Theory of Machine Learning

Exercise sheet 6 — Session 6

Exercise I (checking the maths) \square . In this exercise, we want to illustrate the decomposition of the ridge excess risk which we obtained in the lecture slide 87. Consider vector-valued inputs and real-valued outputs $(\mathcal{X} = \mathbb{R}^d \text{ and } \mathcal{Y} = \mathbb{R})$ with $X := (X_1, \dots, X_n)^\top \in \mathbb{R}^{n \times d}$ the input vector and $Y := (Y_1, \dots, Y_n)^\top \in \mathbb{R}^n$ the response vector. Let $\phi(x) = (x_1, \dots, x_d)^\top$ and $\Phi \in \mathbb{R}^{n \times d}$ the matrix of inputs with row i defined as $\Phi_{i,:} := \phi(X_i)^\top$. We work in the fixed design setting where for a fixed input $X \in \mathbb{R}^{n \times d}$, the output is $Y = \Phi\theta^* + \varepsilon$ (ε i.i.d. $\mathcal{N}(0, \sigma^2)$) and $\theta^* \in \mathbb{R}^d$.

We set n=100 and d=10, and fix θ^* to an arbitrary value. We take i.i.d. $\mathcal{N}\left(0,\sigma^2\right)$ noise with small σ .

1. code a function which for any given X, Y and $\lambda > 0$ return the ridge regressor:

$$\hat{\theta}_{\lambda} = \frac{1}{n} (\widehat{\Sigma} + \lambda \mathbf{I}_d)^{-1} \Phi^{\top} Y.$$

2. code a function which estimates the excess risk for a given $\hat{\theta}_{\lambda}$ defined as:

$$\mathcal{R}(\hat{\theta}_{\lambda}) - \mathcal{R}^{\star} = \mathbb{E}_{\varepsilon} \left[\frac{1}{n} \left\| Y - \Phi \hat{\theta}_{\lambda} \right\|_{2}^{2} \right] - \sigma^{2}.$$

- 3. Sample uniform training data points X in $[0,1]^d$ and outputs Y according to our assumptions.
- 4. Make a big loop on λ . For each λ , compute an estimate of excess risk $\mathcal{R}(\hat{\theta}_{\lambda}) \mathcal{R}^*$. What do you observe when you plot the estimated excess risk as a function of lambda? *Hint:* the range of λ depends on your problem, beware not to over/undershoot. Bonus: repeat the experiment several times for each lambda to get error bars.
- 5. Compute the theoretical bias, variance, and theoretical excess risk as done in the lecture slide 87.
 - (a) Compute the theoretical bias b_{λ} :

$$b_{\lambda} = \lambda^{2} (\theta^{\star})^{\top} (\widehat{\Sigma} + \lambda \mathbf{I}_{d})^{-2} \widehat{\Sigma} \theta^{\star}.$$

(b) Compute the theoretical variance v_{λ} :

$$v_{\lambda} = \frac{\sigma^2}{n} \operatorname{trace} \left(\widehat{\Sigma}^2 (\widehat{\Sigma} + \lambda \mathbf{I}_d)^{-2} \right).$$

(c) Compute the theoretical excess risk $\mathbb{E}\left[\mathcal{R}(\hat{\theta}_{\lambda})\right] - \mathcal{R}^{\star}$:

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta}_{\lambda})\right] - \mathcal{R}^{\star} = b_{\lambda} + v_{\lambda}.$$

- (d) Add them on the previous plot. What do you observe?
- 6. Add a vertical line corresponding to $\lambda^* := \frac{\sigma \operatorname{trace}(\widehat{\Sigma})^{1/2}}{\|\theta^*\|\sqrt{n}}$. Is it the best regularization hyperparameter?

Exercise II (shrinkage) ${\bf \mathscr{E}}$. Assume that n>d. Set $\Phi=U\Sigma V^{\top}$ the singular value decomposition of Φ , and σ_1,\ldots,σ_d the singular values (which we assume to be positive).

1. Show that, with this notation, the least squares predictions are given by

$$\Phi \hat{\theta} = U J_d U^{\top} Y ,$$

where $J_d = \text{diag}(1, \dots, 1, 0, \dots, 0)$ is the $n \times n$ diagonal matrix with d leading 1s on the diagonal.

2. Show that the ridge regression predictions are given by

$$\Phi \hat{\theta}_{\lambda} = \sum_{j=1}^{d} \frac{\sigma_{j}^{2}}{\sigma_{j}^{2} + \lambda} U_{:,j} U_{:,j}^{\top} Y.$$

3. Ridge regression is sometimes classified among the "shrinkage" methods. Explain why.

Exercise III (Expected empirical risk) \mathscr{E} . Assume that $Y = \Phi \theta^* + \varepsilon$ where ε is centered and the ε_i s are independent, and have common variance σ^2 (assumptions I and II in the lecture).

1. Show that

$$\widehat{R}(\widehat{\theta}) = \frac{1}{n} \left\| \Pi \varepsilon \right\|^2 \,,$$

where $\Pi := \mathbf{I} - \Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top} \in \mathbb{R}^{n \times n}$.

2. Show that

$$\mathbb{E}\left[\widehat{R}(\widehat{\theta})\right] = \frac{n-d}{n}\sigma^2.$$

Hint: $\Pi := \mathbf{I} - \Phi(\Phi^{\top}\Phi)^{-1}\Phi^{\top} \in \mathbb{R}^{n \times n}$ is an orthogonal projection matrix.