Excess risk of OLS, proof

Proof: Using our previous computations:

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta})\right] - \mathcal{R}^{\star} = \mathbb{E}\left[\left\|\hat{\theta} - \theta^{\star}\right\|_{\hat{\Sigma}}^{2}\right]$$

$$= \mathbb{E}\left[\operatorname{trace}\left((\hat{\theta} - \theta^{\star})^{\top}\hat{\Sigma}(\hat{\theta} - \theta^{\star})\right)\right] \qquad (\text{definition of } \|\cdot\|_{\hat{\Sigma}})$$

$$= \mathbb{E}\left[\operatorname{trace}\left((\hat{\theta} - \theta^{\star})(\hat{\theta} - \theta^{\star})^{\top}\hat{\Sigma}\right)\right] \qquad (\text{cyclic property of the trace})$$

$$= \operatorname{trace}\left(\operatorname{Var}(\hat{\theta})\hat{\Sigma}\right) \qquad (\text{linearity})$$

$$= \operatorname{trace}\left(\frac{\sigma^{2}}{n}\hat{\Sigma}^{-1}\hat{\Sigma}\right) \qquad (\text{variance computation})$$

$$= \frac{\sigma^{2}}{n}\operatorname{trace}\left(\mathsf{I}_{d}\right)$$

3.4. Ridge regression

Introduction

- **Reminder:** when $n \approx d$, OLS does not fare too good
- even more complicated when d > n
- yet, this is a common occurrence
- **Possible solution:** L² regularization

Definition: let $\lambda > 0$. With our notation, the ridge least-squares estimator $\hat{\theta}_{\lambda}$ is defined as the minimizer of

$$\frac{1}{n} \|Y - \Phi\theta\|^2 + \lambda \|\theta\|^2$$

one can easily show the following:

Proposition: we have
$$\hat{\theta}_{\lambda} = \frac{1}{n} (\hat{\Sigma} + \lambda I_d)^{-1} \Phi^{\top} Y$$
.

A note on invertibility

- \blacktriangleright in the previous proposition we inverted the matrix $M := \hat{\Sigma} + \lambda \, \mathsf{I}_d$
- Why can we do that?
- $\blacktriangleright~\hat{\Sigma}$ is positive semi-definite, $\lambda\,\mathsf{I}_d$ "pushes" the spectrum in \mathbb{R}_+^\star
- more rigorously, if M was not invertible, one would have

$$\det\left(\frac{1}{n}\Phi^{\top}\Phi + \lambda \mathsf{I}_{d}\right) = 0$$

- meaning that $-\lambda$ would be an eigenvalue of $\Phi^{\top}\Phi$: this is not possible
- Note: this was the main motivation when first introduced⁵

⁵Hoerl, Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics, 1970

Fixed design analysis

- ▶ as with OLS, we can compute the expected excess risk
- only a bit more complicated because of the regularization...
- bias-variance decomposition still holds:

Proposition (ridge bias-variance decomposition): Let $\hat{\theta}_{\lambda}$ as before. Under assumption I and II,

$$\mathbb{E}[\mathcal{R}(\hat{\theta}_{\lambda})] - \mathcal{R}^{\star} = \left\| \mathbb{E}[\hat{\theta}_{\lambda}] - \theta^{\star} \right\|_{\hat{\Sigma}}^{2} + \mathbb{E}\left[\left\| \hat{\theta}_{\lambda} - \mathbb{E}[\hat{\theta}_{\lambda}] \right\|_{\hat{\Sigma}}^{2} \right]$$

> *Proof:* did not depend on $\hat{\theta}$'s exact expression

Rewriting $\mathbb{E}[\hat{ heta}_{\lambda}]$

we will then use the following:

Lemma: Let $\hat{\theta}_{\lambda}$ be the ridge regressor. Assume that I and II hold. Then

$$\mathbb{E}[\hat{\theta}_{\lambda}] = \theta^{\star} - \lambda (\hat{\Sigma} + \lambda \,\mathsf{I}_d)^{-1} \theta^{\star} \,.$$

