Theory of Machine Learning

Exercise sheet 9 — Session 9

Exercise I (elementary properties) . Show the following elementary properties of the Rademacher complexity:

- 1. if $\mathcal{G} \subset \mathcal{G}'$, then $R_n(\mathcal{G}) < R_n(\mathcal{G}')$;
- 2. $R_n(\mathcal{G} + \mathcal{G}') = R_n(\mathcal{G}) + R_n(\mathcal{G}');$
- 3. $R_n(\alpha \mathcal{G}) = |\alpha| R_n(\mathcal{G});$
- 4. if g_0 is a function, $R_n(\mathcal{G} + \{g_0\}) = R_n(\mathcal{G})$;
- 5. $R_n(\mathcal{G}) = R_n(\text{conv}(\mathcal{G})).$

Exercise II (Massart's lemma) \mathscr{E} . Let us assume that \mathcal{G} is *finite*, that is, $\mathcal{G} = \{g_1, \dots, g_m\}$. Let us assume further that $\frac{1}{n} \sum_{i=1}^n g_j(X_i)^2 \leq R^2$ for all $j \in [d]$. Show that the Rademacher complexity of the function class \mathcal{G} satisfies

$$R_n(\mathcal{G}) \le \sqrt{\frac{2\log m}{n}} R$$
.

For simplicity's sake, we consider the X_i s fixed.

1. Given $\lambda > 0$, show that

$$\exp\left(\lambda \mathbb{E}_{\varepsilon} \left[\sup_{g \in \mathcal{G}} \sum_{i=1}^{n} \varepsilon_{i} g(X_{i}) \right] \right) \leq \sum_{g \in \mathcal{G}} \mathbb{E}_{\varepsilon} \left[\exp\left(\lambda \sum_{i=1}^{n} \varepsilon_{i} g(X_{i})\right) \right].$$

(Hint: Jensen's inequality and property of sup.)

2. Show that

$$\sum_{g \in \mathcal{G}} \mathbb{E}_{\varepsilon} \left[\exp \left(\lambda \sum_{i=1}^{n} \varepsilon_{i} g(X_{i}) \right) \right] = \sum_{g \in \mathcal{G}} \prod_{i=1}^{n} \frac{1}{2} (\exp \left(\lambda g(X_{i}) \right) + \exp \left(-\lambda g(X_{i}) \right)).$$

(*Hint*: independence of the ε_i s and direct computation of the remaining expectation.)

3. Using $\frac{e^x + e^{-x}}{2} \le e^{x^2/2}$ (for all $x \in \mathbb{R}$), show that

$$\sum_{g \in \mathcal{G}} \prod_{i=1}^{n} \frac{1}{2} (\exp(\lambda g(X_i)) + \exp(-\lambda g(X_i))) \le \sum_{g \in \mathcal{G}} \exp\left(\frac{\lambda^2}{2} \sum_{i=1}^{n} g(X_i)^2\right).$$

4. Show that

$$\sum_{g \in \mathcal{G}} \exp\left(\frac{\lambda^2}{2} \sum_{i=1}^n g(X_i)^2\right) \le m \exp\left(\frac{n\lambda^2 R^2}{2}\right).$$

(*Hint*: refer to the assumptions in the exercise statement on g and \mathcal{G} .)

5. By putting everything together, show that

$$R_n(\mathcal{G}) \le \frac{1}{n\lambda} \log m + \frac{\lambda R^2}{2}.$$

- 6. Show that $\lambda^* = \frac{1}{R} \sqrt{\frac{2 \log m}{n}}$ minimizes the previous bound.
- 7. Show the Massart's lemma bound.

Exercise III (On the generalization bound of linear regression in fixed design) \mathscr{E} . The objective of this exercise is to prove a generalization bound for an OLS estimator in the fixed design setting.

Consider vector-valued inputs and real-valued outputs $(\mathcal{X} = \mathbb{R}^d \text{ and } \mathcal{Y} = \mathbb{R})$ with $X := (X_1, \dots, X_n)^\top \in \mathbb{R}^{n \times d}$ the input vector and $Y := (Y_1, \dots, Y_n)^\top \in \mathbb{R}^n$ the response vector. Let $\phi(x) = (x_1, \dots, x_d)^\top$ and $\Phi \in \mathbb{R}^{n \times d}$ the matrix of inputs with row i defined as $\Phi_{i,:} := \phi(X_i)^\top$. We work in the fixed design setting where for a fixed input $X \in \mathbb{R}^{n \times d}$, the output is $Y = \Phi \theta + \varepsilon$ $(\varepsilon \text{ i.i.d. } \mathcal{N}(0,1))$ and $\theta \in \mathbb{R}^d$. The true risk $\mathcal{R}(\theta)$ of θ and its empirical counterpart $\mathcal{R}(\theta)$ are defined as:

$$\mathcal{R}(\theta) := \mathbb{E}_{\varepsilon} \left[\frac{1}{n} \| Y - \Phi \theta \|_{2}^{2} \right] ,$$

$$\widehat{\mathcal{R}}(\theta) := \frac{1}{m} \sum_{i=1}^{m} \frac{1}{n} \| Y^{(i)} - \Phi \theta \|_{2}^{2} ,$$

where $\{Y^{(i)}\}_{i=1}^m$ are i.i.d. random vectors sampled as $Y^{(i)} = \Phi\theta + \varepsilon^{(i)}$ ($\varepsilon^{(i)}$ i.i.d. $\mathcal{N}(0, \mathbf{I}_n)$). Finally, a remainder on chi-squared distribution: if Z_1, \ldots, Z_n are independent standard normal $\mathcal{N}(0,1)$ random variables, then the sum of their squares, $K := \sum_{i=1}^n Z_i^2$, is distributed action. cording to the chi-squared distribution with n degrees of freedom, which is denoted as $K \sim \chi^2(n)$. Also, $\mathbb{E}[K] = n$ and Var(K) = 2n.

The objective is to compute a generalization bound for a fixed θ using Chebyshev's inequality:

- 1. Show that $Y_i^{(i)} \sim \mathcal{N}(\Phi_{i,i}\theta, 1)$ with $i \in [m]$ and $j \in [n]$.
- 2. Show that $||Y^{(i)} \Phi\theta||_2^2 = (Y^{(i)} \Phi\theta)^\top (Y^{(i)} \Phi\theta)$ is distributed as $\chi^2(n)$. (Hint: rewrite the previous quantity as a sum.)
- 3. Compute the variance of $||Y^{(i)} \Phi\theta||_2^2$.
- 4. Compute the variance of $\widehat{\mathcal{R}}(\theta)$. (Hint: the elements of the sum $\widehat{\mathcal{R}}(\theta)$ are independent.)
- 5. Using Chebyshev's inequality with t > 0, show that:

$$\mathbb{P}\left(\left|\widehat{\mathcal{R}}(\theta) - \mathcal{R}(\theta)\right| > t\right) \le \frac{\operatorname{Var}\left(\widehat{\mathcal{R}}(\theta)\right)}{t^2} = \frac{2}{mnt^2}.$$

- 6. Solve in t > 0, $\delta = \frac{2}{mnt^2}$.
- 7. Rewrite the previous bound as follows:

$$\mathbb{P}\left(\left|\widehat{\mathcal{R}}(\theta) - \mathcal{R}(\theta)\right| \le \sqrt{\frac{2}{mn\delta}}\right) \ge 1 - \delta.$$

8. (Numerical application) set $\delta = 0.01$ in the previous bound and rewrite it as:

$$\mathbb{P}\left(\left|\widehat{\mathcal{R}}(\theta) - \mathcal{R}(\theta)\right| \le 10\sqrt{\frac{2}{mn}}\right) \ge 0.99.$$