
6.5. Anchors

153

Notation and first definitions
▶ Back to text: ξ = document to explain = ordered sequence of tokens (ξ1, . . . , ξT), f =

classifier

Definition: we define an anchor A as an ordered subset of the words of ξ. We let A be
the set of all possible non-empty anchors.

▶ two key definitions:
1. precision = probability of same classification knowing that the document contains A
2. coverage = how many documents in the dataset contain A

▶ one-sentence summary: find anchor with prescribed precision and maximal coverage

The selection on the

menu is great, and so

is the food! The

service is not bad,

prices are fine.

=⇒ Prec(A) = 0.97
Cov(A) = 0.12

154

How precision is computed

▶ Formal definition:
Prec(A) ··= PA (f (X) = f (ξ)) ,

where X is a random perturbation of ξ containing all words in A
▶ Question: what is the distribution of “X given A” in this definition?

▶ default implementation: i.i.d. Bernoulli for each word not in A to decide removal, replace
by UNK token if removed (more on that later)

▶ generative model: for instance, using BERT49 to generate the missing words,...
▶ deterministic replacements: get word embedding and replace by word having similar

embeddings,50...

49Devlin, Chang, Lee, Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding, Proc. ACL, 2019

50Ribeiro, Singh, Guestrin, “Why should I trust you?” Explaining the prediction of any classifier, ACM
SIGKDD, 2016

155

Sampling mechanism

156

Sampling mechanism

157

Sampling mechanism

158

Estimating Prec(A)

▶ wlog, one can assume that f (ξ) = 1
▶ thus

Prec(A) ··= PA (f (X) = 1) .
▶ Remark: of course, impossible to compute in practice (too costly with UNK replacement,

worse with BERT)
▶ Solution: Monte-Carlo estimate:

P̂recn(A) ··=
1
n

n∑
i=1

1f (Xi)=1 ,

where Xi i.i.d. draw from X
▶ in practice, n = 10

159

Coverage

▶ Formal definition: let C be a given set of documents. For any anchor A, we define

Cov(A) ··= |{δ ∈ C s.t. ∀w ∈ A,w ∈ δ}| .

▶ Remark: in practice, shorter anchors have higher coverage
▶ Why? think one common word: contain in many documents
▶ in the other direction, whole sentence → only contained in one document
▶ since Cov(A) costly to compute, Anchors minimizes |A| instead of maximizing Cov(A)

160

Summary

▶ let ε > 0 be some tolerance threshold (by default, ε = 0.05)
▶ What is described originally:

Maximize
A∈A

Cov(A) subject to Prec(A) ≥ 1 − ε .

▶ What the actual goal is:

Minimize
A∈A

|A| subject to P̂recn(A) ≥ 1 − ε . (⋆)

▶ Additional caveat: if ξ has length b, |A| = 2b...
▶ What is done in practice: use KL-UCB51 to approximately solve (⋆)

51Kaufmann and Kalyanakrishnnan, Information complexity in bandit subset selection, COLT, 2013
161

Visualizing (⋆)

0 1 2 3 4 5 6 7 8 9 10
|A|

0.0

0.2

0.4

0.6

0.8

1.0

p(
A)

b

1− ε

Figure: all anchors for a given example / classifier represented in the |A| / p(A) = Prec(A)
space 162

Visualizing (⋆)

0 1 2 3 4 5 6 7 8 9 10
|A|

0.0

0.2

0.4

0.6

0.8

1.0

p(
A)

b

1− ε

p
1(ε)

Figure: selecting Ap
1(ε), set of all anchors with evaluation higher than 1 − ε

163

Visualizing (⋆)

0 1 2 3 4 5 6 7 8 9 10
|A|

0.0

0.2

0.4

0.6

0.8

1.0

p(
A)

b

1− ε

p
1(ε)

p
2(ε)

Figure: selecting Ap
2(ε), anchors with p(A) ≥ 1 − ε and minimal length

164

Visualizing (⋆)

0 1 2 3 4 5 6 7 8 9 10
|A|

0.0

0.2

0.4

0.6

0.8

1.0

p(
A)

b

1− ε

p
1(ε)

p
2(ε)

p
3(ε)

Figure: selecting Ap
3(ε), anchors with p(A) ≥ 1 − ε, minimal length, and maximal p(A)

165

Summary

▶ Anchors = rule selection via random perturbation
▶ interpretable features = subset of the words
▶ post-hoc, local method
▶ local rules have a global flavor
▶ very costly to run
▶ version for other data-types exist52

▶ some theoretical analysis (indicator and linear models)53

52https://github.com/marcotcr/anchor
53Lopardo, Precioso, Garreau, A sea of words: an in-depth analysis of Anchors for text data, AISTATS, 2023

166

https://github.com/marcotcr/anchor

6.6. A game-theoretical perspective

167

Shapley values
▶ Setting: D-player game54

▶ characteristic function v : 2D → R, gives the value of a coalition S
▶ total sum of gains the members of S can obtain by cooperation
▶ Idea: distribute fairly the total gains to the players, assuming that they all contribute

Definition: Shapley value of player j :

ϕj(v) =
∑

S⊆[D]\{j}

|S|!(D − |S| − 1)!
D! (v(S ∪ {j}) − v(S)) .

▶ Intuition: if player j plays much better than the others, then v(S ∪ {j}) consistently
higher than v(S), and ϕj(v) ≫ 0

54Shapley, A value for n-person game, Contributions to the theory of games, 1953
168

Properties

▶ Shapley values have nice theoretical properties:
▶ efficiency: sum of Shapley values = gain of the whole coalition:∑

j

ϕj(v) = v([D]) .

▶ symmetry: players with the same skills are rewarded equally:

∀S ⊆ [D], v(S ∪ {j}) = v(S ∪ {k}) ⇒ ϕj(v) = ϕk(v) .

▶ linearity: v and w two characteristic functions, then

∀j ∈ [D], ϕj(v + w) = ϕj(v) + ϕj(w) .

▶ null player: a player that does not bring anything is not rewarded:

∀j ∈ [D], v(S ∪ {j}) = v(S) ⇒ ϕj(v) = 0 .

169

Shapley values, ctd.

▶ other nice properties:
▶ anonymity
▶ standalone test
▶ ...

▶ more interestingly:

Theorem:55 Shapley values are the only payment rule satisfying efficiency, symmetry,
linearity, and null player.

▶ Question: connection with interpretability?
▶ we can see f as the reward and a subset of features as the player

55ibid
170

Shapley regression values

▶ Example: linear model
▶ for each subset of features S ⊆ [D], retrain a model fS only using the features in S

Definition:56 the Shapley regression value associated to feature j is given by

ϕj ··=
∑

S⊆[D]\{j}

|S|!(D − |S| − 1)!
D!

(
fS∪{j}(ξS∪{j}) − fS(ξS)

)
,

where ξS is the restriction of ξ to S features.

56Lipovetsky and Conklin, Analysis of regression in game theory approach, Applied Stochastic Models in
business and industry, 2001

171

Shapley regression values
▶ Example: output for linear regressor on Boston housing dataset

CRIM ZN INDUSCHAS NOX RM AGE DIS RAD TAXPTRATIO B LSTAT

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

172

Shapley sampling values

▶ several problems with this approach:
▶ computational cost = O

(
2D)

▶ retraining the model each time
▶ a first solution: Shapley sampling values57

▶ subsample in the sum over all subsets
▶ instead of retraining the model, mimic the removal a variables by randomly sampling over

the training set
▶ in other words, replace fS(ξS) by

E [f (x) | xS = ξS] .

▶ f can now be any model, provided we can estimate this last quantity efficiently

57Štrumbelj and Kononenko, Eplaining models and individual predictions with feature contributions,
Knowledge and information systems, 2014

173

Kernel SHAP

▶ still very costly to test all the coalitions
▶ Idea: linear regression on the presence / absence of features
▶ as before, define interpretable features z ∈ {0, 1}d , with d ≤ D
▶ hξ : {0, 1}d → RD mapping function such that hξ(1) = ξ

Definition (kernel SHAP)58: define ϕ as the minimizer of∑
z∈{0,1}d

d − 1(d
|z|
)

· |z | · (d − |z |)

(
f (h−1

ξ (z)) − ϕ⊤z
)2

.

58Lundberg and Lee, A Unified Approach to Interpreting Model Predictions, NeurIPS, 2017
174

Kernel SHAP

▶ can be seen weighted linear regression
▶ computational cost: O

(
2d + d3)

▶ Remark: not practical if d ≫ 1
▶ in that case, subsample: z1, . . . , zn i.i.d. Bernoulli ∈ {0, 1}d and minimize for ϕ ∈ Rd

n∑
i=1

πi ·
(

f (h−1
ξ (zi)) − ϕ⊤zi

)2
,

with
πi ··=

d − 1(d
|zi |
)

· |zi | · (d − |zi |)
.

▶ Remark: very similar to LIME

175

Kernel SHAP, tabular example
▶ Example: interpreting a linear model on the Boston dataset:

CRIM ZN INDUSCHAS NOX RM AGE DIS RAD TAXPTRATIO B LSTAT
2

1

0

1

2

176

Kernel SHAP, tabular example
▶ we can also use the shap Python package
▶ really nice visualizations:

177

Extensions
▶ Kernel SHAP is not restricted to tabular data
▶ Example: explaining the predictions of VGG16 for two classes

178

Summary

▶ Kernel SHAP can be used on any model
▶ specialized versions for specific architectures:

▶ TreeSHAP59 (tree-based predictors)
▶ DeepSHAP (DeepLIFT60 + Shapley values)

Inconvenients:
▶ costly to run61

▶ not easy to read if many features

59Lundberg et al., Consistent individualized feature attribution for tree ensembles, arxiv, 2018
60Shrikumar et al., Learning important features through propagating activation differences, ICML, 2017
61improving the efficiency is work in progress, e.g., Covert and Lee, Improving KernelSHAP: Practical Shapley

Value Estimation via Linear Regression, AISTATS, 2021
179

7. Gradient-based approaches

180

7.1. Model agnostic methods

181

Introduction

▶ General idea: machine learning model = complicated function of the inputs
▶ approximate this function by a first order approximation

Theorem (Taylor, order one): let f be differentiable in the neighborhood of ξ ∈ RD .
Then

f (x) = f (ξ) + ∇f (ξ)⊤(x − ξ) + o (∥x − ξ∥) ,

where ∇f (ξ) is the gradient of f at ξ.

▶ Reminder: gradient = vector of RD defined by

∀1 ≤ j ≤ D, (∇f (ξ))j = ∂f (x)
∂xj

∣∣∣∣
x=ξ

.

182

Gradient explanation

▶ Simple idea: take the gradient of the function to explain at the point of interest:

ϕj = (∇f (ξ))j = ∂

∂xj
f (x)

∣∣∣∣
x=ξ

.

▶ generally referred to as gradient explanation62, sensivity map, or saliency map
▶ Intuition: tells us how much a change in each input dimension would change the the

prediction in a small neighborhood around ξ
▶ computational cost = O (1) if the model is “PyTorch-compatible”
▶ Remark: in this talk, one evaluation of the model costs O (1)
▶ Beware: gradient with respect to the input, not the parameters!

62Baehrens et al., How to Explain Individual Classification Decisions, JMLR, 2010
183

In low dimensions
▶ Example: linear approximation in dimension 1:

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

x f() + f() (x)

x f(x)

184

Linear model
▶ Usual question: what happens for a linear model?
▶ that is, f (x) ··=

∑d
k=1 λkxk

▶ in that case, simple answer:

∂f (x)
∂xj

= ∂

∂xj

d∑
k=1

λkxk

=
d∑

k=1

∂

∂xj
λkxk

∂f (x)
∂xj

= λj .

▶ we retrieve the coefficients of the model:

ϕj = λj .

185

Gradient explanation for images
▶ in this context, particular instance of saliency maps63

▶ input variables = pixel values
▶ each pixel has typically 3 channels
▶ when taking gradient with respect to input, pixel ξ(i,j) is attributed

(∇f (ξ))(i,j) =
(

∂f
∂x(i,j),red

(ξ), ∂f
∂x(i,j),green

(ξ), ∂f
∂x(i,j),blue

(ξ)
)⊤

∈ R3 .

▶ Question: how to visualize this as a heatmap?
▶ typical to display the maximum

max
(

∂f
∂x(i,j),red

(ξ), ∂f
∂x(i,j),green

(ξ), ∂f
∂x(i,j),blue

(ξ)
)
.

63Simonyan, Vedaldi, Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps, preprint, 2013

186

Gradient explanation for images

▶ Example: image classification on ILSVRC with InceptionV3:

predicted: quail (22.6%) gradient explanation

▶ quite noisy, but we can see that the network is using the relevant part of the image
▶ also possible to look at positive and negative influence

187

Issues with the gradient

▶ Main issue with score functions of deep neural net: can be quite irregular at small scale
▶ Example: gradient fluctuations between similar images64

▶ ⇒ purely gradient-based explanations can be quite noisy

64Smilkov et al., SmoothGrad: removing noise by adding noise, arxiv, 2017
188

Gradient times input

▶ many works trying to address this issue
▶ First idea: gradient times input65

▶ namely, partial derivatives multiplied by feature values

ϕj = (ξ ⊙ ∇f (ξ))j = ξj · ∂f (ξ)
∂xj

.

▶ Intuition: smoother explanations
▶ computational cost = O (D)
▶ for a linear model:

f (x) =
D∑

j=1
λjxj + b ⇒ ϕj = λjξj .

65Shrikumar et al., Not just a black box: Learning important features through propagating activation
differences, ICML, 2016

189

Gradient times input for images

▶ Example: image classification on ILSVRC with InceptionV3

predicted: quail (22.6%) gradient times input

▶ much smoother, as promised
▶ still difficult to read in some cases

190

SmoothGrad

▶ another effort in this direction: SmoothGrad66

▶ Idea: average local fluctuations
▶ → sample many gradients in the surrounding and take the mean
▶ namely,

∀j ∈ [D], ϕj ··=
1
n

n∑
i=1

(∇f (ξ + εi))j ,

where εi i.i.d. N
(
0, σ2 Id

)
▶ Smilkov recommends taking σ as 10 − 20% of input range (see next slide)
▶ Intuition: adding noise is equivalent to regularization67

66Smilkov et al., SmoothGrad: removing noise by adding noise, arxiv, 2017
67Bishop, Training with noise is equivalent to Tikhonov regularization, Neural Computation, 1995

191

SmoothGrad, influence of σ

▶ Figure: SmoothGrad with σ as percentage of the range

192

SmoothGrad, behavior for large n
▶ when n → +∞, according to SLLN:

ϕj
a.s.−→ E

[
∂f
∂xj

(ξ + ε)
]
,

where ε ∼ N
(
0, σ2 I

)
▶ set g ··= ∂f

∂xj

▶ let us assume that f is “nice” around ξ:

g(ξ + ε) ≈ g(ξ) + ε⊤∇g(ξ) .

▶ taking expectation in the previous display yields

E [g(ξ + ε)] ≈ g(ξ) + E
[
ε⊤∇g(ξ)

]
≈ g(ξ) = ∂f

∂xj
(ξ) .

▶ we recover (approximately) the gradient
193

Integrated gradients

▶ Another idea:68 average gradients between given reference and point of interest
▶ formally, if ξ0 is a reference image,

ϕ = (ξ − ξ0) ⊙
∫ 1

0

∂f (ξ0 + α(ξ − ξ0))
∂ξ

dα .

▶ of course, we have no way to compute the previous integral
▶ Monte-Carlo approximation:∫ 1

0

∂f (ξ0 + α(ξ − ξ0))
∂ξ

dα ≈ 1
m

m∑
i=1

∂f (ξ0 + i
m (ξ − ξ0))
∂ξ

.

▶ computational cost = O (mD) (m = 20 gives good results)

68Sundararajan et al., Axiomatic attribution for deep networks, ICML 2017
194

Integrated gradients, ctd.

▶ Example: image classif. on ILSVRC with InceptionV3, reference image = 0

predicted: quail (22.6%) integrated gradients

▶ usually less “visual diffusion”
▶ main critic: similar to an edge detector69

69Adebayo et al., Sanity checks for saliency maps, NeurIPS 2018
195

Integrated gradients meets linear model

▶ Question: what happens for a linear model?
▶ recall: f (x) =

∑d
k=1 λkxk

▶ in that case:

ϕj = (ξj − ξ0,j) ·
∫ 1

0

∂f (ξ0 + α(ξ − ξ0))
∂ξj

dα

= (ξj − ξ0,j) ·
∫ 1

0

∂

∂ξj
(λj(ξ0,j + α(ξj − ξ0,j)))dα

= (ξj − ξ0,j) ·
∫ 1

0
λjαdα

ϕj = 1
2 (ξj − ξ0,j)λj .

▶ up to constants, we recover gradient × input

196

