8. Concept-based Explainable Al

Introduction

- **So far:** feature-attribution methods
- ightharpoonup pprox compute some measure of importance for each feature
- \triangleright not entirely satisfying, especially if many features (e.g., images)
- ► Another approach: higher-level attributes used by the model (= concepts)
- either directly used by the model or inferred after training
- What is a concept?
 - symbolic concepts;
 - unsupervised concepts basis;
 - textual concepts;
 - ▶ ..

Symbolic concepts

- ▶ Informal definition: high-level abstractions
- **► Example:** class zebra → striped concept
- generally associated to human-annotated sets of examples
- ightharpoonup \Rightarrow costly + restrictive
- Example: image-classification
 - patches of images, someone says whether concept present or not
 - class-level annotation

▶ Figure: images corresponding to the striped concept from from the Broden⁸⁰ dataset

⁸⁰Bau et al., Network Dissection: Quantifying interpretability of deep visual representations, CVPR, 2017

Unsupervised concept basis

- ▶ Informal definition: cluster of similar examples or parts of examples
- **Example:** ACE⁸¹ explanation for tennis ball

Tennis ball and Texture

- ▶ generally extracted from some latent representation *via* clustering⁸²
- ▶ **Important:** do not necessarily coincide with human-defined concepts!

⁸¹Ghorbani et al., Towards Automatic Concept-based Explanations, NeurIPS, 2019

⁸²Chapter 14.3 of Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, Springer, 2004

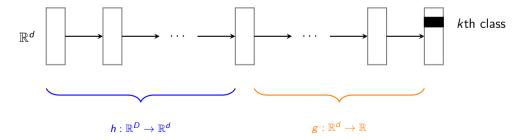
A typology of concept-based XAI

- ► Main categories:⁸³
 - Class-concept relations: quantifying relationship between pre-determined concept and output class of a model
 - Node-concept association: quantifying relationship between pre-determined concept and inner node of a model
 - ▶ Concept-visualization: visualization in terms of input features

⁸³Poeta, Ciravegna, et al., Concept-based Explainable Artificial Intelligence: A Survey, preprint, 2023

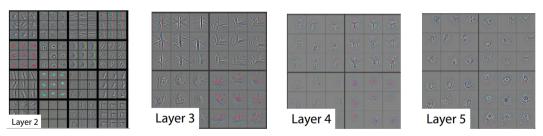
More on latent representation

- ► **Key ingredient in the concept-based literature:** intermediate representation of the input by the network
- **Notation:** $f: \mathbb{R}^D \to \mathbb{R}$ corresponds to logit of class k of our model
- ▶ set $f = g \circ h$, with $h : \mathbb{R}^D \to \mathbb{R}^d$ and $g : \mathbb{R}^d \to \mathbb{R}$
- Schematically:



Which layer to choose?

- ► **Intuition:** first layers = low-level visual features
- ▶ the deeper we go, the higher the chances of finding high-level concepts are
- ► Typical choice: last convolutional layer



► Figure: visualizing top activations of a simili AlexNet from random samples⁸⁴

⁸⁴Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV, 2014

8.1. Concept Activation Vectors

Concept Activation Vectors

- ▶ let us look at a second method: TCAV⁸⁵
- **Big picture,** for a given example ξ :
 - 1. get concept + random examples;
 - 2. compute their latent representation;
 - 3. train a linear classifier in the layer with normal vector (V_C) ;
 - 4. compute $\nabla_{h(\mathcal{E})}g$;
 - 5. compute $S := \langle \nabla_{h(\xi)} g, V_C \rangle$.
- ► Linear classifier = logistic regression

⁸⁵Kim et al., Interpretability beyond feature attribution: quantitative testing with concept activation vectors, ICML. 2018

Reminder: logistic regression

- ightharpoonup classification with labels $\mathcal{Y} = \{0, 1\}$
- ▶ however, we predict the probability of belonging to class 1
- hypothesis class:

$$\mathcal{H} = \{ x \mapsto \phi(\langle w, x \rangle), w \in \mathbb{R}^d \},\,$$

with ϕ the *logistic function* (aka *sigmoid* function)

$$\phi(z) = \frac{1}{1 + \mathrm{e}^{-z}} \,.$$

- ▶ Intuition: squeeze the score between 0 and 1 to transform it into a probability
- $ightharpoonup \mathbb{P}(y=1\,|\,x) = \phi(w^{ op}x) \text{ and } \mathbb{P}(y=0\,|\,x) = 1 \phi(w^{ op}x)$

Logistic function

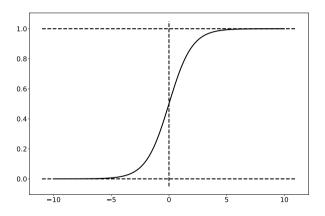
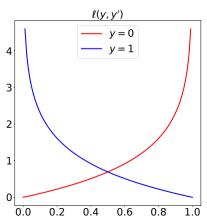


Figure: the logistic function $\phi: t \mapsto 1/(1 + e^{-t})$.

Logistic loss

- ▶ Loss function: logistic loss (also called binary cross entropy)
- ightharpoonup formally, for any y, y',

$$\ell(y, y') = -(1 - y) \log(1 - y') - y \log y'.$$



Logistic regression

- ▶ finally, logistic regression = empirical risk minimization with the logistic loss
- ▶ that is, minimize for $w \in \mathbb{R}^d$

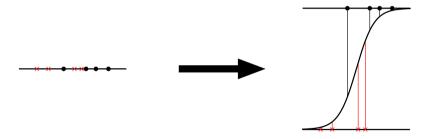
$$\hat{\mathcal{R}}(w) = \sum_{i=1}^n \left\{ -(1-y_i)\log(1-\phi(w^\top x_i)) - y_i\log\phi(w^\top x_i) \right\}.$$

- ▶ Remark (i): equivalent to maximum likelihood for a certain prior distribution
- Remark (ii): not so easy to optimize, at least simple expression for the gradient:

$$\forall j \in [d], \qquad \frac{\partial \hat{\mathcal{R}}(w)}{\partial w_j} = -\sum_{i=1}^n (y_i - \phi(w^\top x_i)) x_{i,j}.$$

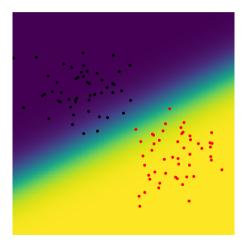
Logistic regression in dimension 1

Example: in dimension one:



Logistic regression in dimension 2

Example: in dimension two:



Recap

- ▶ What happens when we call sklearn.linear_model.LogisticRegression?
- ightharpoonup penalty is $\ell_2 o ext{there is regularization by default!}$ (not much though, C=1)
- fit_intercept is True
- solver is liblinear which uses coordinate descent
- or lbfgs (limited memory Broyden-Fletcher-Goldfarb-Shanno⁸⁶, 1989)
- not that important: variant of gradient descent

⁸⁶Liu, Nocedal, *On the limited memory method for large scale optimization*, Mathematical Programming B

TCAV step 1: examples

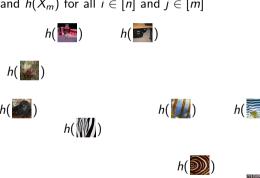
▶ a **concept** is encoded as a set of *n* images c_1, \ldots, c_n :

 \blacktriangleright these images will be confronted to m images X_1, \ldots, X_m chosen randomly in the train

Remark: typical values are n = m = 20

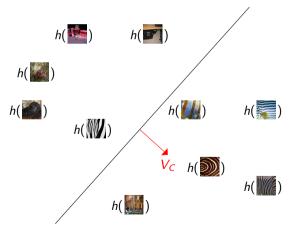
CAV step 2: latent representation

- **Reminder:** we decompose $f = g \circ h$
- ▶ we compute $h(c_i)$ and $h(X_m)$ for all $i \in [n]$ and $j \in [m]$



CAV step 3: linear classifier

- ▶ train a linear classifier (concept = positive class)
- $ightharpoonup V_C =$ normal vector to the separating hyperplane



CAV step 4: gradient computation

now we consider a particular example for which we want to measure concept activation:

$$\xi =$$

we compute the **gradient of the output with respect to the latent representation:**

$$\nabla_{h(\xi)}g = \left(\frac{\partial g(y)}{\partial y_j}\Big|_{y=h(\xi)}\right)_{j\in[d]} \in \mathbb{R}^d.$$

Intuition: measures influence of each latent feature on the prediction

CAV step 5: compute the score

Definition:

$$S_C(\xi) := \langle \nabla_{h(\xi)} g, V_C \rangle$$
.

- ▶ **Intuition:** *S_C* encodes how much the concept is *activated* by the example in the considered layer
- Examples:

$$\xi =$$
 \Rightarrow $S_C(\xi) = 0.98$.

$$\xi =$$
 \Rightarrow $S_C(\xi) = -0.07$.

Testing with CAVs

- let k be a class label and \mathcal{X}_k the set of inputs with that label
- we can compute scores across entire classes of inputs:

$$\mathsf{TCAV}_k := rac{|x \in \mathcal{X}_k : \mathcal{S}(x) > 0|}{|\mathcal{X}_k|} \in [0,1]\,.$$

- ▶ **Intuition:** fraction of *k*-class inputs whose activation vector is positively influenced by concept *C*
- Remark: dependency on the random examples
- ► Kim et al. suggest to run the experiment 500 times
- ▶ then perform two-sided *t*-test, with null hypothesis = $\{TCAV = 0.5\}$

Reminder: statistical testing

- ▶ Informal definition: decide whether the observations agree with our model
- \blacktriangleright initial research hypothesis: nothing interesting happens, e.g., TCAV = 0.5
- ▶ Other example: efficiency of a drug, initial hypothesis = no effect
- formally, we work in a statistical model

$$\mathcal{P} = \{P_{\theta} \text{ s.t. } \theta \in \Theta\},$$

and **split** Θ in two *disjoint* subsets Θ_0 and Θ_1

- **Remark:** we do not require $\Theta_0 \cup \Theta_1 = \Theta$
- we define
 - ▶ $H_0: \theta \in \Theta_0$ the null hypothesis
 - ▶ and $H_1: \theta \in \Theta_1$ the alternative hypothesis
- ▶ given realization of $X \sim P_{\theta}$, we want to decide whether H_0 or H_1 holds

Reminder: statistical testing

Definition: we call *test* of H_0 versus H_1 any function ϕ with values in $\{0,1\}$, where ϕ is X-measurable and can depend on Θ_0 and Θ_1 . When $\phi(X)=0$, we conserve H_0 , when $\phi(X)=1$ we *reject* H_0 .

- **Remark:** any test can be written $\phi(X) = \mathbb{1}_{h(X) \in R}$, where h is X-measurable
- we call h the test statistic and R the critical region
- Important: presumed innocent until proven guilty: reject the null only if enough evidence is collected
- \blacktriangleright we have to be conservative in choosing H_0

Type I and II errors, ctd.

- ▶ type I error = wrongly rejecting the null = **false positive**
- ▶ type II error = not rejecting a false null hypothesis = **false negative**

Error types		Null hypothesis is	
Decision		True	False
about	don't reject	correct inference	type II error
		= true negative	= false negative
H ₀	reject	type I error	correct inference
		= false positive	= true positive

- think about testing for a disease:
 - **positive** means sick
 - negative means healthy
- ▶ Important: the situation is not symmetric!, generally we want to control the type II error

Building tests from confidence intervals

- ▶ Idea: from any confidence interval, we can build a test of fit
- ightharpoonup suppose that \hat{C} is a $1-\alpha$ level confidence interval for θ
- then in order to test

$$H_0: \theta = \theta_0$$
 vs $H_1: \theta \neq \theta_0$

we can use the test

$$\phi(X) = \mathbb{1}_{\theta_0 \notin \hat{C}}.$$

- What is the level of that test?
- ▶ let $\theta \in \Theta_0$. By definition

$$egin{aligned} lpha^\star &= \mathbb{P}_{ heta_0} \left(\phi(\mathsf{X}) = 1
ight) \ &= \mathbb{P}_{ heta_0} \left(heta_0
otin \hat{\mathcal{C}}
ight) \ lpha^\star &\leq lpha \end{aligned}$$

One sample Student t-test

- $ightharpoonup X_1, \ldots, X_n$ i.i.d. $\mathcal{N}(\mu, \sigma^2)$, μ and σ unknown
- we want to test

$${\cal H}_0: \mu=\mu_0 \quad {
m vs} \quad {\cal H}_1: \mu
eq \mu_0 \, .$$

Claim:

$$T = rac{\overline{x}_n - \mu}{\hat{\sigma}_n / \sqrt{n}} \sim \mathcal{T}_{n-1} \,,$$

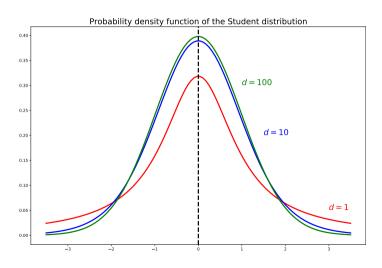
where \mathcal{T}_{n-1} is the **Student's law** with n-1 degrees of freedom

▶ for any given $\alpha \in (0,1)$, we obtained the $1-\alpha$ level confidence interval for μ

$$\hat{C}_{1-\alpha} = \left[\hat{\mu}_{1,n} - z_{\alpha/2,n-1} \frac{\hat{\sigma}_n}{\sqrt{n}}, \hat{\mu}_{1,n} + z_{\alpha/2,n-1} \frac{\hat{\sigma}_n}{\sqrt{n}}\right]$$

ightharpoonup \Rightarrow the test $\phi(X) = \mathbb{1}_{\mu_0 \notin \hat{\mathcal{C}}_{1-\alpha}}$ has level α

Student distribution



Conclusion

Summary:

- given annotated examples, TCAV provides class-concept association
- ightharpoonup quantitatively, for each example, gives a **score** S_C
- ightharpoonup > 0 if the concept is active, < 0 otherwise
- for a set of examples, an agglomerated score TCAV
- ightharpoonup > 0.5 if positive influence, < 0.5 otherwise
- ▶ influential work, many extensions
- ▶ also used as a ranking tool in other unrelated methods (concrete example in the next section)