
Excess risk of OLS, proof

Proof: Using our previous computations:

E
[
R(θ̂)

]
− R⋆ = E

[∥∥∥θ̂ − θ⋆
∥∥∥2

Σ̂

]
= E

[
trace

(
(θ̂ − θ⋆)⊤Σ̂(θ̂ − θ⋆)

)]
(definition of ∥·∥Σ̂)

= E
[
trace

(
(θ̂ − θ⋆)(θ̂ − θ⋆)⊤Σ̂

)]
(cyclic property of the trace)

= trace
(

Var(θ̂)Σ̂
)

(linearity)

= trace
(

σ2

n Σ̂−1Σ̂
)

(variance computation)

= σ2

n trace (Id)
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3.4. Ridge regression

81



Introduction
▶ Reminder: when n ≈ d , OLS does not fare too good
▶ even more complicated when d > n
▶ yet, this is a common occurrence
▶ Possible solution: L2 regularization

Definition: let λ > 0. With our notation, the ridge least-squares estimator θ̂λ is defined
as the minimizer of

1
n ∥Y − Φθ∥2 + λ ∥θ∥2

.

▶ one can easily show the following:

Proposition: we have θ̂λ = 1
n (Σ̂ + λ Id)−1Φ⊤Y .

82



A note on invertibility

▶ in the previous proposition we inverted the matrix M ··= Σ̂ + λ Id
▶ Why can we do that?
▶ Σ̂ is positive semi-definite, λ Id “pushes” the spectrum in R⋆

+
▶ more rigorously, if M was not invertible, one would have

det
(

1
nΦ⊤Φ + λ Id

)
= 0 .

▶ meaning that −λ would be an eigenvalue of Φ⊤Φ: this is not possible
▶ Note: this was the main motivation when first introduced5

5Hoerl, Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics, 1970
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Fixed design analysis

▶ as with OLS, we can compute the expected excess risk
▶ only a bit more complicated because of the regularization...
▶ bias-variance decomposition still holds:

Proposition (ridge bias-variance decomposition): Let θ̂λ as before. Under
assumption I and II,

E[R(θ̂λ)] − R⋆ =
∥∥∥E[θ̂λ] − θ⋆

∥∥∥2

Σ̂
+ E

[∥∥∥θ̂λ − E[θ̂λ]
∥∥∥2

Σ̂

]

▶ Proof: did not depend on θ̂’s exact expression
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Rewriting E[θ̂λ]
▶ we will then use the following:

Lemma: Let θ̂λ be the ridge regressor. Assume that I and II hold. Then

E[θ̂λ] = θ⋆ − λ(Σ̂ + λ Id)−1θ⋆ .

▶ Proof:

E[θ̂λ] = E
[

1
n (Σ̂ + λ Id)−1Φ⊤Y

]
(def. of θ̂λ)

= E
[

1
n (Σ̂ + λ Id)−1Φ⊤(Φθ⋆ + ε)

]
(assumption I)

= 1
n (Σ̂ + λ Id)−1Φ⊤Φθ⋆ (linearity + ε centered)
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Rewriting E[θ̂λ]

▶ now, by definition of Σ̂,

E[θ̂λ] = (Σ̂ + λ Id)−1Σ̂θ⋆ .

▶ finally, since for any matrix A

(A + λ I)−1A = I −λ(A + λ I)−1 ,

we deduce the result.
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Excess risk

Proposition (ridge excess risk): assume I and II, let θ̂λ as before. Then

E
[
R(θ̂λ)

]
− R⋆ = λ2 (θ⋆)⊤ (Σ̂ + λ Id)−2Σ̂θ⋆ + σ2

n trace
(

Σ̂2(Σ̂ + λ Id)−2
)

.

