
Introduction to Informatics
for Students from all Faculties

Prof. Dr. Ingo Scholtes
Chair of Machine Learning for Complex Networks

Center for Artificial Intelligence and Data Science (CAIDAS)
Julius-Maximilians-Universität Würzburg

Würzburg, Germany
ingo.scholtes@uni-wuerzburg.de

Lecture 10
Database Systems

January 14, 2025

Notes:

• Lecture L10: Database Systems 14.01.2025

• Educational objective: We introduce basic concepts of database systems. We use an example to study relational
database design, introduce the query language SQL and motivate database transactions.

– Introduction to Relational Databases
– Relational Database Design
– Structured Query Language (SQL)
– Database Transactions

• Exercise sheet 9 21.01.2025

Motivation
▶ filesystems allow applications to store data in files

▶ but: structure/meaning of these files is determined by
application/user

▶ how can we store information in a structured,
interoperable, and consistent way?
▶ customer accounts in a bank
▶ hotel reservations
▶ posts/media in social media platforms

we use database systems to organize and store in-
formation and to facilitate fast knowledge extraction
by multiple users and applications

▶ efficient database systems are key technology in modern
information technology

archive with boxes

image credit: Archivo-FSP, CC BY-SA 3.0

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 1

Notes:

Database Management Systems
▶ database (DB): collection of data on a given “mini-world”,

a part of the world that is of interest for our database

example mini-world

We can consider the mini-world of movies, i.e. we want to store information on a
movie collection consisting of movies, actors, and directors.

▶ database management system (DBMS): software that
allows to create, manage, and query a DB

key functionality of a DBMS
▶ allow user to define databases (DB)
▶ allow users to insert, modify and delete data into a DB
▶ support efficient retrieval of information from the DB
▶ guarantee consistency of data
▶ manage concurrent access by multiple users
▶ user authentication and access auditing
▶ support transactions

Management interface DB Browser for
DBMS SQLite

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 2

Notes:

• We first briefly introduce some key terms and concepts.

• With the term database we refer to a specific collection of data of interest that we want to store on a so-called
“mini-world”. Such a mini-world is one (tiny) part of the world that we want to model with our database, e.g. the
customers of a bank, all users and posts of a social media platform, or the movies stored in a movie collection.

• While a database is one specific collection of data, we call the software that allows us to create, manage and
query such databases a database management systems (DMBS). A single DMBS can manage many different
(maybe thousands of) databases.

• A DBMS is an example of a so-called middleware, i.e. a software that sits between the operating system and
other applications that use functions provided by the middleware. As such, the functionality provided by a DBMD
goes way beyond what is provided by the filesystem or the OS. It allows us to define databases, insert, modify
and delete data, it supports the efficient retrieval of data and guarantees the consistency of data. It also
manages concurrent access, allows certain uses to only access some parts of a database and supports
transactions (later more on this).

• While we could build some functions based on files, DBMS provide much more convenient functions to efficiently
retrieve data from large databases.

Relational Databases
▶ there are different types of database management

systems
▶ hierarchical or graph-based DBMS
▶ object-oriented DBMS
▶ relational DBMS

▶ relational database consists of relations (= tables)
that consist of tuples (= table rows)

▶ tables have attributes (= columns) that must adhere
to a given data type, e.g. variable-length text,
integer or floating point number, date/time, etc.

▶ how could we store information on a given
mini-world in multiple tables?

example table

Movie
Title Year Genre

Clockwork Orange 1971 Dystopia
Samsara 2011 Documentary

Woman of Straw 1964 Crime
Highlander 1986 Phantasy

example for a table Movie with three attributes Title, Year,
Genre and four rows, representing four movies

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 3

Notes:

• There are different types of DBMS that are based on different concepts how the data are organized or stored. For
instance we could store data as a graph or network, where nodes store values and links connected those values.
Or we could store data in a hierarchical tree structure, where each record is again linked to other records. Or we
could store a collection of objects that have clearly defined types.

• In this lecture, we will consider relational databases, which are arguably among the most important DBMS. The
key idea is that data is stored in a table format, where each table has multiple columns, and each row represents
one tuple (or record). We call such a table also a relation, because each row relates the values of different
columns to each other.

Database schema vs. instance
▶ relational database schema describes the

“data model” of a database
▶ tables
▶ attributes of each table
▶ data type of each attributes

▶ database schema is usually created once
when we define a database

▶ database instance refers to data stored in
a database at a given point in time
▶ collection of all data stored in tables
▶ database instance changes whenever

contents is updated

simple relational database schema with four attributes

Movie
Title (VARCHAR) Year (INT) Genre (VARCHAR) Length (INT)

instance 1

Movie
Title (VARCHAR) Year (INT) Genre (VARCHAR) Length (INT)
Woman of Straw 1964 Crime 116

Highlander 1986 Phantasy 111

instance 2

Movie
Title (VARCHAR) Year (INT) Genre (VARCHAR) Length (INT)

Clockwork Orange 1971 Dystopia 131
Woman of Straw 1964 Crime 116

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 4

Notes:

• We can think of different structures of such table in terms of which columns exist and what are the types of these
columns. This is the so-called schema, which originates from Greek σχηµα “schema” translating to “shape”.

• The schema of a database is typically created once when the database is created and it is changed very rarely (if
at all). For a good schema, it should not be neccessary to change it as new data is stored.

• A database instance refers to the actual tables stored in a database, which are consistent with a schema. So
when we update data in a database, the database instance changes but the schema remains the same.

A (badly designed) relational database
consider a database for a mini-world of movies, where you want to store information on the
title, year, length and genre of movies, as well as on directors and actors.

relational database

Movie
Title Year Genre Length Director Actor

Clockwork Orange 1971 Dystopia 131 Stanley Kubrick Malcolm McDowell
Samsara 2011 Documentary 102 Ron Fricke NULL

Woman of Straw 1964 Crime 116 Basil Dearden Gina Lollobrigida
Woman of Straw 1964 Crime 116 Basil Dearden Sean Connery

Highlander 1986 Phantasy 111 Russell Mulcahy Sean Connery
Highlander 1986 Phantasy 111 Russell Mulcahy Christopher Lambert

question

do you see any problems with this relatioal database schema consisting of a single table?

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 5

Notes:

• How can we design a database schema for a specific purpose? Let us consider an example of a DB for a
mini-world of movies, where we want to store information on movies, actors and directors.

• A simple solution would be to define a single table that holds all of these information.

• Is this a meaningful approach?

Good relational database design?
▶ during database design we determine tables and their

schemas

▶ good database design ensures that attributes are
atomic, such that we can easily query data (e.g. first- or
lastname)

▶ what if we want to add multiple actors to a single movie?
▶ repeated Actor attributes?
▶ multiple rows with different actors?

▶ good database design tries to eliminate redundancy, i.e.
information that is stored multiple times
▶ uncontrolled redundancy leads to data inconsistency
▶ any unavoidable redundancy must be managed and

controlled by DBMS to avoid inconsistencies

▶ how can we design a good database schema?

atomic attributes

attribute Director is non-atomic as it consists of
(divisible) First- and Lastname

Movie
Title Director

Clockwork Orange Stanley Kubrick

repeated attributes

Actor1 and Actor2 are repeated
Movie

Title Actor1 Actor2

redundancy

Title and Year are redundant
Movie

Title Year Actor
Highlander 1986 Connery
Highlander 1986 Lambert

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 6

Notes:

• A key challenge in database design is to determine a meaningful schema that avoids inconsistencies and
redundancies and makes it easy to query the data. Let us consider this in our example.

• A first issue is that we have non-atomic attributes, i.e. we have attributes like Director that could be further
divided into a first and a last name. Storing data in non-atomic form makes it difficult to query data, e.g. if you
want to search for the lastname.

• A second issue is that we may want to add multiple actors to a single movie. There are two ways to do this if we
use a single table.

• We could first repeat the attribute actor multiple times, which is a bad idea because this means that we either
have to change the schema when we add an actor or we have to add as many columns as we can have actors
(thus defining a maximum), where we have a lot of empty cells for movies that do not have that many actors.

