Excess risk of OLS, proof

Proof: Using our previous computations:

!

—E [trace ((9“ 0TS0 — 9*))]

E[R@)|-R*=E [He o

=E [trace ((é —0*)(0 - 9*)Ti)}

= trace (Var(é)f)

2
= trace (OZ_IZ>
n

2
o
- race (I4)

(definition of [|-||s)
(cyclic property of the trace)

(linearity)

(variance computation)
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3.4. Ridge regression



Introduction

» Reminder: when n = d, OLS does not fare too good
» even more complicated when d > n

» vet, this is a common occurrence

» Possible solution: L? regularization

Definition: let A > 0. With our notation, the ridge least-squares estimator 0y is defined
as the minimizer of 1
2 2
Y = @0]" + Al .

> one can easily show the following:

Proposition: we have §, = 1(£ + ;)" 1o TY.
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A note on invertibility

» in the previous proposition we inverted the matrix M := S Al
> Why can we do that?

> 3 is positive semi-definite, Aly “pushes” the spectrum in R}

>

more rigorously, if M was not invertible, one would have
1 T
det | —P d+Aly ) =0.
n

» meaning that —\ would be an eigenvalue of ® T ®: this is not possible

v

Note: this was the main motivation when first introduced?®

5Hoerl, Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics, 1970
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Fixed design analysis

» as with OLS, we can compute the expected excess risk
» only a bit more complicated because of the regularization...
» bias-variance decomposition still holds:

Proposition (ridge bias-variance decomposition): Let 05 as before. Under
assumption | and I,

E[R(8\)] - R* = |Eld\) - 0*

22 [ - =]

» Proof: did not depend on 0's exact expression
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Rewriting E[0,]

» we will then use the following:

Lemma: Let 0, be the ridge regressor. Assume that | and Il hold.

E[f\] = 6" — AM(X 4+ Mlg) 710",

Then

» Proof:
A 1 .~
E[0\] =E {n(z + A1) o T Y]
1,4
=E {n(z + A1)t T (0h* + g)]

1,4
=—(X+2 lg) tdT b

(def. of 03)
(assumption 1)

(linearity 4 € centered)
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Rewriting E[0,]

» now, by definition of f

E[f\] = (£ + Ag)71506*.

» finally, since for any matrix A
A+ ADTTA=T-NA+ DT,

we deduce the result.
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Excess risk

Proposition (ridge excess risk): assume | and Il, let d as before. Then

2
E [R(@A)} — R =22(0%)T (5 + Alg) 250" + %trace (22(2 +A |d)*2) :

» Remark (i): when A — 0, we recover the OLS result

» Remark (ii): we have an exact description of the bias / variance evolution w.r.t. A (!)
» Remark (iii): bias increases with A, variance decreases, A = 0 not optimal (in general)
» Remark (iv): the quantity trace <i2(§: +A Id)*2) is called “degrees of freedom” ~

implicit number of parameters
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Excess risk, proof

> Proof- we plug the alternative expression of E[f,] into the bias / variance decomposition

| |

1 . P _
=E | trace (Jcb(z + M) TTE(E + M) 1¢T5)}

» the bias term is clear, variance yields

E [He} —]E[ék]Hg —E ’i(iJer)lqﬂs

1 . o
=E | trace (¢T€5T¢(Z + A1) TIE(E 4 A Id)l):|

(trace cyclic property)

2
_ %trace (Z(Z F M) TIEE + A |d)—1) . (E [eT] = 0214)
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Excess risk, proof

> finally, since . A i R
EFAMDEFA) T = F M) THE+F M) =g,

we deduce that
S5+ Alg) = (5 4+ A1) (: lg —A(S + A |d)*1) .
» together with the trace cyclic property, this allows us to write
trace (f(f + A1) (S 4 A Id)*l) = trace ()iz(f + A Id)’2>

and to conclude.
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Choice of regularization

Proposition (choice of regularization parameter): Assume that | and Il hold. Set

N o trace(¥)1/2
16*[| v/n
as regularization parameter. Then
N t i 1/2 9*
E[R(:)] - R < 2 race(2)"/* |67

B

> Remark (i): of course, in practice, we know neither o, nor 6*...
» Remark (ii): \* maybe not optimal for the true risk
» Remark (iii): slower rate of convergence, but o instead of o
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Choice of regularization, proof

> we take for granted that all eigenvalues of A(% + Aly) 2% are smaller than 1/2

» as a consequence:
B =22(0*)T (£ 4 \g)~256"
=077 [(i + M g)725 | o
A 2
< = ||6*]|° .
< 5 o7l

» in the same fashion:

= %trace (i (x\()A: + A |d)_2i>) < ;—Ztrace (f) )
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Proof, ctd.

» putting both bounds together, we get
A A by 5 o2 A
_R* < Zp* . )
]E[R(@,\)} R* < S110%]° + 5y-trace (z)

» minimizing in A yields
L\ 1/2
otrace (Z)

10+ v/n

as expected. O

A =
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v

Dimension free bound?

recall that our upper bound reads

o trace(3)1/2 ||0*|

E {R(é» )} — R < NG

no explicit dependency in d
under some assumptions (e.g., sparsity), ||6*|| < d

moreover, if |p(x)]| < R,
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3.5. Random design analysis



Random design analysis

> back to random design: (X;, Y;) i.i.d. from some distribution p on X x Y

2
» Goal: prove the same excess risk bound (i.e., & "Td)

» Important: we make the same assumptions, transposed to the random design setting:
> Assumption I: 30* € RY such that

Vieln,  Yi=@(X) 0" +e,

» Assumption ll: the noise distribution of ¢; is independent from that of X;, E[e;] = 0, and
E [5,2] =02

» notable consequence of our assumptions:

E[Y: | Xi] = o(X;) 0"
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Excess risk

» the excess risk has a similar decomposition:

Proposition (excess risk for random design least-squares regression): Assume that |
and Il hold. Then R* = ¢2, and

Vo eR,  REO)-R*=0-06"3,

where ¥ :=E [p(X)p(X)"].

> Intuition: ¥ is replace by its expectation, which is &
> (recall that & = 10T d)
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Excess risk, proof

> Proof: let (Xp, Yo) be a “new” observation, with noise &g

)

R(0) = E [(Yo — 07 ¢(X0))?]
(so(xofewerw (X0))°] (A1)
(P(X0) 0" — 87 p(X0))2] + 2E [0(6" — 6)T(X0)] +E [£3]

[
E|
E|

» by independence, and since the noise is centered,
E [e0(0" — )" o(Xo)] = E[eo] E [(0* — 0) T(Xo)] = 0.
» now we can conclude:
R(0) =E [((6* — 0)"¢(X0))*] +E [£5] (Al
=(0-0")"E [p(Xo0)p(Xo)"] (6 — 0%) + o2 (linearity)
=060 -0+ O (definition of X)
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Excess risk of OLS

> we now use the previous result to investigate 0:

Proposition: Assume that | and Il hold. Assume further that 3 is almost surely invertible.

Then the expected excess risk of the OLS estimator is equal to

E[R()] - R* = ZE [trace (££71)] .

> Remark (i): 3 has the same definition, but is now a random quantity

» Remark (ii): under reasonable assumptions (e.g., density), ¥ is almost surely invertible

» Intuition: det(X) = 0 is a “zero-measure” condition
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Excess risk of OLS, proof

> from the definition of &,

R 1a la
i—Lls10Ty - ST (00 4e) =0+ LD e.
n n n

» using the previous result:

E [R(é)] ~R*=E l(li—lqﬂs)T r (ii-lqﬂs)

n

.
N 1.
=E [trace (Z (iZlCDTs) (nzld)Te) )1 (cyclic property)

= %E {trace (Zi_ld)TaETd)i_l)}
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Excess risk of OLS, proof ctd.

» now we use properties of the conditional expectation:

E [trace (zi*lcb%e%i*l)} -E :IE [trace <Z)AZ’1<DT55T<D)AZ’1> | X1, ... x”

(tower property)

- :trace (Zi_ld)TE [eeT | X1,y Xn) ¢)A:—1>}

(Cb,f are Xi,.

.., X,-measurable)

= E [trace (Zi*1¢TE [55T] CDi*l)] (independence)

=0’k [trace (Zf‘lCDTCDf_lﬂ

=o’E [trace (Zi_l)} .

(Elec"] =021q)
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Gaussian design

> to be more precise, we need to specify a distribution for the ¢(X;)s

Proposition: Assume that | and Il hold. Assume further that o(X) ~ N (0,X). Then the
expected risk of OLS is given by

2] - -

» Remark: we (nearly) recover the 0?d/n bound from fixed design!
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v

Gaussian design, proof

define Z := £1/2(X)
properties of Gaussian vectors: Z ~ N (0, 4)

we see that
E [trace (Zi—l)} = trace (E [2(21/2221/2ZT)—1:|)
=trace (E[(2Z")7']) .
(ZZT)~1 has the inverse Wishart distribution

we read in the tables:
E[(zZT) ' =—F—14

and conclude.

102



4. Generalization bounds
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Reminder: risk decomposition

» Reminder:

R(f) — R* = R(f)higLR(h)} + [hig?f_[R(h)R*}

excess risk = estimation error + approximation error

» Estimation error:

» always non-negative

» random if there is randomness in the creation of f

P characterizes how much we loose by picking the wrong predictor in a given class
» Approximation error:

» deterministic, does not depend on f, only on the class of functions H
P characterizes how much we loose by restricting ourselves to a given class
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Decomposition of the estimation error

» Notation (i): fi; € argmingc4 R(f), best predictor in our function class
> Notation (ii): 7 empirical risk minimizer
> Useful decomposition:

R(F) = inf R(F) = R(F) = R(f) (def. of fiy)

» middle term is < 0 by definition, and we get

R(F) — inf R(f) < 2 sup ﬁ(f)fR(f)‘ .
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Decomposition of the estimation error, ctd.

» Remark (i): no more dependency in f. we only need to control functions (but we do need
uniform control)
> Remark (ii): if 7 not global minimizer, say

< inf R(f
R( )_;QHR( ) +e,

we need to add ¢ to our bound
» Remark (iii): bound usually grows with size of  and decreases with n
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4.1. Uniform bounds via concentration



Single function

» when there is a single function fy in H, we have already seen how to control

n

sup [R(F) — R(F)| = R(6) ~ R(fo) = - D (¥, F(X)) ~ELL(Y, F(X))]

feM pac

» indeed, since the observations are i.i.d., we can use Hoeffding's inequality (Exercise
sheet 1):

Proposition: for any ¢ € (0,1/2), with probability greater than 1 —§,

EOO\E Io1
\/E g67

R(f) — R(f) <

where (o, is an upper bound on £(Y;, f(X;)).
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From sup to expectation

» Problem: there is often more than one function in H...

» still possible, using for instance:

Proposition (McDiarmid’s inequality): Let 73, ..., Z, be independent random variables
and F a function such that

|F(z1,. - 2Zi1,2iyZis1y -, 2n) — F(21, -+ -y Zi1, 20, Zig1, -+, Z0)| < €.

Then
P(|F(Z,...,Z,) —E[F(Z,...,Z,)]| > t) < 2exp (—2t°/(nc?)) .
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Application of McDiarmid

> set Z; := (X, Y;), and

H(Zs, .. 2:) = sup {R(f) _ﬁ(f)} .

» Mc Diarmid tells us that, with probability higher than 1 —§,

tooVZ [T
Jn V85

» getting bound on E[H(Zy,. .., Z,)] automatically yields bound on sup;cy {7@(#’) - R(f)}

[y

H(Zy,...,Z)) —E[H(Z,...,Z,)] <

» by symmetry, upper bound on supsc4 7A2(f) — R(f)’
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4.2. Rademacher complexity



Rademacher complexity

> set Z:=(X,Y)and G :={(x,y) — £(y, f(x))}, with f in some function class H
» Recall: we want to bound

sup {R(1) ~ R(N)} = sup {E[g 1~Zg }

> set D:={27,...,Z,} the data

Definition: We call Rademacher complexity of the function class G the quantity

supr&:g

gEC/ i=1

Rn(g) *E D

where the ¢;s are independent Rademacher random variables (that is, P(¢; = £1) = 1/2).
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Rademacher complexity, first properties

» Intuition: expectation of maximal dot-product with random labels

» measures the capacity of the set G

Properties: Rademacher complexity satisfies the following properties:
> if G C G, then Ry(G) < Ry(G');
> Ra(G+G') = Ra(G) + Ra(G');
> Rn(ag) = || R.(9);
> if go is a function, R,(G + {go}) = Ra(G):
> R,(G) = Ru(conv(G)).
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Symmetrization

» Question: why is it useful?

» Rademacher complexity directly controls expected uniform deviation

Proposition (symmetrization): With the previous notation,

E SUP{ Zg — E[g( )]} < 2R,(9).
_geg

and

E sup {E[g(Z)l - },Zg(Z;)} < 2Rq(9)-
[8< i=1 _
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Symmetrization, proof

> let D' :={Z],...,Z} be an independent copy of D’
» in particular, one has E [g(Z]) | D] = E [g(2)]

> we write
E[SUP{Elg ]**Zg }— LEQ{E[g ID]**Zg }
tgg{ ZE[g (z)) - )ID]H

geg
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Symmetrization, proof ctd.

» since the sup of expectation is < than expectation of the sup,

E | sup {]E [¢(2)] - },_Zg(zf)} <E lE Ls;g {}1 > _(&(Z) - g(Zi))} | DH
_® lZ'éE {1 > (e(Z) - g(z,-))}

by the tower property.
> we notice that

g(Z)—g(Z) and ¢ei(g(Z!) — g(Z)) have the same distribution

(this is what we call symmetrization)
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Symmetrization proof, ctd.

» thus

E E?B {1 > (e(2)) - g(z,-))}

i=1

=E lsup {1 > eile(Z)) - g(Zi))}

geg | N i—1
1 n

sup cig(Z supq —~ > —cig(Z)

L'eg { Z } geg { n ; }

=2R,(9)

since € and —e have the same distribution. O
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Example: linear predictors

» let Q be a norm on RY
» assume H = {07 ¢(x),Q(0) < D}
» then

where Q* is the dual norm of Q:
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Example: linear predictors, ctd.

» when p € [1,400) and Q is the p-norm, Q* is the g-norm with 1/p+1/g =1
» = Rademacher complexity computations boil down to expected norm

computations

» let us do this for the 2-norm:

D

D
Si
n

[ll®7ell]

i [HQ’TEH? (Jensen's inequality)

= %\/]E [trace (¢ Tec Td)]

= By/E[trace (¢TO)] = D
n n

_b
SV

SE[OT0)]= 2, | SE[le(x)F]
i=1 i=1

E [||gp(x)||2] = dimension-free bound with the same ratel!
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Example: linear predictors, ctd.

> we can get a bound on the estimation error:

Proposition: assume that £ is L-Lipschitz and continuous. Consider linear predictors with
bounded coefficients, that is, fy(x) = 8T ¢(x) with ||f|| < D. Assume further that

E [||<p(X)H2} < R2. Let f be the empirical risk minimizer. Then

. {R(?)] < iy RUo) + 4i/RﬁD '

> Remark (i): does not depend on exact expression of the loss

» Remark (ii): does not depend on the dimension
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