
Theory of Machine Learning

Exercise sheet 5 — Session 5

Exercise I (degrees of freedom) Ò. As in the lecture, let us set δ := trace
(
Σ̂2(Σ̂ + λ I)−2

)
.

Let µ1, . . . , µd be the eigenvalues of Σ̂.

1. Show that, for any µ, λ > 0, (µ+ λ)−2µλ ≤ 1/2.

2. Deduce from the previous question the following factoid used in the lecture: all eigenvalues
of λ(Σ̂ + λ I)−2Σ̂ are smaller than 1/2.

3. Show that δ can be written
d∑

j=1

µ2
j

(µj + λ)2
.

4. What do you think of the following statement: “the degrees of freedom provides a soft count
of the number of eigenvalues that are larger than λ.”

Exercise II (shrinkage) Ò. Assume that n > d. Set Φ = UΣV ⊤ the singular value decompo-
sition of Φ, and σ1, . . . , σd the singular values (which we assume to be positive).

1. Show that, with this notation, the least squares predictions are given by

Φθ̂ = UJdU
⊤Y ,

where Jd = diag (1, . . . , 1, 0, . . . , 0) is the n × n diagonal matrix with d leading 1s on the
diagonal.

2. Show that the ridge regression predictions are given by

Φθ̂λ =

d∑
j=1

σ2
j

σ2
j + λ

U:,jU
⊤
:,jY .

3. Ridge regression is sometimes classified among the “shrinkage” methods. Explain why.

Exercise III (Expected empirical risk) Ò. Assume that Y = Φθ⋆ + ε where ε is centered
and the εis are independent, and have common variance σ2 (assumptions I and II in the lecture).

1. Show that

R̂(θ̂) =
1

n
∥Πε∥2 ,

where Π := I−Φ(Φ⊤Φ)−1Φ⊤ ∈ Rn×n.

2. Show that

E
[
R̂(θ̂)

]
=

n− d

n
σ2 .

Hint: Π := I−Φ(Φ⊤Φ)−1Φ⊤ ∈ Rn×n is an orthogonal projection matrix.

Exercise IV (checking the maths) §. In this exercise, we want to illustrate the decompo-
sition of the ridge excess risk which we obtained in the lecture. We set n = 100 and d = 10, φ =
identity, and fix θ⋆ to an arbitrary value. We take i.i.d. N

(
0, σ2

)
noise with small σ.

1. code functions which for any given xis, yis and λ > 0 return the ridge regressor θ̂λ.

2. code a function which estimates the excess risk for a given θ̂λ.



3. Make a big loop on λ. For each λ, generate uniform training data in [0, 1] and outputs
according to our assumptions. Use the previous functions to plot the estimated excess risk
as a function of λ. What do you observe? Hint: the range of λ depends on your problem,
beware not to over/undershoot. Bonus: generate several sets of test points to get error bars.

4. Compute the theoretical bias, variance, and theoretical excess risk. Add them on the previ-
ous plot. What do you observe?

5. Add a vertical line corresponding to λ⋆. Is it the best regularization hyperparameter?