► Proof:

$$\mathbb{E}[\hat{\theta}_{\lambda}] = \mathbb{E}\left[\frac{1}{n}(\hat{\Sigma} + \lambda I_{d})^{-1}\Phi^{\top}Y\right] \qquad (\text{def. of } \hat{\theta}_{\lambda})$$
$$= \mathbb{E}\left[\frac{1}{n}(\hat{\Sigma} + \lambda I_{d})^{-1}\Phi^{\top}(\Phi\theta^{\star} + \varepsilon)\right] \qquad (\text{assumption I})$$
$$= \frac{1}{n}(\hat{\Sigma} + \lambda I_{d})^{-1}\Phi^{\top}\Phi\theta^{\star} \qquad (\text{linearity} + \varepsilon \text{ centered})$$

Rewriting $\mathbb{E}[\hat{ heta}_{\lambda}]$

► now, by definition of $\hat{\Sigma}$,

$$\mathbb{E}[\hat{\theta}_{\lambda}] = (\hat{\Sigma} + \lambda \mathsf{I}_d)^{-1} \hat{\Sigma} \theta^{\star} \,.$$

▶ finally, since for any matrix A

$$(A + \lambda I)^{-1}A = I - \lambda (A + \lambda I)^{-1},$$

we deduce the result.

Excess risk

Proposition (ridge excess risk): assume I and II, let $\hat{\theta}_{\lambda}$ as before. Then

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta}_{\lambda})\right] - \mathcal{R}^{\star} = \lambda^{2} \left(\theta^{\star}\right)^{\top} (\hat{\Sigma} + \lambda I_{d})^{-2} \hat{\Sigma} \theta^{\star} + \frac{\sigma^{2}}{n} \operatorname{trace}\left(\hat{\Sigma}^{2} (\hat{\Sigma} + \lambda I_{d})^{-2}\right)$$

- **Remark (i):** when $\lambda \rightarrow 0$, we recover the OLS result
- **Remark (ii):** we have an exact description of the bias / variance evolution w.r.t. λ (!)
- **Remark (iii):** bias increases with λ , variance decreases, $\lambda = 0$ not optimal (in general)
- **Remark (iv):** the quantity trace $(\hat{\Sigma}^2(\hat{\Sigma} + \lambda I_d)^{-2})$ is called "degrees of freedom" \approx implicit number of parameters

Excess risk, proof

Proof: we plug the alternative expression of E[θ̂_λ] into the bias / variance decomposition
 the bias term is clear, variance yields

$$\mathbb{E}\left[\left\|\hat{\theta}_{\lambda} - \mathbb{E}[\hat{\theta}_{\lambda}]\right\|_{\hat{\Sigma}}^{2}\right] = \mathbb{E}\left[\left\|\frac{1}{n}(\hat{\Sigma} + \lambda I_{d})^{-1}\Phi^{\top}\varepsilon\right\|_{\hat{\Sigma}}^{2}\right]$$
$$= \mathbb{E}\left[\frac{1}{n^{2}}\operatorname{trace}\left(\varepsilon^{\top}\Phi(\hat{\Sigma} + \lambda I_{d})^{-1}\hat{\Sigma}(\hat{\Sigma} + \lambda I_{d})^{-1}\Phi^{\top}\varepsilon\right)\right]$$
$$= \mathbb{E}\left[\frac{1}{n^{2}}\operatorname{trace}\left(\Phi^{\top}\varepsilon\varepsilon^{\top}\Phi(\hat{\Sigma} + \lambda I_{d})^{-1}\hat{\Sigma}(\hat{\Sigma} + \lambda I_{d})^{-1}\right)\right]$$
(trace cyclic property)

$$= \frac{\sigma^2}{n} \operatorname{trace} \left(\hat{\Sigma} (\hat{\Sigma} + \lambda I_d)^{-1} \hat{\Sigma} (\hat{\Sigma} + \lambda I_d)^{-1} \right) \,. \qquad (\mathbb{E} \left[\varepsilon \varepsilon^\top \right] = \sigma^2 I_d)$$

Excess risk, proof

► finally, since

$$(\hat{\boldsymbol{\Sigma}} + \lambda \, \boldsymbol{\mathsf{I}}_d)(\hat{\boldsymbol{\Sigma}} + \lambda \, \boldsymbol{\mathsf{I}}_d)^{-1} = (\hat{\boldsymbol{\Sigma}} + \lambda \, \boldsymbol{\mathsf{I}}_d)^{-1}(\hat{\boldsymbol{\Sigma}} + \lambda \, \boldsymbol{\mathsf{I}}_d) = \boldsymbol{\mathsf{I}}_d \,,$$

we deduce that

$$\hat{\Sigma}(\hat{\Sigma} + \lambda I_d)^{-1} = (\hat{\Sigma} + \lambda I_d)^{-1} \hat{\Sigma} \left(= I_d - \lambda (\hat{\Sigma} + \lambda I_d)^{-1} \right) \,.$$

▶ together with the trace cyclic property, this allows us to write

$$\operatorname{trace}\left(\hat{\Sigma}(\hat{\Sigma}+\lambda I_d)^{-1}\hat{\Sigma}(\hat{\Sigma}+\lambda I_d)^{-1}\right) = \operatorname{trace}\left(\hat{\Sigma}^2(\hat{\Sigma}+\lambda I_d)^{-2}\right)$$

and to conclude.

Choice of regularization

Proposition (choice of regularization parameter): Assume that I and II hold. Set

$$\lambda^{\star} := \frac{\sigma \operatorname{trace}(\hat{\Sigma})^{1/2}}{\|\theta^{\star}\| \sqrt{n}}$$

as regularization parameter. Then

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta}_{\lambda^{\star}})\right] - \mathcal{R}^{\star} \leq \frac{\sigma \operatorname{trace}(\hat{\Sigma})^{1/2} \left\|\theta^{\star}\right\|}{\sqrt{n}}$$

- **Remark (i):** of course, in practice, we know neither σ , nor θ^* ...
- **Remark (ii):** λ^* maybe not optimal for the true risk
- **Remark (iii):** slower rate of convergence, but σ instead of σ^2

Choice of regularization, proof

• we take for granted that all eigenvalues of $\lambda (\hat{\Sigma} + \lambda I_d)^{-2} \hat{\Sigma}$ are smaller than 1/2• as a consequence:

$$\begin{split} B &= \lambda^2 (\theta^\star)^\top (\hat{\Sigma} + \lambda \, \mathsf{I}_d)^{-2} \hat{\Sigma} \theta^\star \\ &= \lambda (\theta^\star)^\top \left[(\hat{\Sigma} + \lambda \, \mathsf{I}_d)^{-2} \hat{\Sigma} \right] \theta^\star \\ &\leq \frac{\lambda}{2} \, \|\theta^\star\|^2 \; . \end{split}$$

▶ in the same fashion:

$$\begin{split} V &= \frac{\sigma^2}{n} \mathrm{trace} \left(\hat{\Sigma}^2 (\hat{\Sigma} + \lambda \, \mathsf{I}_d)^{-2} \right) \\ &= \frac{\sigma^2}{\lambda n} \mathrm{trace} \left(\hat{\Sigma} \left(\lambda (\hat{\Sigma} + \lambda \, \mathsf{I}_d)^{-2} \hat{\Sigma} \right) \right) \leq \frac{\sigma^2}{\lambda n} \mathrm{trace} \left(\hat{\Sigma} \right) \,. \end{split}$$

Proof, ctd.

putting both bounds together, we get

$$\mathbb{E}\left[\hat{\mathcal{R}}(\hat{ heta}_{\lambda})
ight] - \mathcal{R}^{\star} \leq rac{\lambda}{2} \left\| heta^{\star}
ight\|^2 + rac{\sigma^2}{2\lambda n} ext{trace}\left(\hat{\Sigma}
ight) \,.$$

• minimizing in λ yields

$$\lambda^{\star} = \frac{\sigma \operatorname{trace}\left(\hat{\Sigma}\right)^{1/2}}{\|\theta^{\star}\|\sqrt{n}},$$

as expected.

Dimension free bound?

recall that our upper bound reads

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta}_{\lambda^{\star}})\right] - \mathcal{R}^{\star} \leq \frac{\sigma \operatorname{trace}(\hat{\Sigma})^{1/2} \left\|\theta^{\star}\right\|}{\sqrt{n}} \,.$$

no explicit dependency in d

 $\blacktriangleright\,$ under some assumptions (e.g., sparsity), $\|\theta^\star\|\ll d$

▶ moreover, if $\|\varphi(x)\| \leq R$,

$$\begin{aligned} \operatorname{trace}\left(\hat{\Sigma}\right) &= \sum_{j=1}^{d} \hat{\Sigma}_{j,j} \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{d} \varphi(x_i)_j^2 \\ &= \frac{1}{n} \sum_{i=1}^{n} \|\varphi(x_i)\|^2 \leq R^2 \,. \end{aligned}$$

3.5. Random design analysis

Random design analysis

- ▶ back to random design: (X_i, Y_i) i.i.d. from some distribution p on $\mathcal{X} \times \mathcal{Y}$
- **Goal:** prove the same excess risk bound (i.e., $\approx \frac{\sigma^2 d}{n}$)
- Important: we make the same assumptions, transposed to the random design setting:
 - **Assumption I:** $\exists \theta^* \in \mathbb{R}^d$ such that

$$\forall i \in [n], \qquad Y_i = \varphi(X_i)^\top \theta^\star + \varepsilon_i,$$

Assumption II: the noise distribution of ε_i is independent from that of X_i , $\mathbb{E}[\varepsilon_i] = 0$, and $\mathbb{E}[\varepsilon_i^2] = \sigma^2$.

notable consequence of our assumptions:

$$\mathbb{E}\left[Y_i \mid X_i\right] = \varphi(X_i)^\top \theta^\star \, .$$

Excess risk

the excess risk has a similar decomposition:

Proposition (excess risk for random design least-squares regression): Assume that I and II hold. Then $\mathcal{R}^* = \sigma^2$, and

$$orall heta \in \mathbb{R}^d, \qquad \mathcal{R}(heta) - \mathcal{R}^\star = \| heta - heta^\star\|_{\mathbf{\Sigma}}^2 \;,$$

where $\Sigma := \mathbb{E} \left[\varphi(X) \varphi(X)^\top \right]$.

• Intuition: $\hat{\Sigma}$ is replace by its expectation, which is Σ • (recall that $\hat{\Sigma} = \frac{1}{n} \Phi^{\top} \Phi$)

Excess risk, proof

Proof: let (X_0, Y_0) be a "new" observation, with noise ε_0

$$\mathcal{R}(\theta) = \mathbb{E}\left[(Y_0 - \theta^\top \varphi(X_0))^2 \right]$$

= $\mathbb{E}\left[(\varphi(X_0)^\top \theta^* + \varepsilon_0 - \theta^\top \varphi(X_0))^2 \right]$
= $\mathbb{E}\left[(\varphi(X_0)^\top \theta^* - \theta^\top \varphi(X_0))^2 \right] + 2\mathbb{E}\left[\varepsilon_0 (\theta^* - \theta)^\top \varphi(X_0) \right] + \mathbb{E}\left[\varepsilon_0^2 \right]$ (AI)

by independence, and since the noise is centered,

$$\mathbb{E}\left[\varepsilon_0(\theta^{\star}-\theta)^{\top}\varphi(X_0)\right] = \mathbb{E}\left[\varepsilon_0\right]\mathbb{E}\left[(\theta^{\star}-\theta)^{\top}\varphi(X_0)\right] = 0.$$

now we can conclude:

$$\mathcal{R}(\theta) = \mathbb{E}\left[((\theta^* - \theta)^\top \varphi(X_0))^2 \right] + \mathbb{E}\left[\varepsilon_0^2 \right]$$
(AII)
$$= (\theta - \theta^*)^\top \mathbb{E}\left[\varphi(X_0)\varphi(X_0)^\top \right] (\theta - \theta^*) + \sigma^2$$
(linearity)
$$= (\theta - \theta^*)^\top \Sigma(\theta - \theta^*) + \sigma^2. \quad \Box$$
(definition of Σ)

Excess risk of OLS

• we now use the previous result to investigate $\hat{\theta}$:

Proposition: Assume that I and II hold. Assume further that $\hat{\Sigma}$ is almost surely invertible. Then the expected excess risk of the OLS estimator is equal to

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta})\right] - \mathcal{R}^{\star} = \frac{\sigma^2}{n} \mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\right)\right]$$

Remark (i): $\hat{\Sigma}$ has the same definition, but is now a *random* quantity

Remark (ii): under reasonable assumptions (e.g., density), Σ̂ is almost surely invertible
 Intuition: det(Σ̂) = 0 is a "zero-measure" condition

Excess risk of OLS, proof

From the definition of $\hat{\theta}$,

$$\hat{\theta} = \frac{1}{n} \hat{\Sigma}^{-1} \Phi^{\top} Y = \frac{1}{n} \hat{\Sigma}^{-1} \Phi^{\top} (\Phi \theta^{\star} + \varepsilon) = \theta^{\star} + \frac{1}{n} \hat{\Sigma}^{-1} \Phi^{\top} \varepsilon \,.$$

using the previous result:

$$\mathbb{E}\left[\mathcal{R}(\hat{\theta})\right] - \mathcal{R}^{\star} = \mathbb{E}\left[\left(\frac{1}{n}\hat{\Sigma}^{-1}\Phi^{\top}\varepsilon\right)^{\top}\Sigma\left(\frac{1}{n}\hat{\Sigma}^{-1}\Phi^{\top}\varepsilon\right)\right]$$
$$= \mathbb{E}\left[\operatorname{trace}\left(\Sigma\left(\frac{1}{n}\hat{\Sigma}^{-1}\Phi^{\top}\varepsilon\right)\left(\frac{1}{n}\hat{\Sigma}^{-1}\Phi^{\top}\varepsilon\right)^{\top}\right)\right] \qquad (\text{cyclic property})$$
$$= \frac{1}{n^{2}}\mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\Phi^{\top}\varepsilon\varepsilon^{\top}\Phi\hat{\Sigma}^{-1}\right)\right]$$

Excess risk of OLS, proof ctd.

▶ now we use properties of the conditional expectation:

$$\mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\Phi^{\top}\varepsilon\varepsilon^{\top}\Phi\hat{\Sigma}^{-1}\right)\right] = \mathbb{E}\left[\mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\Phi^{\top}\varepsilon\varepsilon^{\top}\Phi\hat{\Sigma}^{-1}\right) \mid X_{1},\ldots,X_{n}\right]\right]$$
(tower property)
$$= \mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\Phi^{\top}\mathbb{E}\left[\varepsilon\varepsilon^{\top}+X_{1},\ldots,X\right]\Phi\hat{\Sigma}^{-1}\right)\right]$$

$$= \mathbb{E} \left[\text{trace} \left(\Sigma \hat{\Sigma}^{-1} \Phi^\top \mathbb{E} \left[\varepsilon \varepsilon^\top \mid X_1, \dots, X_n \right] \Phi \hat{\Sigma}^{-1} \right) \right] \\ \left(\Phi, \hat{\Sigma} \text{ are } X_1, \dots, X_n \text{-measurable} \right)$$

$$= \mathbb{E} \left[\operatorname{trace} \left(\Sigma \hat{\Sigma}^{-1} \Phi^\top \mathbb{E} \left[\varepsilon \varepsilon^\top \right] \Phi \hat{\Sigma}^{-1} \right) \right] \quad \text{(independence)}$$
$$= \sigma^2 \mathbb{E} \left[\operatorname{trace} \left(\Sigma \hat{\Sigma}^{-1} \Phi^\top \Phi \hat{\Sigma}^{-1} \right) \right] \qquad (\mathbb{E} \left[\varepsilon \varepsilon^\top \right] = \sigma^2 \, \mathsf{I}_d)$$
$$= \sigma^2 \mathbb{E} \left[\operatorname{trace} \left(\Sigma \hat{\Sigma}^{-1} \right) \right] \,.$$

Gaussian design

▶ to be more precise, we need to specify a distribution for the $\varphi(X_i)$ s

Proposition: Assume that I and II hold. Assume further that $\varphi(X) \sim \mathcal{N}(0, \Sigma)$. Then the expected risk of OLS is given by

$$\mathbb{E}\left[\mathcal{R}(\hat{ heta})
ight]-\mathcal{R}^{\star}=rac{\sigma^2 d}{n-d-1}\,.$$

Remark: we (nearly) recover the $\sigma^2 d/n$ bound from fixed design!

Gaussian design, proof

• define $Z := \Sigma^{-1/2} \varphi(X)$

▶ properties of Gaussian vectors: $Z \sim \mathcal{N}(0, I_d)$

we see that

$$\begin{split} \mathbb{E}\left[\operatorname{trace}\left(\Sigma\hat{\Sigma}^{-1}\right)\right] &= \operatorname{trace}\left(\mathbb{E}\left[\Sigma(\Sigma^{1/2}Z\Sigma^{1/2}Z^{\top})^{-1}\right]\right) \\ &= \operatorname{trace}\left(\mathbb{E}\left[(ZZ^{\top})^{-1}\right]\right) \,. \end{split}$$

• $(ZZ^{\top})^{-1}$ has the inverse Wishart distribution

we read in the tables:

$$\mathbb{E}\left[(ZZ^{\top})^{-1}\right] = \frac{1}{n-d-1} \,\mathsf{I}_d$$

-

and conclude.

4. Generalization bounds

Reminder: risk decomposition

Reminder:

$$\mathcal{R}(f) - \mathcal{R}^{\star} = \begin{bmatrix} \mathcal{R}(f) - \inf_{h \in \mathcal{H}} \mathcal{R}(h) \end{bmatrix} + \begin{bmatrix} \inf_{h \in \mathcal{H}} \mathcal{R}(h) - \mathcal{R}^{\star} \end{bmatrix}$$

excess risk = estimation error + approximation error

Estimation error:

- always non-negative
- random if there is randomness in the creation of f
- characterizes how much we loose by picking the wrong predictor in a given class

Approximation error:

- deterministic, does not depend on f, only on the class of functions \mathcal{H}
- characterizes how much we loose by restricting ourselves to a given class

Decomposition of the estimation error

- ▶ Notation (i): $f_{\mathcal{H}} \in \arg \min_{f \in \mathcal{H}} \mathcal{R}(f)$, best predictor in our function class
- **Notation (ii):** \hat{f} empirical risk minimizer
- Useful decomposition:

$$\mathcal{R}(\hat{f}) - \inf_{f \in \mathcal{H}} \mathcal{R}(f) = \mathcal{R}(\hat{f}) - \mathcal{R}(f_{\mathcal{H}}) \qquad (\text{def. of } f_{\mathcal{H}})$$
$$= \mathcal{R}(\hat{f}) - \hat{\mathcal{R}}(\hat{f}) + \hat{\mathcal{R}}(\hat{f}) - \hat{\mathcal{R}}(f_{\mathcal{H}}) + \hat{\mathcal{R}}(f_{\mathcal{H}}) - \mathcal{R}(f_{\mathcal{H}})$$
$$\leq \sup_{f \in \mathcal{H}} \left\{ \mathcal{R}(f) - \hat{\mathcal{R}}(f) \right\} + \hat{\mathcal{R}}(\hat{f}) - \hat{\mathcal{R}}(f_{\mathcal{H}}) + \sup_{f \in \mathcal{H}} \left\{ \hat{\mathcal{R}}(f) - \mathcal{R}(f) \right\}$$

 \blacktriangleright middle term is \leq 0 by definition, and we get

$$\mathcal{R}(\hat{f}) - \inf_{f \in \mathcal{H}} \mathcal{R}(f) \leq 2 \sup_{f \in \mathcal{H}} \left| \hat{\mathcal{R}}(f) - \mathcal{R}(f) \right| \,.$$

Decomposition of the estimation error, ctd.

Remark (i): no more dependency in f̂, we only need to control functions (but we do need uniform control)

Remark (ii): if \hat{f} not global minimizer, say

$$\hat{\mathcal{R}}(\hat{f}) \leq \inf_{f \in \mathcal{H}} \hat{\mathcal{R}}(f) + \varepsilon \, ,$$

we need to add ε to our bound

Remark (iii): bound usually grows with size of \mathcal{H} and decreases with *n*

4.1. Uniform bounds via concentration

Single function

 \blacktriangleright when there is a single function f_0 in \mathcal{H} , we have already seen how to control

$$\sup_{f\in\mathcal{H}} \left| \hat{\mathcal{R}}(f) - \mathcal{R}(f) \right| = \hat{\mathcal{R}}(f_0) - \mathcal{R}(f_0) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f(X_i)) - \mathbb{E}\left[\ell(Y, f(X)) \right] \,.$$

indeed, since the observations are i.i.d., we can use Hoeffding's inequality (Exercise sheet 1):

Proposition: for any $\delta \in (0, 1/2)$, with probability greater than $1 - \delta$,

$$\mathcal{R}(\mathit{f}_0) - \hat{\mathcal{R}}(\mathit{f}_0) < rac{\ell_\infty \sqrt{2}}{\sqrt{n}} \sqrt{\log rac{1}{\delta}} \, ,$$

where ℓ_{∞} is an upper bound on $\ell(Y_i, f(X_i))$.

From sup to expectation

- **Problem:** there is often more than one function in \mathcal{H} ...
- still possible, using for instance:

Proposition (McDiarmid's inequality): Let Z_1, \ldots, Z_n be independent random variables and F a function such that

$$|F(z_1, \ldots, z_{i-1}, z_i, z_{i+1}, \ldots, z_n) - F(z_1, \ldots, z_{i-1}, z'_i, z_{i+1}, \ldots, z_n)| \leq c$$
.

Then

$$\mathbb{P}\left(|F(Z_1,\ldots,Z_n)-\mathbb{E}\left[F(Z_1,\ldots,Z_n)
ight]|\geq t
ight)\leq 2\mathrm{exp}\left(-2t^2/(nc^2)
ight)\,.$$

Application of McDiarmid

▶ set $Z_i := (X_i, Y_i)$, and

$$H(Z_1,\ldots,Z_n):=\sup_{f\in\mathcal{H}}\left\{\mathcal{R}(f)-\hat{\mathcal{R}}(f)\right\}\,.$$

• Mc Diarmid tells us that, with probability higher than $1 - \delta$,

$$H(Z_1,\ldots,Z_n)-\mathbb{E}\left[H(Z_1,\ldots,Z_n)
ight]\leq rac{\ell_\infty\sqrt{2}}{\sqrt{n}}\sqrt{\lograc{1}{\delta}}\,.$$

getting bound on E [H(Z₁,...,Z_n)] automatically yields bound on sup_{f∈H} {Â(f) - R(f)}
by symmetry, upper bound on sup_{f∈H} |Â(f) - R(f)|

4.2. Rademacher complexity

Rademacher complexity

set Z := (X, Y) and G := {(x, y) → ℓ(y, f(x))}, with f in some function class H
 Recall: we want to bound

$$\sup_{f \in \mathcal{H}} \left\{ \mathcal{R}(f) - \hat{\mathcal{R}}(f) \right\} = \sup_{g \in \mathcal{G}} \left\{ \mathbb{E} \left[g(Z) \right] - \frac{1}{n} \sum_{i=1}^{n} g(Z_i) \right\} \,.$$

▶ set $\mathcal{D} := \{Z_1, \ldots, Z_n\}$ the data

Definition: We call *Rademacher complexity* of the function class \mathcal{G} the quantity

$$R_n(\mathcal{G}) := \mathbb{E}_{\varepsilon,\mathcal{D}}\left[\sup_{g\in\mathcal{G}}\frac{1}{n}\sum_{i=1}^n \varepsilon_i g(Z_i)\right],$$

where the ε_i s are independent Rademacher random variables (that is, $\mathbb{P}(\varepsilon_i = \pm 1) = 1/2$).

Rademacher complexity, first properties

Intuition: expectation of maximal dot-product with random labels

 \blacktriangleright measures the *capacity* of the set \mathcal{G}

Properties: Rademacher complexity satisfies the following properties:

▶ if
$$\mathcal{G} \subset \mathcal{G}'$$
, then $R_n(\mathcal{G}) \leq R_n(\mathcal{G}')$;

$$\triangleright \ R_n(\mathcal{G}+\mathcal{G}')=R_n(\mathcal{G})+R_n(\mathcal{G}');$$

$$R_n(\alpha \mathcal{G}) = |\alpha| R_n(\mathcal{G});$$

• if
$$g_0$$
 is a function, $R_n(\mathcal{G} + \{g_0\}) = R_n(\mathcal{G});$

$$\blacktriangleright R_n(\mathcal{G}) = R_n(\operatorname{conv}(\mathcal{G})).$$

Symmetrization

- Question: why is it useful?
- Rademacher complexity directly controls expected uniform deviation

Proposition (symmetrization): With the previous notation,

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}g(Z_{i})-\mathbb{E}\left[g(Z)\right]\right\}\right]\leq 2R_{n}(\mathcal{G}),$$

and

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\mathbb{E}\left[g(Z)\right]-\frac{1}{n}\sum_{i=1}^{n}g(Z_{i})\right\}\right]\leq 2R_{n}(\mathcal{G}).$$

Symmetrization, proof

- ▶ let $\mathcal{D}' := \{Z'_1, \dots, Z'_n\}$ be an independent copy of \mathcal{D}'
- ▶ in particular, one has $\mathbb{E}[g(Z'_i) | D] = \mathbb{E}[g(Z)]$

we write

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\mathbb{E}\left[g(Z)\right]-\frac{1}{n}\sum_{i=1}^{n}g(Z_{i})\right\}\right]=\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\mathbb{E}\left[g(Z_{i}')\mid\mathcal{D}\right]-\frac{1}{n}\sum_{i=1}^{n}g(Z_{i})\right\}\right]$$
$$=\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[g(Z_{i}')-g(Z_{i})\mid\mathcal{D}\right]\right\}\right].$$

Symmetrization, proof ctd.

• since the sup of expectation is \leq than expectation of the sup,

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\mathbb{E}\left[g(Z)\right]-\frac{1}{n}\sum_{i=1}^{n}g(Z_{i})\right\}\right] \leq \mathbb{E}\left[\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}(g(Z_{i}')-g(Z_{i}))\right\} \mid \mathcal{D}\right]\right]$$
$$=\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}(g(Z_{i}')-g(Z_{i}))\right\}\right]$$

by the tower property.

we notice that

 $g(Z'_i) - g(Z_i)$ and $\varepsilon_i(g(Z'_i) - g(Z_i))$ have the same distribution

(this is what we call symmetrization)

Symmetrization proof, ctd.

► thus

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}(g(Z'_{i})-g(Z_{i}))\right\}\right] = \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}(g(Z'_{i})-g(Z_{i}))\right\}\right]$$

$$\leq \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}g(Z_{i})\right\}\right] + \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}-\varepsilon_{i}g(Z_{i})\right\}\right]$$

$$= 2R_{n}(\mathcal{G})$$

since ε and $-\varepsilon$ have the same distribution.

Example: linear predictors

- ▶ let Ω be a norm on \mathbb{R}^d
- ► assume $\mathcal{H} = \{\theta^{\top}\varphi(x), \Omega(\theta) \leq D\}$

then

$$R_n(\mathcal{H}) = \mathbb{E} \left[\sup_{\Omega(\theta) \le D} \frac{1}{n} \sum_{i=1}^n \varepsilon_i \theta^\top \varphi(X_i) \right]$$
$$= \mathbb{E} \left[\sup_{\Omega(\theta) \le D} \frac{1}{n} \varepsilon^\top \Phi \theta \right]$$
$$= \frac{D}{n} \mathbb{E} \left[\Omega^* (\Phi^\top \varepsilon) \right] ,$$

where Ω^* is the *dual norm* of Ω :

$$\Omega^\star(u) \coloneqq \sup_{\Omega(heta) \leq 1} u^ op heta$$
 .

Example: linear predictors, ctd.

▶ when $p \in [1, +\infty)$ and Ω is the *p*-norm, Ω^{\star} is the *q*-norm with 1/p + 1/q = 1

- $\blacktriangleright \Rightarrow$ Rademacher complexity computations boil down to expected norm computations
- let us do this for the 2-norm:

$$R_{n}(\mathcal{H}) = \frac{D}{n} \mathbb{E} \left[\| \Phi^{\top} \varepsilon \| \right]$$

$$\leq \frac{D}{n} \sqrt{\mathbb{E} \left[\| \Phi^{\top} \varepsilon \|^{2} \right]} \qquad (Jensen's inequality)$$

$$= \frac{D}{n} \sqrt{\mathbb{E} \left[\operatorname{trace} \left(\Phi^{\top} \varepsilon \varepsilon^{\top} \Phi \right) \right]}$$

$$= \frac{D}{n} \sqrt{\mathbb{E} \left[\operatorname{trace} \left(\Phi^{\top} \Phi \right) \right]} = \frac{D}{n} \sqrt{\sum_{i=1}^{n} \mathbb{E} \left[\left(\Phi^{\top} \Phi \right)_{i,i} \right]} = \frac{D}{n} \sqrt{\sum_{i=1}^{n} \mathbb{E} \left[\| \varphi(X_{i}) \|^{2} \right]}$$

$$= \frac{D}{\sqrt{n}} \sqrt{\mathbb{E} \left[\| \varphi(x) \|^{2} \right]} \Rightarrow \text{ dimension-free bound with the same rate!}$$

Example: linear predictors, ctd.

we can get a bound on the estimation error:

Proposition: assume that ℓ is *L*-Lipschitz and continuous. Consider linear predictors with bounded coefficients, that is, $f_{\theta}(x) = \theta^{\top} \varphi(x)$ with $\|\theta\| \leq D$. Assume further that $\mathbb{E}\left[\|\varphi(X)\|^2\right] \leq R^2$. Let \hat{f} be the empirical risk minimizer. Then $\mathbb{E}\left[\mathcal{R}(\hat{f})\right] \leq \inf_{\|\theta\| \leq D} \mathcal{R}(f_{\theta}) + \frac{4LRD}{\sqrt{n}}.$

- Remark (i): does not depend on exact expression of the loss
- Remark (ii): does not depend on the dimension