• A second solution would be to repeat a row for each actor, which would introduce redundancy. Redundancy is a
very bad idea for databases, not only because it is inefficient to store the same data multiple times, but even
more important because we could end up changing one value while keeping its copy unchanged. This would lead
to inconsistent data, which we want to avoid at all cost!

• Good relational database design thus avoids redundancy. Those redundancies thst we cannot avoid should be
declared to the DBMS, so the DBMS can control that no inconsistencies can ever occur.

• But how can we systematically create a good schema for a database that avoids those issues?

ER model: Entities
▶ we can use entity-relationship models to

systematically design database schema

▶ we use ER-diagrams to visualize ER models

▶ we use entities to model specific “things of
interest” in our mini-world

example: Entities in movie mini-world
▶ MOVIEs
▶ ACTORs
▶ DIRECTORs

▶ each entity can have multiple attributes

▶ how can we uniquely identify a given entity?

▶ key attributes must have unique values across all
entities of a given type

MovieMovieID

Title Year Genre

Length

entity Movie with four attributes
(+ key attribute ID)

ActorActorID

FName LName Nationality

entity Actor with three attributes
(+ key attribute ID)

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 7

Notes:

• The Entity-Relationship (ER) model helps us to systematically design good database schema (especially
relational schema). An ER model consists of two different components: entities and relationships. We visualize
an ER model via so-called ER diagrams, where specific symbols represent entities and relationships.

• Entities model the types of “things” that we store information on. In our example, these could be movies, actors,
and directors. We typically use the singular form as entity name. In an ER diagram, entities are typically drawn as
rectangular boxes.

• Each entity can have multiple associated attributes that store the actual values for a given entity. Attributes are
drawn as ovals connected to the associated entity by a line.

• Some of the attributes of an entity can be key attributes, which are assumed to be take unique values among all
entities of a given type. As an example, there are multiple different movies that have the same name (e.g. “The
Fugitive” which was relased in 1947 and in 1993), so we cannot use the name of a movie to unambiguously refer
to a specific movie. We could instead assign a unique number (i.e. an identifier or ID) that we define as key. In the
example, we could now assign the 1947 version of “The Fugitive” a unique ID 42, while the 1993 version gets a
different ID 125.

ER model: Relationships
▶ in an ER model, we additionally model

relationships between entities

example: relationships in movie mini-world
▶ DIRECTOR directs MOVIE
▶ ACTOR plays in MOVIE

▶ cardinality constraint limit with how many other
entities an entity can at most be related

▶ we can use participation constraint to require entity
to “participate” in relationship with other entity

example: cardinality and participation constraints
▶ each movie is directed by exactly one director
▶ each director must direct at least one movie
▶ each movie can have any number of actors
▶ each actor must play in at least one movie

Director directs
1

Movie
N

One-to-Many relationship directs
between entities Director and Movie

Actor playsIn
N

Movie
M

Many-to-Many relationship playsIn
between entities Actor and Movie

constraints in ER diagrams

in ER diagrams, cardinality constraints are indicated by
numbers (1, N , M), while participation constraints are
indicated by a double line. We read cardinality constraints
from entity via relation to number (e.g. each “Movie” is
“directed by” at most “one” director)

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 8

Notes:

• Apart from entities, in the ER model we also model relationships between entities. In an ER diagram
relationships are typically visualized by a diamond shape, which is connected to the associated entities. In the
example above, we see two relationships “directs” and “playsIn” that connect the entities Director and Movie as
well as Actor and Movie, respectively.

• A relationship between entities of type A and B can be subject to additional constraints that restrict with how
many entities of type B each entity of type A is minimally or maximally related (and vice-versa). Cardinality
constraints restrict the maximal number, i.e. we can add a restriction that allows each movie to only have a
single director, or that allows one movie to have any number of actors.

• In an ER diagram, we indicate cardinality constraints by the small numbers next to a relationship. We read this in
the director "Entity, Relationship, Cardinality Constraint", i.e. in the example above each director can direct N (i.e.
any number of) movies. In the reverse direction, we read that each movie can be directed by at most director.

• In addition to cardinality constraints, we can also set participation constraints, i.e. we specify that each entity
must participate in the relationship, i.e. that there must at least be one relation to an entity of the other type. In
an ER diagram we indicate this by a double line connecting the participating entity and the relationship, i.e. in
the example above, each director must direct at least one movie and each movie must have at least one director
(together with the cardinality constraint that means each movie must have exactly one director). In the example
below, each actor must play in at least one movie (and he/she can play in any number of movies), while movies
can have any number of actors (including no actors at all, since there is no double line from the entity Movie to
the relationship playsIn).

Group exercise
1. Create an Entity-Relationship diagram for a mini-world of movies, where you want to store

information on the title, year, length and genre of movies, as well as on the names and
nationalities of directors and actors.

Movie

MovieID Title

Year
Length

Genre

Director

DirectorID

FName

LName
Nationality

Actor

ActorID

FName

LName
Nationality

playsIn
N M

directs
N1

2. What happens if an actor also directs a movie? Do we need two entities Actor and Director.

Movie

MovieID
Title

Year
Length

Genre

Person

PersonID

FName

LName
Nationality

playsIn
NM

directs

N
1

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 9

Notes:

Translating ER models to relational schema
▶ to avoid redundancy, we store information on

different entities in different tables
▶ example: Movie, Person

▶ to avoid non-atomic attributes, we store
divisible information in multiple attributes

▶ primary key (underlined attribute) uniquely
identifies each row in the table (e.g. via an
auto-incremented number)

▶ we use additional tables to store relationships
between entities
▶ example: directs, playsIn
▶ foreign keys refer to primary keys in tables

Movie and Person
▶ combination of (PersonID, MovieID) is primary

key in tables directs and playsIn

Movie

MovieID
Title

Year
Length

Genre

Person

PersonID

FName

LName
Nationality

playsIn
NM

directs

N
1

relational schema implementing ER model

Movie
MovieID Title Year Genre Length

Person
PersonID FirstN LastN Nationality

directs
PersonID MovieID

playsIn
PersonID MovieID

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 10

Notes:

• Once we have an ER model of our database, we must translate it to a relational schema. Luckily, this works is a
more or less automatic fashion and it does not require any creativity!

• We can simply create one table for each entity and relationship type in or ER model. The attributes of the entities
are the columns of our tables. We also use the key attributes as primary keys, which uniquely identify entities.

• For the relationships, we create tables that use foreign keys to refer to the primary keys of entities that
participate in the relationship, i.e. the information that a given actor plays in a movie would just be stored by a
row that relates the PersonID of the actor to the MovieID of the movie. We could now either introduce a new ID
for each of those relations, or we can just use the combination of foreign keys as primary key (since each
relation can occur only once).

• Note that for a N:M relation we can just store multiple rows, where each row can relate the same Actor (i.e. a
given PersonID) to multiple Movies (i.e. different MovieIDs) and vice-versa.

Example for corresponding database instance
database instance

Movie
MovieID Title Year Genre Length

1 Clockwork Orange 1971 Dystopia 131
2 Samsara 2011 Documentary 102
3 Woman of Straw 1964 Crime 116
4 Highlander 1986 Phantasy 111

Person
PersonID FirstN LastN Nationality

1 Malcolm McDowell England
2 Sean Connery Scotland
3 Christopher Lambert USA
4 Stanley Kubrick England
5 Ron Fricke USA
6 Russel Mulcahy Australia
7 Basil Dearden England

playsIn
PersonID MovieID

1 1
2 3
2 4
3 4

directs
PersonID MovieID

4 1
5 2
6 3
7 4

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 11

Notes:

Structured Query Language (SQL)
▶ how can we define, manipulate, and query our database

in practice?

▶ we use special “programming languages” to interact
with databases
▶ data definition language (DDL) to create database

schema, define data types, set keys, etc.
▶ data manipulation language (DML) to insert, update, and

query data

▶ SQL is standard language of many DBMS
▶ SQL = Structured Query Language
▶ pronounced: “SEQUEL”
▶ comprises both DDL and DML

▶ SQL is a declarative language, i.e. we declare which data
we want rather than how DBMS should perform the query

example database query (SQL)

SELECT * FROM movie
WHERE YEAR = 1986;

SQL-based relational DBMS
▶ Oracle DBMS
▶ SAP HANA
▶ PostgreSQL
▶ MySQL
▶ SQLite

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 12

Notes:

SQL DDL: Creating tables
Defining tables
▶ we can use the CREATE TABLE statement to define schema of tables
▶ PRIMARY KEY ensures that attribute value(s) uniquely identify a row
▶ FOREIGN KEY ensures that referenced rows exist in other table

create table Movie with primary key

CREATE TABLE Movie (
MovieID INTEGER ,
Title CHAR (30) ,
YEAR INTEGER ,
Genre CHAR (30) ,
Length INTEGER ,
PRIMARY KEY (MovieID)

);

creates new table Movie with following schema

Movie
MovieID Title Year Genre Length

create table directs with foreign keys

CREATE TABLE directs (
PersonID INTEGER ,
MovieID INTEGER ,
FOREIGN KEY (PersonID)

REFERENCES Person (PersonID),
FOREIGN KEY (MovieID)

REFERENCES Movie (MovieID),
PRIMARY KEY (PersonID , MovieID)

);

creates new table directs with following schema

directs
PersonID MovieID

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 13

Notes:

SQL DML: Insert, update and delete data
Manipulating data
▶ we can use INSERT INTO, UPDATE and DELETE FROM to manipulate rows
▶ WHERE can be used to specify which rows should be updated/deleted

example
▶ add row to table movie

INSERT INTO Movie (MovieID ,
YEAR , Title , Genre ,
Length)
VALUES (1, 2001 ,

"The Lord of the Rings ",
" Phantasy ", 228);

▶ or equivalently

INSERT INTO Movie
VALUES (1,

"The Lord of the Rings ",
2001 , " Phantasy ", 228);

example
▶ change title of movie

UPDATE Movie
SET Title =
"The Fellowship of the Ring"
WHERE MovieID = 1;

example
▶ delete all movies released in 2001

DELETE FROM Movie
WHERE YEAR = 2001;

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 14

Notes:

Practice Session
▶ we introduce the lightweight SQL-based

relational DBMS SQLite

▶ we use the DB Browser for SQLite to define the
movie database using SQL DDL statements

▶ we use SQL DML statements to insert and
modify data into our movie DB

practice session

see directory 10-01 in gitlab repository at
→ https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 15

Notes:

Using SQL to query data
▶ simple SQL query consists of SELECT statement with FROM clause and optional WHERE clause

▶ for this lecture we ignore optional GROUP and HAVING clauses that can be used to calculate
aggregates over grouped rows

▶ simple SQL queries with SELECT, FROM and WHERE are processed as follows:

select

from

where

list of tables“virtual” table based
on product of tables

subset of rows in
virtual table

returns selected columns
for subset of rows

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 16

Notes:

SQL: Evaluation of a simple query
1. compute product of tables listed in FROM clause

X
A B C

Y
D E

FROM X, Y, Z
Z

F

A B C D E F

...

2. eliminate rows that do not satisfy WHERE clause
A B C D E F

1
1
1
17

...
99
5

WHERE F = 1
A B C D E F

. 1

. 1

. 1

3. return rows for columns listed in SELECT clause

A B C D E F
. 1
. 1
. 1

SELECT A, C, E, F
A C E F

. 1

. 1

. 1

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 17

Notes:

SQL Query Examples
Querying data
▶ we use SELECT statement to query a database
▶ column list after SELECT can be used to reduce result certain columns
▶ FROM can be used to define (virtual) table from which data is queried, possibly combining rows from multiple tables
▶ WHERE can be used to specify condition that selected rows must satisfy

example: query with WHERE clause
▶ return Title and Year of all Phantasy movies before 2001

SELECT Title , YEAR FROM Movie
WHERE Genre = " Phantasy "
AND YEAR < 2001;

example: query that joins multiple tables
▶ join Movie, directs, Person tables and select last name of all

directors of Phantasy movies

SELECT Person . LName FROM
Movie , directs , Person
WHERE Genre = " Phantasy "
AND Movie . MovieID =

directs . MovieID
AND Person . PersonID =

directs . PersonID ;

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 18

Notes:

Practice Session
▶ we use SQL queries to retrieve data from our

database

▶ we show how we can use the SELECT
statement to join data from multiple tables

▶ we demonstrate how the JOIN keyword
simplifies the joining of data from multiple
tables

practice session

see directory 10-02 in gitlab repository at
→ https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 19

Notes:

From database queries to transactions
▶ we finally consider a relational database that holds

data on customer accounts in a bank

▶ wire transfer of EUR 5000 between two accounts can
be implemented as sequence of two SQL queries

▶ what could possibly go wrong?
1. concurrent qery of database (after first, but before

second UPDATE operation)
2. DBMS could crash after first UPDATE statement

transactions

We call a sequence of database operations (e.g. insert, deletion,
modification, retrieval) that form a logical unit a transaction.

example queries
UPDATE account SET

balance = balance - 5000
WHERE IBAN = "DE70 32 4134 1232 1231";

UPDATE account SET
balance = balance + 5000
WHERE IBAN = "DE70 32 3521 4211 1124";

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 20

Notes:

ACID property and SQL Transactions
▶ for transactions we must guarantee ACID property

A Atomic = indivisible, i.e. either all operations
succeed or none

C Consistent = integrity of data is not violated
I Isolated = concurrently executed transactions do

not have side-effects
D Durable = result of successful transaction is stored

permanently, i.e. it will not be reverted

▶ in SQL we use BEGIN and COMMIT to group queries
belonging to transaction

▶ any concurrent query executed before COMMIT see
the DB state before the transaction was started

▶ if any operation within transaction fails, all changes
within that transaction will be rolled back

example transaction
BEGIN;
UPDATE account SET

balance = balance - 5000
WHERE accNr = "DE70 32 4134 1232 1231";

UPDATE account SET
balance = balance + 5000
WHERE accNr = "DE70 32 3521 4211 1124";

COMMIT;

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 21

Notes:

In summary . . .
▶ we motivated database management systems,

which are implemented on top of file systems

▶ we considered key concepts of relational
database design

▶ we introduced the query language SQL and
showed how we can use it to query
information in a relational database

▶ we motivated the need for database
transactions and introduced ACID properties

drum memory of ZAM-41 computer (ca. 1961)

image credit: Public Domain, Wikipedia Commons

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 22

Notes:

Self-study questions
1. Explain the components of a relational database.
2. Give an example for a database schema that leads to redundancy and potentially

inconsistencies.
3. Give an example for a table schema with a non-atomic attribute.
4. How can we avoid redundancy in a relational database schema?
5. Given a simple ER model for the mini-world of a company, storing information on employees and

projects.
6. Explain the difference between a primary key and a foreign key?
7. Explain how we can represent an N:M relationship between entities in a relational table.
8. Give an example for an ER model with a One-to-One (1:1) relationship.
9. Explain the difference between cardinality and participation constraints.

10. How can we merge information on related entities using SQL queries?
11. Explain the challenges that can occur if multiple database queries belong to a transaction.
12. What are the ACID properties?
13. How can we define database transactions in SQL.

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 23

Notes:

References and credits

reading list
▶ Abraham Silberschatz, Henry F. Korth, S. Sudarshan: Database System

Concepts, 7th Edition, McGraw Hill Education with online material
→ https://www.db-book.com/

▶ SQL Tutorial
→ https://sqlzoo.net/wiki/SQL_Tutorial

▶ W3Schools SQL tutorial
→ https://www.w3schools.com/sql/sql_intro.asp

▶ Online SQL Interpreter
→ https://www.db-book.com/university-lab-dir/sqljs.html

slides reuse material kindly provided by
▶ Prof. Dr. Michael Böhlen

University of Zürich, Switzerland
▶ Prof. Dr. Johann Gamper

Free University of Bozen-Bolzano, Italy

Ingo Scholtes Introduction to Informatics Lecture 10: Database Systems January 14, 2025 24

Notes:

