some functions based on files, DBMS provide much more convenient functions to efficiently
retrieve data from large databases.

Or we could store data in a hierarchical tree structure, where each record is again linked to other records. Or we
could store a collection of objects that have clearly defined types.

« In this lecture, we will consider relational databases, which are arguably among the most important DBMS. The
key idea is that data is stored in a table format, where each table has multiple columns, and each row represents
one tuple (or record). We call such a table also a relation, because each row relates the values of different
columns to each other.

Database schema vs. instance

> relational database schema describes the
“data model” of a database
» tables
P attributes of each table
P data type of each attributes

simple relational database schema with four attributes

Movie
[Title (VARCHAR) [Year (INT) | Genre (VARCHAR) | Length (INT) |

instance 1

A (badly designed) relational database

consider a database for a mini-world of movies, where you want to store information on the
title, year, length and genre of movies, as well as on directors and actors.

relational database

. Movie
» database schema is usually created once movie : : - : : - = [Year [cene [Longwi | Direeior e
Title (VARCHAR Year (INT, Genre (VARCHAR Length (INT,
when we define a database l [[= [gt l Clockwork Orange 1971 Dystopia 131 Stanley Kubrick Malcolm McDowell
. . Won.lan &7 S (196 e il Samsara 2011 Documentary 102 Ron Fricke NULL
> database instance refers to data stored in Highlander 1986 Phantasy Ul Woman of Straw | 1964 Crime 116 Basil Dearden Gina Lollobrigida
a database at a given point in time Woman of Straw | 1964 Crime 116 Basil Dearden Sean Connery
» collection of all data stored in tables . H!ghlander 1986 Phantasy m Russell Mulcahy ?ean Connery
. instance 2 Highlander 1986 Phantasy m Russell Mulcahy | Christopher Lambert
» database instance changes whenever Movi
. ovie
contents is updated [Title (VARCHAR) [Year (INT) [Genre (VARCHAR) [Length (INT) |
Clockwork Orange 1971 Dystopia 131 giiestion
Woman of Straw 1964 Crime 116 do you see any problems with this relatioal database schema consisting of a single table?
ngo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025
Notes: Notes:

« We can think of different structures of such table in terms of which columns exist and what are the types of these
columns. This is the so-called schema, which originates from Greek o xnua “schema” translating to “shape”.

+ The schema of a database is typically created once when the database is created and it is changed very rarely (if
at all). For a good schema, it should not be neccessary to change it as new data is stored.

+ A database instance refers to the actual tables stored in a database, which are consistent with a schema. So
when we update data in a database, the database instance changes but the schema remains the same.

+ How can we design a database schema for a specific purpose? Let us consider an example of a DB for a
mini-world of movies, where we want to store information on movies, actors and directors.

« Asimple solution would be to define a single table that holds all of these information.

« Is this a meaningful approach?

Good relational database design?

. . . . atomic attributes
» during database design we determine tables and their

schemas (divisible) First- and Lastname
. . Movie
» good database design ensures that attributes are [Title [Director |
atomic, such that we can easily query data (e.g. first- or [Clockwork Orange | Stanley Kubrick |

lastname)

> what if we want to add multiple actors to a single moviez ~ "Peaed attribues

P repeated Actor attributes?
» multiple rows with different actors?

Actorl and Actor2 are repeated

Movie
[Title [Actor1 | Actor2

» good database design tries to eliminate redundancy, i.e.

information that is stored multiple times (EEUIEE)

» uncontrolled redundancy leads to data inconsistency Titleand Year are redundant

» any unavoidable redundancy must be managed and
controlled by DBMS to avoid inconsistencies

Movie
Title [Year [Actor

Highlander | 1986 | Connery
Highlander | 1986 | Lambert

» how can we design a good database schema?

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025

attribute Director is non-atomic as it consists of

ER model: Entities

» we can use entity-relationship models to
systematically design database schema

» we use ER-diagrams to visualize ER models
> we use entities to model specific “things of entity Movie with four attributes
interest” in our mini-world

(+ key attribute ID)
example: Entities in movie mini-world
> MOVIEs

> ACTORs
> DIRECTORs allame Nationality

entity Actor with three attributes
(+ key attribute ID)

each entity can have multiple attributes
how can we uniquely identify a given entity?

key attributes must have unique values across all
entities of a given type

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025

Notes:

A key challenge in database design is to determine a meaningful schema that avoids inconsistencies and
redundancies and makes it easy to query the data. Let us consider this in our example.

A first issue is that we have non-atomic attributes, i.e. we have attributes like Director that could be further
divided into a first and a last name. Storing data in non-atomic form makes it difficult to query data, e.g. if you
want to search for the lastname.

A second issue is that we may want to add multiple actors to a single movie. There are two ways to do this if we
use a single table.

We could first repeat the attribute actor multiple times, which is a bad idea because this means that we either
have to change the schema when we add an actor or we have to add as many columns as we can have actors
(thus defining a maximum), where we have a lot of empty cells for movies that do not have that many actors.

A second solution would be to repeat a row for each actor, which would introduce redundancy. Redundancy is a
very bad idea for databases, not only because it is inefficient to store the same data multiple times, but even
more important because we could end up changing one value while keeping its copy unchanged. This would lead
to inconsistent data, which we want to avoid at all cost!

Good relational database design thus avoids redundancy. Those redundancies thst we cannot avoid should be
declared to the DBMS, so the DBMS can control that no inconsistencies can ever occur.

But how can we systematically create a good schema for a database that avoids those issues?

Notes:

The Entity-Relationship (ER) model helps us to systematically design good database schema (especially
relational schema). An ER model consists of two different components: entities and relationships. We visualize
an ER model via so-called ER diagrams, where specific symbols represent entities and relationships.

Entities model the types of “things” that we store information on. In our example, these could be movies, actors,
and directors. We typically use the singular form as entity name. In an ER diagram, entities are typically drawn as
rectangular boxes.

Each entity can have multiple associated attributes that store the actual values for a given entity. Attributes are
drawn as ovals connected to the associated entity by a line.

Some of the attributes of an entity can be key attributes, which are assumed to be take unique values among all
entities of a given type. As an example, there are multiple different movies that have the same name (e.g. “The
Fugitive” which was relased in 1947 and in 1993), so we cannot use the name of a movie to unambiguously refer
to a specific movie. We could instead assign a unique number (i.e. an identifier or ID) that we define as key. In the
example, we could now assign the 1947 version of “The Fugitive” a unique ID 42, while the 1993 version gets a
different ID 125.

ER model: Relationships Group exercise

> inan ER model, we additionally model o LL o 1. Create an Entity-Relationship diagram for a mini-world of movies, where you want to store
I — —— VI H H H .
relationships between entities mfcfrmat.w.)n on th.e title, year, length and genre of movies, as well as on the names and
o nationalities of directors and actors.
example: relationships in movie mini-world One-to-Many relationship directs
» DIRECTOR directs MOVIE between entities Director and Movie DirectorlD

> ACTOR plays in MOVIE

LN M .
> cardinality constraint limit with how many other e _ e

entities an entity can at most be related

Many-to-Many relationship playsin
» we can use participation constraint to require entity between entities Actor and Movie 2.

to “participate” in relationship with other entity
example: cardinality and participation constraints constraintsiin ER diagrams
in ER diagrams, cardinality constraints are indicated by
numbers (1, N, M), while participation constraints are
indicated by a double line. We read cardinality constraints

» each movie is directed by exactly one director
» each director must direct at least one movie

> each movie can have any number of actors from entity via relation to number (e.g. each “Movie” is
» each actor must play in at least one movie “directed by” at most “one” director)
Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 8 Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025
Notes: Notes:

Apart from entities, in the ER model we also model relationships between entities. In an ER diagram
relationships are typically visualized by a diamond shape, which is connected to the associated entities. In the
example above, we see two relationships “directs” and “playsin” that connect the entities Director and Movie as
well as Actor and Movie, respectively.

A relationship between entities of type A and B can be subject to additional constraints that restrict with how
many entities of type B each entity of type A is minimally or maximally related (and vice-versa). Cardinality
constraints restrict the maximal number, i.e. we can add a restriction that allows each movie to only have a
single director, or that allows one movie to have any number of actors.

In an ER diagram, we indicate cardinality constraints by the small numbers next to a relationship. We read this in
the director "Entity, Relationship, Cardinality Constraint", i.e. in the example above each director can direct N (i.e.
any number of) movies. In the reverse direction, we read that each movie can be directed by at most director.

In addition to cardinality constraints, we can also set participation constraints, i.e. we specify that each entity
must participate in the relationship, i.e. that there must at least be one relation to an entity of the other type. In
an ER diagram we indicate this by a double line connecting the participating entity and the relationship, i.e. in
the example above, each director must direct at least one movie and each movie must have at least one director
(together with the cardinality constraint that means each movie must have exactly one director). In the example
below, each actor must play in at least one movie (and he/she can play in any number of movies), while movies
can have any number of actors (including no actors at all, since there is no double line from the entity Movie to
the relationship playsin).

Translating ER models to relational schema

» to avoid redundancy, we store information on
different entities in different tables

Example for corresponding database instance

database instance

Movie
> . i - o
example: Movie, Person D MovielD Title [Year] Genre | Length |
1 Clockwork Orange 1971 Dystopia 131
P to avoid non-atomic attributes, we store ..@ 2 Samsara 2011 | Documentary 102
o o o o . . . N Nationality =
divisible information in multiple attributes g omaniofiStrawlI136H Erime 16
4 Highlander 1986 Phantasy m
> primary key (U nderlined attribute) uniquely relational schema implementing ER model bercon
identifies each row in the table (e.g. via an Movicy] PersoniD FirstN LastN Nationality | .
. [MovielD [Title | Year | Genre | Length | playsin directs
auto-incremented number) 1 Malcolm McDowell England [PersonIiD | MovielD] [PersonID | MovielD
. . . Person _ B 2 Sean Connery Scotland - - = -
> we use additional tables to store relationships [PersoniD | FirstN [LastN [Nationality | 3 Christopher | Lambert USA > : : >
between entities directs 4 Stanley Kubrick England = 7 : 3
. PersonID MovielD 5 Ron Fricke USA
P example: directs, playsin [PersoniD [MovielD | - 3 4 7 4
—— . . playsin 6 Russel Mulcahy Australia
P foreign keys refer to primary keys in tables 7 Basil Dearden England
Movie and Person
» combination of (PersonID, MovielD) is primary
key in tables directs and playsin
ngo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 10 Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 1
Notes: Notes:

Once we have an ER model of our database, we must translate it to a relational schema. Luckily, this works is a
more or less automatic fashion and it does not require any creativity!

We can simply create one table for each entity and relationship type in or ER model. The attributes of the entities
are the columns of our tables. We also use the key attributes as primary keys, which uniquely identify entities.

For the relationships, we create tables that use foreign keys to refer to the primary keys of entities that
participate in the relationship, i.e. the information that a given actor plays in a movie would just be stored by a
row that relates the PersonID of the actor to the MovielD of the movie. We could now either introduce a new ID
for each of those relations, or we can just use the combination of foreign keys as primary key (since each
relation can occur only once).

Note that for a N:M relation we can just store multiple rows, where each row can relate the same Actor (i.e. a
given PersoniD) to multiple Movies (i.e. different MovielDs) and vice-versa.

Structured Query Language (SQL)

» how can we define, manipulate, and query our database
in practice?

» we use special “programming languages” to interact
with databases
» data definition language (DDL) to create database
schema, define data types, set keys, etc.
» data manipulation language (DML) to insert, update, and
query data

» SQL is standard language of many DBMS

P SQL = Structured Query Language
P pronounced: “SEQUEL"
» comprises both DDL and DML

» SQL is a declarative language, i.e. we declare which data
we want rather than how DBMS should perform the query

example database query (SQL)

SELECT * FROM movie
WHERE YEAR = 1986;