▶ Remark (i): when λ → 0, we recover the OLS result
▶ Remark (ii): we have an exact description of the bias / variance evolution w.r.t. λ (!)
▶ Remark (iii): bias increases with λ, variance decreases, λ = 0 not optimal (in general)
▶ Remark (iv): the quantity trace

(
Σ̂2(Σ̂ + λ Id)−2

)
is called “degrees of freedom” ≈

implicit number of parameters
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Excess risk, proof

▶ Proof: we plug the alternative expression of E[θ̂λ] into the bias / variance decomposition
▶ the bias term is clear, variance yields

E
[∥∥∥θ̂λ − E[θ̂λ]

∥∥∥2

Σ̂

]
= E

[∥∥∥∥1
n (Σ̂ + λ Id)−1Φ⊤ε

∥∥∥∥2

Σ̂

]

= E
[

1
n2 trace

(
ε⊤Φ(Σ̂ + λ Id)−1Σ̂(Σ̂ + λ Id)−1Φ⊤ε

)]
= E

[
1
n2 trace

(
Φ⊤εε⊤Φ(Σ̂ + λ Id)−1Σ̂(Σ̂ + λ Id)−1

)]
(trace cyclic property)

= σ2

n trace
(

Σ̂(Σ̂ + λ Id)−1Σ̂(Σ̂ + λ Id)−1
)

. (E
[
εε⊤] = σ2 Id)
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Excess risk, proof

▶ finally, since
(Σ̂ + λ Id)(Σ̂ + λ Id)−1 = (Σ̂ + λ Id)−1(Σ̂ + λ Id) = Id ,

we deduce that

Σ̂(Σ̂ + λ Id)−1 = (Σ̂ + λ Id)−1Σ̂
(

= Id −λ(Σ̂ + λ Id)−1
)

.

▶ together with the trace cyclic property, this allows us to write

trace
(

Σ̂(Σ̂ + λ Id)−1Σ̂(Σ̂ + λ Id)−1
)

= trace
(

Σ̂2(Σ̂ + λ Id)−2
)

and to conclude.
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Choice of regularization

Proposition (choice of regularization parameter): Assume that I and II hold. Set

λ⋆ ··=
σ trace(Σ̂)1/2

∥θ⋆∥
√

n

as regularization parameter. Then

E
[
R(θ̂λ⋆)

]
− R⋆ ≤ σ trace(Σ̂)1/2 ∥θ⋆∥√

n
.

▶ Remark (i): of course, in practice, we know neither σ, nor θ⋆...
▶ Remark (ii): λ⋆ maybe not optimal for the true risk
▶ Remark (iii): slower rate of convergence, but σ instead of σ2
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Choice of regularization, proof

▶ we take for granted that all eigenvalues of λ(Σ̂ + λ Id)−2Σ̂ are smaller than 1/2
▶ as a consequence:

B = λ2(θ⋆)⊤(Σ̂ + λ Id)−2Σ̂θ⋆

= λ(θ⋆)⊤
[
(Σ̂ + λ Id)−2Σ̂

]
θ⋆

≤ λ

2 ∥θ⋆∥2
.

▶ in the same fashion:

V = σ2

n trace
(

Σ̂2(Σ̂ + λ Id)−2
)

= σ2

λn trace
(

Σ̂
(

λ(Σ̂ + λ Id)−2Σ̂
))

≤ σ2

λn trace
(

Σ̂
)

.
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Proof, ctd.

▶ putting both bounds together, we get

E
[
R̂(θ̂λ)

]
− R⋆ ≤ λ

2 ∥θ⋆∥2 + σ2

2λn trace
(

Σ̂
)

.

▶ minimizing in λ yields

λ⋆ =
σtrace

(
Σ̂
)1/2

∥θ⋆∥
√

n
,

as expected.
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Dimension free bound?

▶ recall that our upper bound reads

E
[
R(θ̂λ⋆)

]
− R⋆ ≤ σ trace(Σ̂)1/2 ∥θ⋆∥√

n
.

▶ no explicit dependency in d
▶ under some assumptions (e.g., sparsity), ∥θ⋆∥ ≪ d
▶ moreover, if ∥φ(x)∥ ≤ R,

trace
(

Σ̂
)

=
d∑

j=1
Σ̂j,j

1
n

n∑
i=1

d∑
j=1

φ(xi)2
j

= 1
n

n∑
i=1

∥φ(xi)∥2 ≤ R2 .
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3.5. Random design analysis
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Random design analysis

▶ back to random design: (Xi , Yi) i.i.d. from some distribution p on X × Y
▶ Goal: prove the same excess risk bound (i.e., ≈ σ2d

n )
▶ Important: we make the same assumptions, transposed to the random design setting:

▶ Assumption I: ∃θ⋆ ∈ Rd such that

∀i ∈ [n], Yi = φ(Xi )⊤θ⋆ + εi ,

▶ Assumption II: the noise distribution of εi is independent from that of Xi , E [εi ] = 0, and
E
[
ε2

i
]

= σ2.
▶ notable consequence of our assumptions:

E [Yi | Xi ] = φ(Xi)⊤θ⋆ .
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Excess risk

▶ the excess risk has a similar decomposition:

Proposition (excess risk for random design least-squares regression): Assume that I
and II hold. Then R⋆ = σ2, and

∀θ ∈ Rd , R(θ) − R⋆ = ∥θ − θ⋆∥2
Σ ,

where Σ ··= E
[
φ(X )φ(X )⊤].

▶ Intuition: Σ̂ is replace by its expectation, which is Σ
▶ (recall that Σ̂ = 1

n Φ⊤Φ)
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Excess risk, proof
▶ Proof: let (X0, Y0) be a “new” observation, with noise ε0

R(θ) = E
[
(Y0 − θ⊤φ(X0))2]

= E
[
(φ(X0)⊤θ⋆ + ε0 − θ⊤φ(X0))2] (AI)

= E
[
(φ(X0)⊤θ⋆ − θ⊤φ(X0))2]+ 2E

[
ε0(θ⋆ − θ)⊤φ(X0)

]
+ E

[
ε2

0
]

▶ by independence, and since the noise is centered,

E
[
ε0(θ⋆ − θ)⊤φ(X0)

]
= E [ε0]E

[
(θ⋆ − θ)⊤φ(X0)

]
= 0 .

▶ now we can conclude:

R(θ) = E
[
((θ⋆ − θ)⊤φ(X0))2]+ E

[
ε2

0
]

(AII)
= (θ − θ⋆)⊤E

[
φ(X0)φ(X0)⊤] (θ − θ⋆) + σ2 (linearity)

= (θ − θ⋆)⊤Σ(θ − θ⋆) + σ2 . (definition of Σ)
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Excess risk of OLS

▶ we now use the previous result to investigate θ̂:

Proposition: Assume that I and II hold. Assume further that Σ̂ is almost surely invertible.
Then the expected excess risk of the OLS estimator is equal to

E
[
R(θ̂)

]
− R⋆ = σ2

n E
[
trace

(
ΣΣ̂−1

)]
.

▶ Remark (i): Σ̂ has the same definition, but is now a random quantity
▶ Remark (ii): under reasonable assumptions (e.g., density), Σ̂ is almost surely invertible
▶ Intuition: det(Σ̂) = 0 is a “zero-measure” condition
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Excess risk of OLS, proof

▶ from the definition of θ̂,

θ̂ = 1
n Σ̂−1Φ⊤Y = 1

n Σ̂−1Φ⊤(Φθ⋆ + ε) = θ⋆ + 1
n Σ̂−1Φ⊤ε .

▶ using the previous result:

E
[
R(θ̂)

]
− R⋆ = E

[(
1
n Σ̂−1Φ⊤ε

)⊤

Σ
(

1
n Σ̂−1Φ⊤ε

)]

= E

[
trace

(
Σ
(

1
n Σ̂−1Φ⊤ε

)(
1
n Σ̂−1Φ⊤ε

)⊤
)]

(cyclic property)

= 1
n2E

[
trace

(
ΣΣ̂−1Φ⊤εε⊤ΦΣ̂−1

)]
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Excess risk of OLS, proof ctd.

▶ now we use properties of the conditional expectation:

E
[
trace

(
ΣΣ̂−1Φ⊤εε⊤ΦΣ̂−1

)]
= E

[
E
[
trace

(
ΣΣ̂−1Φ⊤εε⊤ΦΣ̂−1

)
| X1, . . . , Xn

]]
(tower property)

= E
[
trace

(
ΣΣ̂−1Φ⊤E

[
εε⊤ | X1, . . . , Xn

]
ΦΣ̂−1

)]
(Φ, Σ̂ are X1, . . . , Xn-measurable)

= E
[
trace

(
ΣΣ̂−1Φ⊤E

[
εε⊤]ΦΣ̂−1

)]
(independence)

= σ2E
[
trace

(
ΣΣ̂−1Φ⊤ΦΣ̂−1

)]
(E
[
εε⊤] = σ2 Id)

= σ2E
[
trace

(
ΣΣ̂−1

)]
.
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Gaussian design

▶ to be more precise, we need to specify a distribution for the φ(Xi)s

Proposition: Assume that I and II hold. Assume further that φ(X ) ∼ N (0, Σ). Then the
expected risk of OLS is given by

E
[
R(θ̂)

]
− R⋆ = σ2d

n − d − 1 .

▶ Remark: we (nearly) recover the σ2d/n bound from fixed design!
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Gaussian design, proof

▶ define Z ··= Σ−1/2φ(X )
▶ properties of Gaussian vectors: Z ∼ N (0, Id)
▶ we see that

E
[
trace

(
ΣΣ̂−1

)]
= trace

(
E
[
Σ(Σ1/2ZΣ1/2Z⊤)−1

])
= trace

(
E
[
(ZZ⊤)−1]) .

▶ (ZZ⊤)−1 has the inverse Wishart distribution
▶ we read in the tables:

E
[
(ZZ⊤)−1] = 1

n − d − 1 Id

and conclude.
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4. Generalization bounds
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Reminder: risk decomposition

▶ Reminder:

R(f ) − R⋆ =
[
R(f ) − inf

h∈H
R(h)

]
+

[
inf

h∈H
R(h) − R⋆

]
excess risk = estimation error + approximation error

▶ Estimation error:
▶ always non-negative
▶ random if there is randomness in the creation of f
▶ characterizes how much we loose by picking the wrong predictor in a given class

▶ Approximation error:
▶ deterministic, does not depend on f , only on the class of functions H
▶ characterizes how much we loose by restricting ourselves to a given class
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Decomposition of the estimation error
▶ Notation (i): fH ∈ arg minf ∈H R(f ), best predictor in our function class
▶ Notation (ii): f̂ empirical risk minimizer
▶ Useful decomposition:

R(f̂ ) − inf
f ∈H

R(f ) = R(f̂ ) − R(fH) (def. of fH)

= R(f̂ ) − R̂(f̂ ) + R̂(f̂ ) − R̂(fH) + R̂(fH) − R(fH)

≤ sup
f ∈H

{
R(f ) − R̂(f )

}
+ R̂(f̂ ) − R̂(fH) + sup

f ∈H

{
R̂(f ) − R(f )

}
▶ middle term is ≤ 0 by definition, and we get

R(f̂ ) − inf
f ∈H

R(f ) ≤ 2 sup
f ∈H

∣∣∣R̂(f ) − R(f )
∣∣∣ .
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Decomposition of the estimation error, ctd.

▶ Remark (i): no more dependency in f̂ , we only need to control functions (but we do need
uniform control)

▶ Remark (ii): if f̂ not global minimizer, say

R̂(f̂ ) ≤ inf
f ∈H

R̂(f ) + ε ,

we need to add ε to our bound
▶ Remark (iii): bound usually grows with size of H and decreases with n
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4.1. Uniform bounds via concentration
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Single function

▶ when there is a single function f0 in H, we have already seen how to control

sup
f ∈H

∣∣∣R̂(f ) − R(f )
∣∣∣ = R̂(f0) − R(f0) = 1

n

n∑
i=1

ℓ(Yi , f (Xi)) − E [ℓ(Y , f (X ))] .

▶ indeed, since the observations are i.i.d., we can use Hoeffding’s inequality (Exercise
sheet 1):

Proposition: for any δ ∈ (0, 1/2), with probability greater than 1 − δ,

R(f0) − R̂(f0) <
ℓ∞

√
2√

n

√
log 1

δ
,

where ℓ∞ is an upper bound on ℓ(Yi , f (Xi)).
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From sup to expectation

▶ Problem: there is often more than one function in H...
▶ still possible, using for instance:

Proposition (McDiarmid’s inequality): Let Z1, . . . , Zn be independent random variables
and F a function such that

|F (z1, . . . , zi−1, zi , zi+1, . . . , zn) − F (z1, . . . , zi−1, z ′
i , zi+1, . . . , zn)| ≤ c .

Then
P (|F (Z1, . . . , Zn) − E [F (Z1, . . . , Zn)]| ≥ t) ≤ 2exp

(
−2t2/(nc2)

)
.
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Application of McDiarmid

▶ set Zi ··= (Xi , Yi), and

H(Z1, . . . , Zn) ··= sup
f ∈H

{
R(f ) − R̂(f )

}
.

▶ Mc Diarmid tells us that, with probability higher than 1 − δ,

H(Z1, . . . , Zn) − E [H(Z1, . . . , Zn)] ≤ ℓ∞
√

2√
n

√
log 1

δ
.

▶ getting bound on E [H(Z1, . . . , Zn)] automatically yields bound on supf ∈H

{
R̂(f ) − R(f )

}
▶ by symmetry, upper bound on supf ∈H

∣∣∣R̂(f ) − R(f )
∣∣∣
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4.2. Rademacher complexity
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Rademacher complexity
▶ set Z ··= (X , Y ) and G ··= {(x , y) 7→ ℓ(y , f (x))}, with f in some function class H
▶ Recall: we want to bound

sup
f ∈H

{
R(f ) − R̂(f )

}
= sup

g∈G

{
E [g(Z )] − 1

n

n∑
i=1

g(Zi)
}

.

▶ set D ··= {Z1, . . . , Zn} the data

Definition: We call Rademacher complexity of the function class G the quantity

Rn(G) ··= Eε,D

[
sup
g∈G

1
n

n∑
i=1

εig(Zi)
]

,

where the εis are independent Rademacher random variables (that is, P (εi = ±1) = 1/2).
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Rademacher complexity, first properties

▶ Intuition: expectation of maximal dot-product with random labels
▶ measures the capacity of the set G

Properties: Rademacher complexity satisfies the following properties:
▶ if G ⊂ G′, then Rn(G) ≤ Rn(G′);
▶ Rn(G + G′) = Rn(G) + Rn(G′);
▶ Rn(αG) = |α| Rn(G);
▶ if g0 is a function, Rn(G + {g0}) = Rn(G);
▶ Rn(G) = Rn(conv(G)).
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Symmetrization

▶ Question: why is it useful?
▶ Rademacher complexity directly controls expected uniform deviation

Proposition (symmetrization): With the previous notation,

E

[
sup
g∈G

{
1
n

n∑
i=1

g(Zi) − E [g(Z )]
}]

≤ 2Rn(G) ,

and

E

[
sup
g∈G

{
E [g(Z )] − 1

n

n∑
i=1

g(Zi)
}]

≤ 2Rn(G) .
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Symmetrization, proof

▶ let D′ ··= {Z ′
1, . . . , Z ′

n} be an independent copy of D′

▶ in particular, one has E [g(Z ′
i ) | D] = E [g(Z )]

▶ we write

E

[
sup
g∈G

{
E [g(Z )] − 1

n

n∑
i=1

g(Zi)
}]

= E

[
sup
g∈G

{
E [g(Z ′

i ) | D] − 1
n

n∑
i=1

g(Zi)
}]

= E

[
sup
g∈G

{
1
n

n∑
i=1

E [g(Z ′
i ) − g(Zi) | D]

}]
.
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Symmetrization, proof ctd.

▶ since the sup of expectation is ≤ than expectation of the sup,

E

[
sup
g∈G

{
E [g(Z )] − 1

n

n∑
i=1

g(Zi)
}]

≤ E

[
E

[
sup
g∈G

{
1
n

n∑
i=1

(g(Z ′
i ) − g(Zi))

}
| D

]]

= E

[
sup
g∈G

{
1
n

n∑
i=1

(g(Z ′
i ) − g(Zi))

}]

by the tower property.
▶ we notice that

g(Z ′
i ) − g(Zi) and εi(g(Z ′

i ) − g(Zi)) have the same distribution

(this is what we call symmetrization)
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Symmetrization proof, ctd.

▶ thus

E

[
sup
g∈G

{
1
n

n∑
i=1

(g(Z ′
i ) − g(Zi))

}]
= E

[
sup
g∈G

{
1
n

n∑
i=1

εi(g(Z ′
i ) − g(Zi))

}]

≤ E

[
sup
g∈G

{
1
n

n∑
i=1

εig(Zi)
}]

+ E

[
sup
g∈G

{
1
n

n∑
i=1

−εig(Zi)
}]

= 2Rn(G)

since ε and −ε have the same distribution.
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Example: linear predictors
▶ let Ω be a norm on Rd

▶ assume H = {θ⊤φ(x), Ω(θ) ≤ D}
▶ then

Rn(H) = E

[
sup

Ω(θ)≤D

1
n

n∑
i=1

εiθ
⊤φ(Xi)

]

= E

[
sup

Ω(θ)≤D

1
nε⊤Φθ

]

= D
n E

[
Ω⋆(Φ⊤ε)

]
,

where Ω⋆ is the dual norm of Ω:

Ω⋆(u) ··= sup
Ω(θ)≤1

u⊤θ .
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Example: linear predictors, ctd.
▶ when p ∈ [1, +∞) and Ω is the p-norm, Ω⋆ is the q-norm with 1/p + 1/q = 1
▶ ⇒ Rademacher complexity computations boil down to expected norm

computations
▶ let us do this for the 2-norm:

Rn(H) = D
n E

[∥∥Φ⊤ε
∥∥]

≤ D
n

√
E
[
∥Φ⊤ε∥2

]
(Jensen’s inequality)

= D
n

√
E [trace (Φ⊤εε⊤Φ)]

= D
n

√
E [trace (Φ⊤Φ)] = D

n

√√√√ n∑
i=1

E [(Φ⊤Φ)i,i ] = D
n

√√√√ n∑
i=1

E
[
∥φ(Xi)∥2

]
= D√

n

√
E
[
∥φ(x)∥2

]
⇒ dimension-free bound with the same rate!
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Example: linear predictors, ctd.

▶ we can get a bound on the estimation error:

Proposition: assume that ℓ is L-Lipschitz and continuous. Consider linear predictors with
bounded coefficients, that is, fθ(x) = θ⊤φ(x) with ∥θ∥ ≤ D. Assume further that
E
[
∥φ(X )∥2

]
≤ R2. Let f̂ be the empirical risk minimizer. Then

E
[
R(f̂ )

]
≤ inf

∥θ∥≤D
R(fθ) + 4LRD√

n
.

▶ Remark (i): does not depend on exact expression of the loss
▶ Remark (ii): does not depend on the dimension
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