Theory of Machine Learning

Exercise sheet 7 — Session 7

Exercise I (On some inequalities) . The objective of this exercise is to prove some classical bounds of probability theory.

1. (Markov's inequality) Given a non-negative random variable X, show that:

$$\forall t > 0, \qquad \mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$$

(Hint: any real number x can be represented as $x = x \mathbb{1}_{x < t} + x \mathbb{1}_{x > t}$.)

2. (Chebyshev's inequality) Given an integrable random variable X with expected value μ and variance σ^2 , show that:

$$\forall t > 0, \qquad \mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}.$$

(Hint: apply Markov's inequality to the random variable $(X - \mu)^2$.)

3. (Generic Chernoff bound) Given a random variable X, show that:

(a) Given t > 0 and $a \in \mathbb{R}$:

$$\mathbb{P}(X \ge a) = \mathbb{P}(\exp(tX) \ge \exp(ta)).$$

(b) Given $a \in \mathbb{R}$:

$$\mathbb{P}\left(X \geq a\right) \leq \inf_{t>0} \mathbb{E}\left[\exp\left(tX\right)\right] \exp\left(-ta\right)$$

(Hint: apply Markov's inequality)

Exercise II (On the Gaussian tails) \mathcal{E} . In this exercise, we want to compute some bounds on the Gaussian tails of a random variable $X \sim \mathcal{N}(0,1)$.

- 1. Chernoff bound on the Gaussian tail:
 - (a) Given t > 0, show that $\mathbb{E}\left[\exp\left(tX\right)\right] = \exp\left(\frac{t^2}{2}\right)$.
 - (b) Using Question 3.b. of Exercise II, show that $\mathbb{P}(X \geq a) \leq \inf_{t>0} \exp\left(\frac{t^2}{2} ta\right)$ with $a \in \mathbb{R}$.
 - (c) Minimize in t > 0, the following polynomial $t \mapsto \frac{t^2}{2} ta$ with $a \in \mathbb{R}$.
 - (d) Show that $\mathbb{P}(X \ge a) \le \exp(-a^2/2)$ with $a \in \mathbb{R}$.
- 2. Better bound on the Gaussian tail:
 - (a) Given a > 0, show that:

$$\frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \exp\left(-x^2/2\right) dx = \int_{0}^{\infty} \exp\left(-a^2/2\right) \exp\left(-ay\right) \exp\left(-y^2/2\right) dy.$$

(Hint: make the change of variable x = a + y.)

(b) Given a > 0, show that:

$$\int_0^\infty \exp\left(-a^2/2\right) \exp\left(-ay\right) \exp\left(-y^2/2\right) dy \le \frac{1}{\sqrt{2\pi}} \exp\left(-a^2/2\right) \int_0^\infty \exp\left(-ay\right) dy.$$

(c) Given a > 0, show that:

$$\int_0^\infty \exp\left(-ay\right) \, dy = \frac{1}{a} \, .$$

(d) Finally, given that $\mathbb{P}(X \geq a) = \frac{1}{\sqrt{2\pi}} \int_a^{\infty} \exp(-x^2/2) dx$, show that:

$$\forall a \ge 1, \qquad \mathbb{P}(X \ge a) \le \frac{1}{\sqrt{2\pi}} \exp(-a^2/2)$$
.

Exercise III (On Gaussian vectors) \mathscr{E} . Let X be a Gaussian random variable $\mathcal{N}(0,1)$ and Z be a uniformly distributed random variable on $\{-1,1\}$ independent of X.

1. Show that ZX is a Gaussian random variable.

(Hint: A random variable X is gaussian if for every continuous and bounded function h: $\mathbb{R} \to \mathbb{R}$, we have: $\mathbb{E}[h(X)] = \int_{\mathbb{R}} h(x)f(x) dx$ with f the gaussian density.)

2. Show that the vector (X, ZX) is not a Gaussian vector.

(Hint: A random vector $(X_1, \ldots, X_d) \in \mathbb{R}^d$ is said to be a Gaussian vector if any linear combination of its components is a Gaussian random variable, i.e.: for all $\alpha_1, \ldots, \alpha_d \in \mathbb{R}$, $\alpha_1 X_1 + \cdots + \alpha_d X_d$ is a gaussian random variable.)

- 3. Compute the covariance Cov(X, XZ).
- 4. Sample n = 1000 Gaussian vector $(X_1, X_2) \sim \mathcal{N}(0, \mathbf{I}_2)$ and plot it in 2D.
- 5. Sample n = 1000 random vector (X, ZX) and plot it in 2D. Compare it to the previous plot. What do you observe?

Exercise IV (Expected empirical risk) \mathscr{E} . Assume that $Y = \Phi \theta^* + \varepsilon$ where ε is centered and the ε_i s are independent, and have common variance σ^2 (assumptions I and II in the lecture).

1. Show that

$$\widehat{R}(\widehat{\theta}) = \frac{1}{n} \left\| \Pi \varepsilon \right\|^2 \,,$$

where $\Pi := \mathbf{I} - \Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top} \in \mathbb{R}^{n \times n}$.

2. Show that

$$\mathbb{E}\left[\widehat{R}(\widehat{\theta})\right] = \frac{n-d}{n}\sigma^2.$$

Hint: $\Pi := \mathbf{I} - \Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top} \in \mathbb{R}^{n \times n}$ is an orthogonal projection matrix.