SQL-based relational DBMS
> Oracle DBMS

SAP HANA

PostgreSQL

MySQL

SQLite

vVvyVvyy

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025

SQL DDL: Creating tables

Defining tables

P we can use the CREATE TABLE statement to define schema of tables

» PRIMARY KEY ensures that attribute value(s) uniquely identify a row

» FOREIGN KEY ensures that referenced rows exist in other table

create table Movie with primary key

CREATE TABLE Movie (
MovieID INTEGER,
Title CHAR(30),

YEAR INTEGER,

Genre CHAR (30),
Length INTEGER,

s

creates new table Movie witl

Movie

PRIMARY KEY (MovieID)

h following schema

MovielD [Title | Year | Genre [Length |

Ingo Scholtes

Introduction to Informatics

create table directs with foreign keys

CREATE TABLE directs (
PersonID INTEGER,
MovieID INTEGER,
FOREIGN KEY (PersonID)
REFERENCES Person(PersonID),
FOREIGN KEY (MovieID)
REFERENCES Movie (MovieID),
PRIMARY KEY (PersonID, MovieID)
)8

creates new table directs with following schema

directs

Lecture 10: Database Systems January 14, 2025 3

Notes:

Notes:

SQL DML: Insert, update and delete data Practice Session

Manipulating data

» we introduce the lightweight SQL-based S

. . T e, e
» we can use INSERT INTO, UPDATE and DELETE FROM to manipulate rows relational DBMS SQLite Coste e GowaOwa ks e S
» WHERE can be used to specify which rows should be updated/deleted

> we use the DB Browser for SQLite to define the

example

example movie database using SQL DDL statements o
> add row to table movie > change title of movie P p———
> . o Meailicenetomiss
INSERT INTO Movie(MovieID, UPDATE Movie we u-se saL [?ML statemer}ts to insert and - ——
YEAR, Title, Genre, SET Title = modify data into our movie DB
Length)

"The Fellowship of the Ring"
VALUES (1, 2001, WHERE MovielID = 1;

"The Lord of the Rings",

"Phantasy", 228);

Sy Pt DBSchema Remote

< example
or equivalently ti i
> delete all movies released in 2001 practice session
INSERT INTO Movie) see directory 10-01in gitlab repository at
VALUES (1, DELETE FROM Movie » https://gitlab2. informatik.uni-wuerzburg.de/ml4nets_notebook

"The Lord of the Rings", WHERE YEAR = 2001;

2001, "Phantasy", 228);
Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 14 ngo Scholtes Introduction to Informatics ecture 10: Database Systems January 14, 2025

Notes: Notes:

Using SQL to query data

» simple SQL query consists of SELECT statement with FROM clause and optional WHERE clause

» for this lecture we ignore optional GROUP and HAVING clauses that can be used to calculate

aggregates over grouped rows

» simple SQL queries with SELECT, FROM and WHERE are processed as follows:

returns selected columns
for subset of rows

“virtual” table based <— list of tables

on product of tables

subset of rows in
virtual table

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems

January 14, 2025

SQL: Evaluation of a simple query

1. compute product of tables listed in FROM clause

Y

X D E

FROM X, Y, Z

2. eliminate rows that do not satisfy WHERE clause

A B C D E F
1

1 A B C D E

! WHERE F =1

17

JEN [N N

99

3. return rows for columns listed in SELECT clause

SELECTA, C, E, F

JEN [N
JEN [N

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems

January 14, 2025

Notes:

Notes:

SQL Query Examples

Querying data

P we use SELECT statement to query a database

P column list after SELECT can be used to reduce result certain columns

» FROM can be used to define (virtual) table from which data is queried, possibly combining rows from multiple tables
>

WHERE can be used to specify condition that selected rows must satisfy

example: query with WHERE clause example: query that joins multiple tables

> return Title and Year of all Phantasy movies before 2001 P join Movie, directs, Person tables and select last name of all

directors of Phantasy movies
SELECT Title, YEAR FROM Movie
WHERE Genre = "Phantasy"
AND YEAR < 2001;

SELECT Person.LName FROM
Movie, directs, Person
WHERE Genre = "Phantasy"
AND Movie.MovieID =
directs.MovielID

Practice Session

P we use SQL queries to retrieve data from our e
database

» we show how we can use the SELECT
statement to join data from multiple tables

» we demonstrate how the JOIN keyword
simplifies the joining of data from multiple
tables

“OpenProject

ety Seectan derety to cornact
b0 Lol Current Dotabase

Nome Last modhed Saze

Sy Pt DBSchema Remote

practice session

see directory 10-02 in gitlab repository at

AND Person.PersonID = > https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebook
directs.PersonlID;
Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 18 ngo Scholtes Introduction to Informatics ecture 10: Database Syst January 14,
Notes: Notes:

From database queries to transactions ACID property and SQL Transactions

» we finally consider a relational database that holds » for transactions we must guarantee ACID property

example queries example transaction

data on customer accounts in a bank UPDATE accomnt SET A Atomic = indivisible, i.e. either all operations BEGIN;
. balance = balance - 5000 succeed or none UPDATE account SET
» wire transfer of EUR 5000 between two accounts can WHERE IBAN = "DE70 32 4134 1232 1231"; C Consistent = integrity of data is not violated balance = balance - 5000
be implemented as sequence of two SQL queries WsREINS eesemG Sor I Isolated = concurrently executed transactions do UEIETE geale = WD S8 CAs G276 Ty
balance = balance + 5000 h id F UPDATE account SET
> what could bl " WHERE IBAN = "DE70 32 3521 4211 1124"; not have side-effects o balance = balance + 5000
what could possibly go wrong? D Durable = result of successful transaction is stored WHERE accNr = "DE70 32 3521 4211 1124";
1. concurrent gery of database (after first, but before permanently, i.e. it will not be reverted COMMIT;
second UPDATE operation)
2. DBMS could crash after first UPDATE statement » in SQL we use BEGIN and COMMIT to group queries

belonging to transaction

transactions
))) » any concurrent query executed before COMMIT see
We call a sequence of database operations (e.g. insert, deletion,

modification, retrieval) that form a logical unit a transaction. the DB state before the transaction was started

» if any operation within transaction fails, all changes
within that transaction will be rolled back

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 20 Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025

Notes: Notes:

In summary ...

> we motivated database management systems,
which are implemented on top of file systems

» we considered key concepts of relational
database design

» we introduced the query language SQL and
showed how we can use it to query
information in a relational database

» we motivated the need for database
transactions and introduced ACID properties

Ingo Scholtes Introduction to Informatics

drum memory of ZAM-41 computer (ca. 1961)

image credit: Public Domain, Wikipedia Commons

Lecture 10: Database Systems January 14,2025

Self-study questions

1.
2.

Explain the components of a relational database.

Give an example for a database schema that leads to redundancy and potentially
inconsistencies.

3. Give an example for a table schema with a non-atomic attribute.

4. How can we avoid redundancy in a relational database schema?

U1

Given a simple ER model for the mini-world of a company, storing information on employees and
projects.

6. Explain the difference between a primary key and a foreign key?

7. Explain how we can represent an N:M relationship between entities in a relational table.
8.

9. Explain the difference between cardinality and participation constraints.

10.
1.
12.
13.

Give an example for an ER model with a One-to-One (1:1) relationship.

How can we merge information on related entities using SQL queries?

Explain the challenges that can occur if multiple database queries belong to a transaction.
What are the ACID properties?

How can we define database transactions in SQL.

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025

Notes:

Notes:

References and credits

reading list

P Abraham Silberschatz, Henry F. Korth, S. Sudarshan: Database System
Concepts, 7th Edition, McGraw Hill Education with online material
— https://www.db-book.com/

P SQL Tutorial
— https://sqlzoo.net/wiki/SQL_Tutorial

P W3Schools SQL tutorial

— https://www.w3schools.com/sql/sql_intro.asp

P Online SQL Interpreter
> https://www.db-book.com/university-lab-dir/sqljs.html

slides reuse material kindly provided by

» Prof. Dr. Michael Bohlen
University of Ziirich, Switzerland

» Prof. Dr. Johann Gamper
Free University of Bozen-Bolzano, Italy

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems

Database System Concepts

January 14, 2025

Notes:

