
Introduction to Informatics
for Students from all Faculties

Prof. Dr. Ingo Scholtes
Chair of Machine Learning for Complex Networks

Center for Artificial Intelligence and Data Science (CAIDAS)
Julius-Maximilians-Universität Würzburg

Würzburg, Germany
ingo.scholtes@uni-wuerzburg.de

Lecture 06
Algorithmic Thinking II

November 26, 2024

Notes:

• Lecture L06: Algorithmic Thinking II 26.11.2024

• Educational objective: We introduce two basic algorithms for the sorting problem and investigate the runtime of
these algorithms. We further discuss basic encryption algorithms and introduce the concept of public-key
cryptography.

– The Sorting Problem
– Recursion and MergeSort
– Encryption Algorithms
– Public-Key Cryptography

• Exercise Sheet 4 due 03.12.2024

Motivation
▶ we considered two simple examples that illustrate how

we can use algorithms to solve problems

▶ we reconsider the pencil-and-paper addition algorithm
and implemented it in python

▶ we motivated the search problem and showed how to
address it with the binary search algorithm

▶ we showed how we can compare the efficiency of
algorithms in terms of their computational complexity

▶ today we continue our introduction to algorithmic
thinking by addressing the following questions

today’s agenda
▶ how can we efficiently sort data?
▶ how can we encrypt data and ensure secure communication?
▶ can we find an efficient algorithm for any problem?

computational complexity of naive search
algorithm vs. binary search algorithm in list

with size n

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 1

Notes:

Sorting problem
▶ binary search algorithm assumes list of objects

is sorted in ascending (or descending) order

▶ to sort objects we must be able to compare
them, i.e. for a pair a, b we must be able to
determine a ≥ b

▶ how can we compare pairs of
▶ numbers,
▶ words,
▶ books,
▶ emojis?

sorting problem

The sorting problem refers to the problem of sorting a list of
pairwise comparable objects in ascending or descending order.

▶ in the following, we consider the sorting
problem for a list of integer numbers

input:
7 2 47 23 5 11

desired output:
2 5 7 11 23 47

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 2

Notes:

BubbleSort algorithm
▶ simple idea: repeatedly compare pairs of numbers and

swap them if they are in the wrong order
▶ with each swap . . .

▶ larger numbers progressively move to right
▶ smaller numbers progressively move to left

▶ in each pass of the algorithm, we must compare all
subsequent pairs of numbers in the list

▶ if we have zero swaps during a pass, we know that the
list is sorted!

▶ in the example, we needed
▶ 4 · 5 = 20 comparisons
▶ 4 + 2 + 1 = 7 swaps

▶ how many comparisons do we need in best/worst case?

third pass

2 7 5 11 23 47
2 7 5 11 23 47

2 7 5 11 23 47
2 5 7 11 23 47

2 5 7 11 23 47
2 5 7 11 23 47

2 5 7 11 23 47
2 5 7 11 23 47

2 5 7 11 23 47
2 5 7 11 23 47

5 comparisons, 1 swap

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 3

Notes:

Worst-case complexity of BubbleSort

worst-case example

For an input list sorted in reverse order BubbleSort algorithm
requires n passes with n − 1 comparisons each.

47 23 11 7 5 2

n = 6

n · (n − 1) = 6 · 5 = 30 comparisons

best-case example

For an input list that is already sorted BubbleSort algorithm
requires a single pass with n − 1 comparisons.

2 7 5 11 23 47

n = 6

n − 1 = 5 comparisons

We call the maximum runtime on any input the worst-case time complexity or worst-case com-
putational complexity of an algorithm.

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 4

Notes:

• for runtime we typically use the term “time complexity” because there are other aspects of “computational
complexity” such as the amount of memory (or disk space) required by an algorithm. This is often called “space
complexity” and the term computational complexity then encompasses both time and space complexity.

Linear vs. polynomial complexity
▶ for input list with n elements, BubbleSort has

worst-case runtime of

n · (n − 1) = n2 − n

i.e. number of required steps grows as second power
(i.e. square) of input size n

▶ we call expressions of the form

ak · nk + ak−1 · nk−1 + . . . a0 · n0

polynomial

▶ for polynomials with power larger than one, runtime
grows over-proportionally with input size

linear vs. polynomial growth of complexity

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 5

Notes:

A divide-and-conquer algorithm
▶ can we sort a list faster than BubbleSort?

▶ assume that we have two already sorted lists
l1 and l2 with n1 and n2 elements respectively

▶ in n = n1 + n2 steps we can merge l1 and l2
into a new sorted list l

▶ we can apply divide-and-conquer idea behind
binary search to sorting

▶ phase 1: repeatedly split input until we are left
with lists with one element (which are already
sorted)

▶ phase 2: repeatedly merge increasingly large
(sorted) lists until full list is sorted

21 7 54 12 1 39 42 9

21 7 54 12 1 39 42 9

21 7 54 12 1 39 42 9

21 7 54 12 1 39 42 9

7 21 12 54 1 39 9 42

7 12 21 54 1 9 39 42

1 7 9 12 21 39 42 54
Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 6

Notes:

MergeSort algorithm
▶ how can we implement MergeSort in python

▶ assume we have a function merge that merges two
sorted lists to a new sorted list

▶ function merge_sort that sorts a list l with n
entries must perform the following steps . . .

1. split list in two equally large lists l1 and l2
2. call itself on l1 and l2
3. merge sorted lists to result

▶ concept of a function calling itself is called
recursion

▶ recursion terminates when list only contains single
(or zero) element (which we call “base case”)

▶ common way to apply divide-and-conquer, i.e.
function calls itself on smaller problem instances

def merge (l 1 : l i s t , l 2 : l i s t) −> l i s t
l = []
. . .
return l

def merge_sort (l : l i s t) −> l i s t
i f len (l) < 2 :

return l
mid = math . f l o o r (len (l) / 2)
l 1 = l [: mid]
l 2 = l [mid :]
l 1 _ s = merge_sort (l 1)
l 2_s = merge_sort (l 2)
l _s = merge (l1_s , l 2_s)
return l _s

python implementation of recursive
MergeSort algorithm

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 7

Notes:

• the term recursion comes from the Latin word “recurro”, which translates to “to come back”

Complexity of MergeSort?
▶ assume that merge_sort requires T (n)

steps for list with n elements

▶ in each step, we run merge_sort on two lists
with half the size and then merge results

▶ each step thus requires

2 · T (n
2)

︸ ︷︷ ︸
recursive calls of merge_sort

+ n︸︷︷︸
merge lists

▶ how often do we need to split until we we are
left with lists with single entry?

▶ like for binary search, we need log2(n) splits
for list with n entries

example: list with n = 128 entries

step number of lists length of each list
0 1 128
1 2 64
2 4 32
3 8 16
4 16 8
5 32 4
6 64 2
7 128 1

for n = 128 we need 7 = log2(128) steps

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 8

Notes:

Complexity of MergeSort?
▶ we found recursive formula for runtime of

MergeSort
T (n) = 2 · T (n

2) + n

▶ for n = 1 we do not split or merge, i.e. for
base case we have

T (1) := 0

▶ we can now recursively calculate . . .
▶ T (2) = 2 · T (1) + 2 = 2
▶ T (4) = 2 · T (2) + 4 = 2 · 2 + 4 = 8
▶ T (8) = 2 · T (4) + 8 = 2 · 8 + 8 = 24
▶ T (16) = 2 · T (8) + 16 = 2 · 24 + 16 = 64
▶ T (32) = 2 · T (16) + 32 = 2 · 64 + 32 = 160

▶ one can solve this recursive formula as
T (n) = n · log2(n)

21 7 54 12 1 39 42 9

21 7 54 12 1 39 42 9

21 7 54 12 1 39 42 9

21 7 54 12 1 39 42 9

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 9

Notes:

Complexity of sorting?
▶ with BubbleSort we can sort n numbers in n − 1 steps

in best case and n · (n − 1) in worst case

▶ MergeSort improves worst-case complexity of
BubbleSort from n2 to n log2(n)

▶ on average MergeSort requires n log2(n) steps

▶ to sort n objects based on pairwise comparisons, there
is no algorithm that requires less than n log2(n) steps
on average

▶ but: there are specialized algorithms to sort n integer
numbers within a known range with linear runtime
→ self-study questions

worst-case complexity of MergeSort vs.
BubbleSort

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 10

Notes:

Practice Session
▶ we implement BubbleSort in python

▶ we implement the recursivce
divide-and-conquer method MergeSort

▶ we investigate the runtime of both algorithms
for increasingly large inputs

practice session

see directory 06-01 in gitlab repository at
→ https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 11

Notes:

Cryptographic algorithms
▶ some of the oldest algorithms in human history are

cryptographic algorithms that facilitate secure
communication

▶ common scenario involves two persons Alice (A) and Bob
(B) that wish to exchange messages via public channel

▶ adversary Carol (C) can intercept and/or manipulate
messages

▶ how can Alice an Bob securely communicate despite
adversary Carol?

Cryptography

Cryptography refers to the practice and study of secure communication in the
presence of adversarial attacks. → Wikipedia

Carol

Alice Bob

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 12

Notes:

A simple encryption algorithm
▶ we assume that Alice and Bob prearranged a shared

secret key (e.g. during a previous secret meeting)

▶ Alice uses key to encrypt message in plaintext and sends
ciphertext to Bob

▶ Bob uses key to decrypt ciphertext and obtains plaintext
▶ any idea for a simple encryption algorithm?

Caesar cipher

▶ secret key is number k between 0 and 25 (alphabet with 26 letters)
▶ each letter in plaintext is replaced by letter found by shifting letter

in alphabet k positions to right
▶ positions larger than 25 are wrapped around to zero

▶ simple substitution cipher allegedly used by Julius
Caesar to send military commands (using k = 3)

Julius Caesar
100 BC – 44 BC

image credit: Ángel M. Felicísimo, Wikimedia Commons, CC-BY-SA

0 1 2 3 4 5 6 7 . . .
a b c d e f g h . . .
d e f g h i j k . . .

Caesar cipher with key k = 3
Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 13

Notes:

Caesar cipher in python
▶ assume that plaintext message is given as list

of characters in python, e.g.
[’h’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’c’, ’a’,
’e’, ’s’, ’a’, ’r’]

▶ simplest approach limited to 26 (lower or
uppercase) letters in alphabet

▶ we can use Caesar cipher to shift any character
based on its underlying binary encoding

▶ use ASCII/Unicode table to map characters to
numbers and vice-versa, e.g. ‘a‘ ↔ 97

▶ in python we can use functions ord (map
character to unicode index) and chr (map
unicode index to character)

plaintext:

hello caesar

cipher text:

khoor fdhvdu

0 1 2 3 4 5 6 7 . . .
a b c d e f g h . . .
d e f g h i j k . . .

Caesar cipher with key k = 3

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 14

Notes:

Practice Session
▶ we implement the Caesar cipher in python

▶ we use it to encrypt and decrypt a message

▶ we investigate the security of the Caesar
cipher and perform a brute-force attack on the
key

practice session

see directory 06-02 in gitlab repository at
→ https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 15

Notes:

A (slightly) better approach
▶ how many different keys do we have in the Caesar

cipher?
▶ for alphabet with length l = 26 we have 26 possible

shifts
▶ for 16-bit unicode we have 216 = 65536 possible shifts
▶ takes less than 1s on common computer

▶ Caesar cipher is extremely easy to break by brute-force
attack that simply tries each possible key

▶ idea: instead of limiting ourselves to shifts, we could
apply arbitrary substitution of characters

▶ secret key = substitution table that gives substitution for
each character in plaintext

▶ how efficient is a brute force attack now?

a b c d e f g h . . .
j t x f z a f k . . .

substitution table

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 16

Notes:

Security of substitution ciphers
▶ how many different permutations do we have for

[’a’, ’b’, ’c’]?

▶ for alphabet with n letters we have
n! := n · (n − 1) · (n − 2) · . . . 2 · 1

possible substitutions

▶ factorial n! can be calculated in recursive fashion
n! = n · (n − 1)!

▶ for 26 letters and assuming we can test 1 billion keys per
second, brute-force attack may take 3.2 billion years

▶ for n = 65, number n! of possible keys is larger than
number of atoms in the universe

▶ is this really secure?

n n!
1 1
2 2
3 6
4 24
5 120
6 720

.
25 1.55 ·1025

26 4.03 ·1026

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 17

Notes:

• It is easy to see that each substitution is just a different sequence of the 26 letters of the alphabet.

• In order to understand in how many different ways we can substitute 26 letters of the alphabet, we thus have to
consider so-called permutations, i.e. the possible ways in which we can arrange those letters.

• Let us consider this for an alphabet with three letters a, b, and c. For the first position, we have three choices (a,
b, c). This choice can be combined with all choice for the second position, however since we already fixed the
first one there are only two choices left. This gives a total of 3 · 2 for the first two positions. Fixing those two
positions also fixes the last one (since we only have three letters), i.e. there is only one choice left and we thus
have a total of 3 · 2 · 1 = 6 possible ways in which we can arrange three letters.

• Using the same reasoning, for four letters we find 4 · 3 · 2 · 1 = 24 different permutations and for the general
case of n letters we have n · (n − 1) · (n − 2) · . . . · 1.

• This number is called the factorial n! of n and it plays an important role in combinatorics. In the table above,
you can see that the factorial grows extremely fast!

• Because of this fast growth, the number of possible keys is so large that a brute-force attack is not efficient.
However, this still does not imply that this simple cipher is secure!

Crpytographic analysis
Carol receives the following cipher text encrypted using substitution method with unknown key

zxuyguxhuexzuzxuyguzvczukluzvgusjglzkxeupvgzvghuzkluexynghukeuzvguokeiuzxuljwwghuzvgu
luceiuchhxpluxwuxjzhc gxjluwxhzjeguxhuzxuzcbgucholuc ckelzuculgcuxwuzhxjyngluceiuytuxd
ugeiuzvgouzxuikguzxulnggduexuoxhguceiuytuculnggduzxulctupgug iuzvguvgchzucrvguceiuzvguzvx. . .

character frequencies in cipher text character frequencies in English texts

apart from brute-force attacks, we can use cryptanalysis to reduce the space of possible keys
Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 18

Notes:

• By simply calculating the frequencies of letters in the cipher text and comparing them to the frequency of
characters in the (known) language of the plaintext, it is often possible to guess a sufficient number of
substitutions to actually decrypt the message. In any case, this reduces the space of possible keys so that we
can break the encryption!

• In our example, it is immediately clear that the character t is the substitution of the most frequent character e.

Vigenère cipher
▶ monoalphabetic substitution is easy to break

using brute-force or frequency analysis

▶ idea: use polyalphabetic substitution that
applies multiple substitutions for same
character

example: key k = 5237

▶ plaintext message = “hello world”
▶ for first character apply Caesar shift with k = 5
▶ for second character apply Caesar shift with k = 23
▶ for third character apply Caesar shift with k = 7
▶ for fourth character apply Caesar shift with k = 5 . . .

▶ proposed by Blaise de Vigenère in 1585

▶ unbreakable if key is as long as the message
(so-called one-time pad)

k a b c d e f g h i . . .
0 a b c d e f g h i . . .
1 b c d e f g h i j . . .
2 c d e f g h i j k . . .
3 d e f g h i j k l . . .
4 e f g h i j k l m . . .
5 f g h i j k l m n . . .
6 g h i j k l m n o . . .
7 h i j k l m n o p . . .
8 i j k l m n o p q . . .
9 j k l m n o p q r . . .

Vigenère table

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 19

Notes:

• Their vulnerability to frequency analyses is a problem of all monoalphabetic substitution methods, i.e. methods
that always replace one letter in the alphabet by another letter.

• We can solve this issue by polyalphabetic substitution methods that use a more sophisticated approach that
replaces the same letter by different letters.

• The so-called Vigenere cipher is an example for such a method. It is based on a table, which lists all possible
Caesar shifts. The idea is then to use a different shift for each character, depending on its position. Which shift is
used for a given character is determined based on a key, which gives the sequence of shift values that are simply
repeated if the message is longer than the key.

• You can see that the Caesar cipher is just a special case of the Vigenere cipher where the key contains only a
single number (which is thus applied to all characters).

• In fact, whenever we repeat the key because the message is longer than the key, we use the same mapping
again, which can again make the method vulnerable to frequency analysis if the message is much longer than
the key. The same holds if we reuse the same key for multiple messages!

• However, if the key is as long as the message and we use the key only once, the Vigenere method is unbreakable
(and it is thus still used today in the so-called one-time pad encryption).

Frequency analyis?
Carol receives the following cipher text encrypted using Vigenère encryption with unknown key

whoveyyutbhtycrtqy rrdmobsyckyojucbwbcg urhmwyrycllogo vhkobnyckyofilncmctsspiyfttfocl bnebcubx
mpchimrzqhhil dyumigeyyuthh rknyourkbcuvuilbwtptsckchuttpyxv ysykqxovyyysiclilqcybx . . .

character frequencies in cipher text character frequencies in English texts

depending on key length, polyalphabetic substitution hinders application of cryptanalysis

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 20

Notes:

Practice Session
▶ we implement the substition and Vigenere

cipher in python

▶ we use it to encrypt and decrypt a message

practice session

see directory 06-03 in gitlab repository at
→ https://gitlab2.informatik.uni-wuerzburg.de/ml4nets_notebooks/2024_wise_infhaf_notebooks

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 21

Notes:

Public-key cryptography
▶ so far we assumed that Alice and Bob use symmetric

encryption methods that require a shared secret key

▶ is this practical (e.g. on the Internet)?

▶ public key cryptography refers to asymmetric methods
that do not require shared secret key

▶ consider analogy where Alice and Bob use physical key
and lock to securely communicate

idea

▶ Alice has access to locks and a corresponding key
▶ Alice sends open locks to any communication partner
▶ Bob uses lock on a box, and sends locked box with message to Alice
▶ Alice uses her key to open locked box and reads message

▶ lock = public key used to “encrypt message”
▶ key = private key used to “decrypt message”

Carol

Alice Bob

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 22

Notes:

• importantly, different from shared keys of symmetric encryption algorithms the public key can be made available
publicly (i.e. posting it on a website) as it can only be used to encrypt messages, not to decrypt messages

• anyone who wants to securely communicate with Alice, just obtains the public key and uses it to encrypt a
message to her. Only Alice can decrypt these messages using her private key.

A public-key encryption algorithm?
▶ public key uses one-way function that is easy to apply

(i.e. close lock) but difficult to reverse (i.e. open lock)

▶ consider prime factorization of a number

▶ given prime numbers 79 and 37 it is easy to compute
product 79 · 37 = 2923

▶ but: given number 2923 it is difficult to find (unique)
prime factors 79 and 37

▶ basis for RSA algorithm that uses pair of prime numbers
p, q as private key and n = pq as public key
→ Rivest, Shamir and Adleman, 1978

Carol

Alice Bob

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 23

Notes:

Hard problems in computer science
▶ RSA algorithm relies on the fact that it is difficult to find

prime factors of a large number

▶ but who can guarantee that noone will find an efficient
algorithm (thus breaking RSA) in the future?

▶ prime factorization belongs to so-called NP complexity
class of problems

▶ there are no known algorithms that can solve an NP
problem faster than trying all possibilities (brute force)

▶ unclear whether we have not discovered such algorithms
yet or whether they do not exist

▶ algorithms for quantum computers can efficiently solve
some problems in NP and thus pose a threat for
cryptographic methods → post-quantum cryptography

Homer in 3D

image credit: Screenshot from The Simpsons, Matt Groening & 20th
Television, fair use

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 24

Notes:

• We commonly refer to the class of problems that can be solved in polynomial time (e.g. quadratic, cubic, etc.) as
P . In contrast, those problems for which the best we can do is to verify a known solution in polynomial time fall
in the class of NP .

• Whether these two classes are actually identical (i.e. P = NP), that is whether we can solve problems in NP in
polynomial time is the biggest open question in computer science. The consequences of P = NP would be so
drastic (i.e. we would suddenly be able to efficiently solve incredibly hard problems), that most computer
scientists believe that the two classes are not equal.

Digital signatures
▶ apart from encryption we often want to verify the

authenticity of messages or data

use cases

▶ receiving an E-Mail from your friend
▶ visiting the website of your bank
▶ downloading a software from the Web

▶ how can Bob verify that received message is actually
from Alice?

▶ idea: use private/public keys in inverse fashion
1. Alice uses her private key to encrypt message
2. Bob uses Alice’s public key to decrypt message
3. successful decryption proves that message is actually from Alice

▶ method/algorithm to verify authenticity of messages is
called digital signature

Carol

Alice Bob

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 25

Notes:

History of public-key cryptography
▶ until 1970s: government agencies (i.e. secret services)

held monopoly on
▶ first publicly proposed public-key cryptographic

algorithm was developed by Diffie and Hellman in 1976

▶ in 1991 Phil Zimmermann publicly released software
Pretty Good Privacy (PGP), which implemented RSA
algorithm

▶ resulted in investigation by US Customs service for
violation of Arms Export Control Act

▶ protocols using public-key cryptography have since
become key infrastructure for secure Internet
communication (e.g. SSL/TLS, S/MIME)

Phil Zimmermann
born 1954

image credit: User Beao, Wikimedia Commons, CC-SA

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 26

Notes:

In summary
▶ we introduced two fundamental algorithms to address

the sorting problem

▶ we showed how we can implement the
divide-and-conquer algorithm MergeSort in a recursive
fashion

▶ we introduced basic symmetric encryption algorithms
and discussed their limitations

▶ we explained principles behind asymmetric public-key
cryptography which can be used to encrypt and
authenticate messages

▶ we highlighted that cryptographic methods often rely on
known hard problems in computer science

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 27

Notes:

Self-study questions
1. Give a formulation of the BubbleSort algorithm in python and explain it in your own words.
2. Give an example for an input for which the BubbleSort algorithm performs the

maximum/minimum number of comparisons.
3. Count the number of swaps in an input list with n elements, where BubbleSort performs the

maximum number of comparisons.
4. Investigate the BucketSort algorithm for integers in a fixed range and explain why it takes less

than n log2 n steps on average.
5. Give a formulation of the MergeSort algorithm in python and explain it in your own words.
6. Explain why monoalphabetic substitution methods like the Caesar cipher are not secure.
7. Explain why we can - in general - not use frequency analyses to break the Vigenère cipher.
8. What is the difference between symmetric and asymmetric encryption algorithms?
9. Assuming you can test one billion keys per second, calculate how many years a brute-force

attack can take to break a monoalphabetic substitution cipher with an alphabet of 26 characters.
10. Explain how we can use public-key cryptography to securely communicate without secretly

exchanging a shared key.
11. Explain how public-key cryptography can be used to verify the authenticity of messages.

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 28

Notes:

Further reading

References
▶ EH Friend: Sorting on Electronic Computer Systems, Journal of

the ACM, Vol. 3, 1956
▶ W Diffie, ME Hellman: New Directions in Cryptography, IEEE

Transactions on Information Theory, 1976
▶ R Rivest, A Shamir, L Adleman: A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems, 1978
▶ Simon Singh: The Code Book, Fourth Estate, 1999

Ingo Scholtes Introduction to Informatics Lecture 06: Algorithmic Thinking II November 26, 2024 29

Notes:

